1
|
Ferrari A, Polidori C. Temperature differently affects body pigmentation of the paper wasp Polistes dominula along an urban and a wider geographical gradient. J Therm Biol 2024; 121:103840. [PMID: 38552445 DOI: 10.1016/j.jtherbio.2024.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 05/26/2024]
Abstract
In insects, different pigments, such as melanins and pterins, are involved in thermoregulation. The degree of melanisation often varies along geographical gradients, according to the so-called thermal melanism hypothesis, i.e. darker forms are found in colder places because they can warm up more quickly. Similarly, pterins work as heat sinks and thus are expected to be more abundant in colder sites. Cities, which are warmer than surrounding areas (Urban Heat Island (UHI) effect), might also be expected to influence pigmentation, although studies are lacking. Here, we sampled workers of the social paper wasp Polistes dominula (Christ, 1791) (Vespidae) across an urbanisation gradient in an Italian metropolis and used iNaturalist pictures of this species across Italy to study pigmentation patterns at both urban and larger geographical scales. We found a lower yellow intensity of abdominal spots at warmer locations. Scanning Electron Microscopy strongly suggested that yellow colouration is due xanthopterin, known to be the heat sink molecule in other social vespids. Thus, wasps from warmer (i.e., urban) environments are likely to have fewer xanthopterin granules, in line with the lack of need for heat storage due to the local thermal gradient (UHI effect). At the country level, we found that wasps at higher latitudes had smaller yellow spots on the thorax and only two spots instead of four at higher altitudes, in full accordance with the thermal melanism hypothesis. In conclusion, climatic conditions seem to affect insect colour patterns both along urban and wider geographical gradients, although colour changes may affect different body parts and pigments likely according to different needs.
Collapse
Affiliation(s)
- Andrea Ferrari
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - Carlo Polidori
- Department of Environmental Science and Policy (ESP), University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
2
|
Daňková K, Nicholas S, Nordström K. Temperature during pupal development affects hoverfly developmental time, adult life span, and wing length. Ecol Evol 2023; 13:e10516. [PMID: 37881229 PMCID: PMC10597744 DOI: 10.1002/ece3.10516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/25/2023] [Accepted: 08/29/2023] [Indexed: 10/27/2023] Open
Abstract
Hoverflies (Diptera, Syrphidae) are cosmopolitan, generalist flower visitors and among the most important pollinators after bees and bumblebees. The dronefly Eristalis tenax can be found in temperate and continental climates across the globe, often synanthropically. Eristalis tenax pupae of different generations and different climate zones are thus exposed to vastly different temperatures. In many insects, the ambient temperature during the pupal stage affects development, adult size, and survival; however, the effect of developmental temperature on these traits in hoverflies is comparatively poorly understood. We here reared E. tenax pupae at different temperatures, from 10°C to 25°C, and quantified the effect on adult hoverflies. We found that pupal rearing at 17°C appeared to be optimal, with high eclosion rates, longer wings, and increased adult longevity. Rearing temperatures above or below this optimum led to decreased eclosion rates, wing size, and adult survival. Similar thermal dependence has been observed in other insects. We found that rearing temperature had no significant effect on locomotor activity, coloration or weight, despite evidence of strong sexual dimorphism for each of these traits. Our findings are important as hoverflies are key pollinators, and understanding the effects of developmental temperature could potentially be useful for horticulture.
Collapse
Affiliation(s)
- Klára Daňková
- Flinders Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Zoology, Faculty of ScienceCharles UniversityPraha 2Czech Republic
| | - Sarah Nicholas
- Flinders Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Karin Nordström
- Flinders Health and Medical Research InstituteFlinders UniversityAdelaideSouth AustraliaAustralia
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Binns GE, Hämäläinen L, Kemp DJ, Rowland HM, Umbers KDL, Herberstein ME. Additive genetic variation, but not temperature, influences warning signal expression in Amata nigriceps moths (Lepidoptera: Arctiinae). Ecol Evol 2022; 12:e9111. [PMID: 35866015 PMCID: PMC9288930 DOI: 10.1002/ece3.9111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022] Open
Abstract
Many aposematic species show variation in their color patterns even though selection by predators is expected to stabilize warning signals toward a common phenotype. Warning signal variability can be explained by trade-offs with other functions of coloration, such as thermoregulation, that may constrain warning signal expression by favoring darker individuals. Here, we investigated the effect of temperature on warning signal expression in aposematic Amata nigriceps moths that vary in their black and orange wing patterns. We sampled moths from two flight seasons that differed in the environmental temperatures and also reared different families under controlled conditions at three different temperatures. Against our prediction that lower developmental temperatures would reduce the warning signal size of the adult moths, we found no effect of temperature on warning signal expression in either wild or laboratory-reared moths. Instead, we found sex- and population-level differences in wing patterns. Our rearing experiment indicated that ~70% of the variability in the trait is genetic but understanding what signaling and non-signaling functions of wing coloration maintain the genetic variation requires further work. Our results emphasize the importance of considering both genetic and plastic components of warning signal expression when studying intraspecific variation in aposematic species.
Collapse
Affiliation(s)
- Georgina E. Binns
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Liisa Hämäläinen
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Darrell J. Kemp
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| | - Hannah M. Rowland
- Max Planck Institute forChemical EcologyHans Knöll Straße 8,JenaGermany
| | - Kate D. L. Umbers
- School of ScienceWestern Sydney UniversityPenrithNew South WalesAustralia
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Marie E. Herberstein
- School of Natural Sciences, 14 Eastern RoadMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
4
|
Yenmiş M, Bayrakcı Y, Ayaz D. Skin structure, coloration, and habitat utilization in typical and melanistic morphs of the grass snake (Natrix natrix). Naturwissenschaften 2022; 109:22. [DOI: 10.1007/s00114-022-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 02/14/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
|
5
|
Goldenberg J, Bisschop K, D'Alba L, Shawkey MD. The link between body size, colouration and thermoregulation and their integration into ecogeographical rules: a critical appraisal in light of climate change. OIKOS 2022. [DOI: 10.1111/oik.09152] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jonathan Goldenberg
- Evolution and Optics of Nanostructures group, Dept of Biology, Ghent Univ. Ghent Belgium
| | - Karen Bisschop
- Inst. for Biodiversity and Ecosystem Dynamics, Univ. of Amsterdam Amsterdam the Netherlands
- Laboratory of Aquatic Biology, Dept of Biology, KU Leuven KULAK Kortrijk Belgium
| | - Liliana D'Alba
- Evolution and Optics of Nanostructures group, Dept of Biology, Ghent Univ. Ghent Belgium
| | - Matthew D. Shawkey
- Evolution and Optics of Nanostructures group, Dept of Biology, Ghent Univ. Ghent Belgium
| |
Collapse
|
6
|
Clusella-Trullas S, Nielsen M. The evolution of insect body coloration under changing climates. CURRENT OPINION IN INSECT SCIENCE 2020; 41:25-32. [PMID: 32629405 DOI: 10.1016/j.cois.2020.05.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Insects have been influential models in research on color variation, its evolutionary drivers and the mechanistic basis of such variation. More recently, several studies have indicated that insect color is responding to rapid climate change. However, it remains challenging to ascertain drivers of color variation among populations and species, and across space and time, as multiple biotic and abiotic factors can interact and mediate color change. Here, we describe some of the challenges and recent advances made in this field. First, we outline the main alternative hypotheses that exist for insect color variation in relation to climatic factors. Second, we review the existing evidence for contemporary adaptive evolution of insect color in response to climate change and then discuss factors that can promote or hinder the evolution of color in response to climate change. Finally, we propose future directions and highlight gaps in this research field. Pigments and structures producing insect color can vary concurrently or independently, and may evolve at different rates, with poorly understood effects on gene frequencies and fitness. Disentangling multiple competing hypotheses explaining insect coloration should be key to assign color variation as an evolutionary response to climate change.
Collapse
Affiliation(s)
- Susana Clusella-Trullas
- Centre for Invasion Biology, Dept. of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa.
| | - Matthew Nielsen
- Department of Zoology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Köhler G, Schielzeth H. Green-brown polymorphism in alpine grasshoppers affects body temperature. Ecol Evol 2020; 10:441-450. [PMID: 31988736 PMCID: PMC6972831 DOI: 10.1002/ece3.5908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 11/06/2022] Open
Abstract
Ectothermic animals depend on external heat sources for pursuing their daily activities. However, reaching sufficiently high temperature can be limiting at high altitudes, where nights are cold and seasons short. We focus on the role of a green-brown color polymorphism in grasshoppers from alpine habitats. The green-brown polymorphism is phylogenetically and spatially widespread among Orthopterans and the eco-evolutionary processes that contribute to its maintenance have not yet been identified.We here test whether green and brown individuals heat up to different temperatures under field conditions. If they do, this would suggest that thermoregulatory capacity might contribute to the maintenance of the green-brown polymorphism.We recorded thorax temperatures of individuals sampled and measured under field conditions. Overall, thorax temperatures ranged 1.7-42.1°C. Heat up during morning hours was particularly rapid, and temperatures stabilized between 31 and 36°C during the warm parts of the day. Female body temperatures were significantly higher than body temperatures of males by an average of 2.4°C. We also found that brown morphs were warmer by 1.5°C on average, a pattern that was particularly supported in the polymorphic club-legged grasshopper Gomphocerus sibiricus and the meadow grasshopper Pseudochorthippus parallelus.The difference in body temperature between morphs might lead to fitness differences that can contribute to the maintenance of the color polymorphism in combination with other components, such as crypsis, that functionally trade-off with the ability to heat up. The data may be of more general relevance to the maintenance of a high prevalence polymorphism in Orthopteran insects.
Collapse
Affiliation(s)
- Günter Köhler
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| | - Holger Schielzeth
- Population Ecology GroupInstitute of Ecology and EvolutionFriedrich Schiller University JenaJenaGermany
| |
Collapse
|
8
|
Echevarría Ramos M, Hulshof CM. Using digitized museum collections to understand the effects of habitat on wing coloration in the Puerto Rican monarch. Biotropica 2019. [DOI: 10.1111/btp.12680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Munro JT, Medina I, Walker K, Moussalli A, Kearney MR, Dyer AG, Garcia J, Rankin KJ, Stuart-Fox D. Climate is a strong predictor of near-infrared reflectance but a poor predictor of colour in butterflies. Proc Biol Sci 2019; 286:20190234. [PMID: 30862288 PMCID: PMC6458314 DOI: 10.1098/rspb.2019.0234] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 02/19/2019] [Indexed: 02/06/2023] Open
Abstract
Colour variation across climatic gradients is a common ecogeographical pattern; yet there is long-standing contention over underlying causes, particularly selection for thermal benefits. We tested the evolutionary association between climate gradients and reflectance of near-infrared (NIR) wavelengths, which influence heat gain but are not visible to animals. We measured ultraviolet (UVA), visible (Vis) and NIR reflectance from calibrated images of 372 butterfly specimens from 60 populations (49 species, five families) spanning the Australian continent. Consistent with selection for thermal benefits, the association between climate and reflectance was stronger for NIR than UVA-Vis wavelengths. Furthermore, climate predicted reflectance of the thorax and basal wing, which are critical to thermoregulation; but it did not predict reflectance of the entire wing, which has a variable role in thermoregulation depending on basking behaviour. These results provide evidence that selection for thermal benefits has shaped the reflectance properties of butterflies.
Collapse
Affiliation(s)
- Joshua T. Munro
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Iliana Medina
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ken Walker
- Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Adnan Moussalli
- Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Michael R. Kearney
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adrian G. Dyer
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Jair Garcia
- Bio-inspired Digital Sensing (BIDS) Lab, School of Media and Communication, RMIT University, Melbourne, Victoria, Australia
| | - Katrina J. Rankin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
10
|
Yıldırım Y, Tinnert J, Forsman A. Contrasting patterns of neutral and functional genetic diversity in stable and disturbed environments. Ecol Evol 2018; 8:12073-12089. [PMID: 30598801 PMCID: PMC6303714 DOI: 10.1002/ece3.4667] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 01/05/2023] Open
Abstract
Genetic structure among and diversity within natural populations is influenced by a combination of ecological and evolutionary processes. These processes can differently influence neutral and functional genetic diversity and also vary according to environmental settings. To investigate the roles of interacting processes as drivers of population-level genetic diversity in the wild, we compared neutral and functional structure and diversity between 20 Tetrix undulata pygmy grasshopper populations in disturbed and stable habitats. Genetic differentiation was evident among the different populations, but there was no genetic separation between stable and disturbed environments. The incidence of long-winged phenotypes was higher in disturbed habitats, indicating that these populations were recently established by flight-capable colonizers. Color morph diversity and dispersion of outlier genetic diversity, estimated using AFLP markers, were higher in disturbed than in stable environments, likely reflecting that color polymorphism and variation in other functionally important traits increase establishment success. Neutral genetic diversity estimated using AFLP markers was lower in disturbed habitats, indicating stronger eroding effects on neutral diversity of genetic drift associated with founding events in disturbed compared to stable habitats. Functional diversity and neutral diversity were negatively correlated across populations, highlighting the utility of outlier loci in genetics studies and reinforcing that estimates of genetic diversity based on neutral markers do not infer evolutionary potential and the ability of populations and species to cope with environmental change.
Collapse
Affiliation(s)
- Yeşerin Yıldırım
- Ecology and Evolution in Microbial Model SystemsEEMISDepartment of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| | - Jon Tinnert
- Ecology and Evolution in Microbial Model SystemsEEMISDepartment of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| | - Anders Forsman
- Ecology and Evolution in Microbial Model SystemsEEMISDepartment of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
| |
Collapse
|
11
|
Forsman A. On the role of sex differences for evolution in heterogeneous and changing fitness landscapes: insights from pygmy grasshoppers. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170429. [PMID: 30150227 PMCID: PMC6125723 DOI: 10.1098/rstb.2017.0429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2018] [Indexed: 12/16/2022] Open
Abstract
Much research has been devoted to study evolution of local adaptations by natural selection, and to explore the roles of neutral processes and developmental plasticity for patterns of diversity among individuals, populations and species. Some aspects, such as evolution of adaptive variation in phenotypic traits in stable environments, and the role of plasticity in predictable changing environments, are well understood. Other aspects, such as the role of sex differences for evolution in spatially heterogeneous and temporally changing environments and dynamic fitness landscapes, remain elusive. An increased understanding of evolution requires that sex differences in development, physiology, morphology, life-history and behaviours are more broadly considered. Studies of selection should take into consideration that the relationships linking phenotypes to fitness may vary not only according to environmental conditions but also differ between males and females. Such opposing selection, sex-by-environment interaction effects of selection and sex-specific developmental plasticity can have consequences for population differentiation, local adaptations and for the dynamics of polymorphisms. Integrating sex differences in analytical frameworks and population comparisons can therefore illuminate neglected evolutionary drivers and reconcile unexpected patterns. Here, I illustrate these issues using empirical examples from over 20 years of research on colour polymorphic Tetrix subulata and Tetrix undulata pygmy grasshoppers, and summarize findings from observational field studies, manipulation experiments, common garden breeding experiments and population genetics studies.This article is part of the theme issue 'Linking local adaptation with the evolution of sex differences'.
Collapse
Affiliation(s)
- Anders Forsman
- Ecology and Evolution in Microbial Model Systems, EEMiS, Department of Biology and Environmental Science, Linnaeus University, 391 82 Kalmar, Sweden
| |
Collapse
|
12
|
Sibilia CD, Brosko KA, Hickling CJ, Thompson LM, Grayson KL, Olson JR. Thermal Physiology and Developmental Plasticity of Pigmentation in the Harlequin Bug (Hemiptera: Pentatomidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2018; 18:5051929. [PMID: 30010926 PMCID: PMC6044328 DOI: 10.1093/jisesa/iey066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Indexed: 06/08/2023]
Abstract
Traits that promote the maintenance of body temperatures within an optimal range provide advantages to ectothermic species. Pigmentation plasticity is found in many insects and enhances thermoregulatory potential as increased melanization can result in greater heat retention. The thermal melanism hypothesis predicts that species with developmental plasticity will have darker pigmentation in colder environments, which can be an important adaptation for temperate species experiencing seasonal variation in climate. The harlequin bug (Murgantia histrionica, Hemiptera: Pentatomidae, Hahn 1834) is a widespread invasive crop pest with variable patterning where developmental plasticity in melanization could affect performance. To investigate the impact of temperature and photoperiod on melanization and size, nymphs were reared under two temperatures and two photoperiods simulating summer and fall seasons. The size and degree of melanization of adults were quantified using digital imagery. To assess the effect of coloration on the amount of heat absorption, we monitored the temperature of adults in a heating experiment. Overall, our results supported the thermal melanism hypothesis and temperature had a comparatively larger effect on coloration and size than photoperiod. When heated, the body temperature of individuals with darker pigmentation increased more relative to the ambient air temperature than individuals with lighter pigmentation. These results suggest that colder temperatures experienced late in the season can induce developmental plasticity for a phenotype that improves thermoregulation in this species. Our work highlights environmental signals and consequences for individual performance due to thermal melanism in a common invasive species, where capacity to respond to changing environments is likely contributing to its spread.
Collapse
Affiliation(s)
| | - Kelly A Brosko
- Department of Biology, University of Richmond, Richmond, VA
| | | | | | | | - Jennifer R Olson
- Department of Biology, University of Richmond, Richmond, VA
- Department of Biology, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
13
|
Zverev V, Kozlov MV, Forsman A, Zvereva EL. Ambient temperatures differently influence colour morphs of the leaf beetle Chrysomela lapponica: Roles of thermal melanism and developmental plasticity. J Therm Biol 2018; 74:100-109. [PMID: 29801614 DOI: 10.1016/j.jtherbio.2018.03.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/30/2022]
Abstract
We asked whether ambient temperatures can affect morph frequencies within a subarctic population of the polymorphic leaf beetle Chrysomela lapponica through thermal melanism and/or developmental plasticity. Body temperature increased faster in beetles of dark morph than in beetles of light morph under exposure to artificial irradiation. Dark males ran faster than light males in both field and laboratory experiments, and this difference decreased with increasing ambient air temperature, from significant at 10 °C to non-significant at 20 °C and 26 °C. On cold days (6-14 °C), significantly more dark males than light males were found on their host plants in copula (40.8% and 27.3% respectively); on warm days (15-22 °C) this difference disappeared. Light females produced twice as many eggs as dark females; this difference did not depend on the ambient temperature. The proportion of dark morphs in the progenies of pairs with one dark parent was twice as high as that in the progenies of pairs in which both parents were light, and this proportion was greater when larvae developed at low (10 and 15 °C) than at high (20 and 25 °C) temperatures. We conclude that low temperatures may increase the frequencies of dark morphs in C. lapponica populations due to both the mating advantages of dark males over light males and developmental plasticity. Variation in frequencies of low-fecund dark morphs in the population, caused by among-year differences in temperature together with density-dependent selection, may contribute to the evolutionary dynamics of the colour polymorphism and may influence abundance fluctuations in these leaf beetle populations.
Collapse
Affiliation(s)
- Vitali Zverev
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Mikhail V Kozlov
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland
| | - Anders Forsman
- Department of Biology and Environmental Science, Linnaeus University, SE-391 82 Kalmar, Sweden
| | - Elena L Zvereva
- Section of Ecology, Department of Biology, University of Turku, FI-20014 Turku, Finland.
| |
Collapse
|
14
|
Dubey A, Omkar, Mishra G. Influence of temperature on reproductive biology and phenotype of a ladybird, Menochilus sexmaculatus (Fabricius) (Coleoptera: Coccinellidae). J Therm Biol 2016; 58:35-42. [PMID: 27157332 DOI: 10.1016/j.jtherbio.2016.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 11/30/2022]
Abstract
Body melanisation in insects is polygenic, resulting from genetic polymorphism or phenotypic plasticity, with diverse implications ranging from thermal budgeting to reproductive success. In this study, we assessed the, mate choice, reproductive success, and offspring colouration of typical (T) and melanic (M) morphs of the ladybird Menochilus sexmaculatus paired at three temperatures 15°C, 25°C and 35°C. Mating success of the two morphs and the consequences for offspring fitness and offspring phenotype under these temperature regimes were evaluated. Melanic adults of both sexes achieved significantly higher mating success at 15°C and 25°C, but at 35°C no influence of adult morph on mate selection was observed. Melanic females were more fecund than typical females at all temperatures. Offspring of melanic parents developed faster than those of typicals at 15°C and 25°C, but not at 35°C. Evidence was also found of phenotypic plasticity in colour form at 15°C and 35°C. At 25°C the parents of pure (T) and (M) morphs produced offspring of the same morph. However, low temperature induced partial melanisation among the offspring of typical parents (T). Whereas at 35°C the offspring of (T) parents became paler in colour with very fine zigzag lines on elytra, i.e. they decrease the degree of melanisation. Pure melanics (M) compensated for elevated temperature stress by producing offspring that were either pure melanic but small or large with reduced melanisation. Our results on offspring phenotype variation indicate that the degree of melanism in morphs is a result of environmentally regulated expression of the parental genotype.
Collapse
Affiliation(s)
- A Dubey
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - Omkar
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| | - G Mishra
- Ladybird Research Laboratory, Department of Zoology, University of Lucknow, Lucknow 226007, India.
| |
Collapse
|
15
|
Azócar DLM, Bonino MF, Perotti MG, Schulte JA, Abdala CS, Cruz FB. Effect of body mass and melanism on heat balance in Liolaemus lizards of the goetschi clade. J Exp Biol 2016; 219:1162-71. [DOI: 10.1242/jeb.129007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022]
Abstract
Body temperature of ectotherms depends on the environmental temperatures and behavioral adjustments, but morphology may also affect it. For example, in colder environments animals tend to be larger and show higher thermal inertia, as proposed by Bergmann's rule and the heat balance hypothesis (HBH). Additionally, dark coloration increases solar radiation absorption and should accelerate heat gain (Thermal melanism hypothesis, TMH).
We tested Bergmann's rule, HBH and TMH within the Liolaemus goetschi lizards clade that show variability in body size and melanic coloration. We measured heating and cooling rates of live and euthanized animals, and tested how morphology and color affect these rates. Live organisms show less variable and faster heating rates, compared to cooling rates, suggesting behavioral and/ or physiological adjustments.
Our results support Bergmann's rule and the HBH, as larger species show slower heating and cooling rates. However, we did not find a clear pattern to support TMH. The influence of dorsal melanism on heating by radiation was masked by body size effect in live animals, while results from euthanized individuals show no clear effects of melanism on heating rates either. However, when compared three groups of live individuals with different degree of melanism we found that that darker euthanized animals actually heat faster than lighter ones, favoring TMH. Although unresolved aspects remain, body size and coloration influenced heat exchange suggesting complex thermoregulatory strategies in these lizards, probably regulated through physiology and behavior, what may allow these small lizards to inhabit harsh weather environments.
Collapse
Affiliation(s)
- Débora Lina Moreno Azócar
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400 Río Negro, Argentina
| | - Marcelo Fabián Bonino
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400 Río Negro, Argentina
| | - María Gabriela Perotti
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400 Río Negro, Argentina
| | - James A. Schulte
- Beloit College, 700 College St., Science Center 338, Beloit, WI 53511, USA
| | - Cristian Simón Abdala
- Facultad de Ciencias Naturales e I. M. Lillo (UNT), CONICET-Instituto de Herpetología (FML), Tucumán, Argentina. Miguel Lillo 205, 4000, San Miguel de Tucumán, Argentina
| | - Félix Benjamín Cruz
- Laboratorio de Fotobiología, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA), CONICET-UNCOMA, Quintral 1250, Bariloche, 8400 Río Negro, Argentina
| |
Collapse
|
16
|
Broennimann O, Ursenbacher S, Meyer A, Golay P, Monney JC, Schmocker H, Guisan A, Dubey S. Influence of climate on the presence of colour polymorphism in two montane reptile species. Biol Lett 2015; 10:20140638. [PMID: 25392313 DOI: 10.1098/rsbl.2014.0638] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The coloration of ectotherms plays an important role in thermoregulation processes. Dark individuals should heat up faster and be able to reach a higher body temperature than light individuals and should therefore have benefits in cool areas. In central Europe, montane local populations of adder (Vipera berus) and asp viper (Vipera aspis) exhibit a varying proportion of melanistic individuals. We tested whether the presence of melanistic V. aspis and V. berus could be explained by climatic conditions. We measured the climatic niche position and breadth of monomorphic (including strictly patterned individuals) and polymorphic local populations, calculated their niche overlap and tested for niche equivalency and similarity. In accordance with expectations, niche overlap between polymorphic local populations of both species is high, and even higher than that of polymorphic versus monomorphic montane local populations of V. aspis, suggesting a predominant role of melanism in determining the niche of ectothermic vertebrates. However, unexpectedly, the niche of polymorphic local populations of both species is narrower than that of monomorphic ones, indicating that colour polymorphism does not always enable the exploitation of a greater variability of resources, at least at the intraspecific level. Overall, our results suggest that melanism might be present only when the thermoregulatory benefit is higher than the cost of predation.
Collapse
Affiliation(s)
- Olivier Broennimann
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Sylvain Ursenbacher
- Karch (Centre de coordination pour la protection des amphibiens et des reptiles de Suisse), Neuchâtel, Switzerland
| | - Andreas Meyer
- Karch (Centre de coordination pour la protection des amphibiens et des reptiles de Suisse), Neuchâtel, Switzerland
| | - Philippe Golay
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Jean-Claude Monney
- Karch (Centre de coordination pour la protection des amphibiens et des reptiles de Suisse), Neuchâtel, Switzerland
| | - Hans Schmocker
- EcCoronella, Naturschutz und ökologische Feldarbeiten, Chur, Switzerland
| | - Antoine Guisan
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, Switzerland
| | - Sylvain Dubey
- Department of Ecology and Evolution, University of Lausanne, Biophore Building, Lausanne, Switzerland
| |
Collapse
|
17
|
Dubey S, Zwahlen V, Mebert K, Monney JC, Golay P, Ott T, Durand T, Thiery G, Kaiser L, Geser SN, Ursenbacher S. Diversifying selection and color-biased dispersal in the asp viper. BMC Evol Biol 2015; 15:99. [PMID: 26026791 PMCID: PMC4449969 DOI: 10.1186/s12862-015-0367-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/29/2015] [Indexed: 11/16/2022] Open
Abstract
Background The presence of intraspecific color polymorphism can have multiple impacts on the ecology of a species; as a consequence, particular color morphs may be strongly selected for in a given habitat type. For example, the asp viper (Vipera aspis) shows a high level of color polymorphism. A blotched morph (cryptic) is common throughout its range (central and western Europe), while a melanistic morph is frequently found in montane populations, presumably for thermoregulatory reasons. Besides, rare atypical uniformly colored individuals are known here and there. Nevertheless, we found in a restricted treeless area of the French Alps, a population containing a high proportion (>50%) of such specimens. The aim of the study is to bring insight into the presence and function of this color morph by (i) studying the genetic structure of these populations using nine microsatellite markers, and testing for (ii) a potential local diversifying selection and (iii) differences in dispersal capacity between blotched and non-blotched vipers. Results Our genetic analyses support the occurrence of local diversifying selection for the non-blotched phenotype. In addition, we found significant color-biased dispersal, blotched individuals dispersing more than atypical individuals. Conclusion We hypothesize that, in this population, the non-blotched phenotype possess an advantage over the typical one, a phenomenon possibly due to a better background matching ability in a more open habitat. In addition, color-biased dispersal might be partly associated with the observed local diversifying selection, as it can affect the genetic structure of populations, and hence the distribution of color morphs. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0367-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sylvain Dubey
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, CH-1015, Lausanne, Switzerland.
| | - Valérie Zwahlen
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland.
| | - Konrad Mebert
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland.
| | - Jean-Claude Monney
- Karch (Centre de coordination pour la protection des amphibiens et des reptiles de Suisse), Passage Maximilien-de-Meuron 6, CH-2000, Neuchâtel, Switzerland.
| | - Philippe Golay
- Elapsoïdea, 21 chemin du Moulin, Bernex-Geneva, Switzerland.
| | - Thomas Ott
- , Wildensteinerstrasse45, 4416, Bubendorf, Switzerland.
| | | | - Gilles Thiery
- , Rue du Pré de L'Ane, 805, 73000, Chambery, France.
| | - Laura Kaiser
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland.
| | - Sylvia N Geser
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland.
| | - Sylvain Ursenbacher
- Section of Conservation Biology, Department of Environmental Sciences, University of Basel, St. Johanns-Vorstadt 10, CH-4056, Basel, Switzerland. .,Karch (Centre de coordination pour la protection des amphibiens et des reptiles de Suisse), Passage Maximilien-de-Meuron 6, CH-2000, Neuchâtel, Switzerland.
| |
Collapse
|
18
|
Välimäki P, Kivelä SM, Raitanen J, Pakanen VM, Vatka E, Mäenpää MI, Keret N, Tammaru T. Larval melanism in a geometrid moth: promoted neither by a thermal nor seasonal adaptation but desiccating environments. J Anim Ecol 2015; 84:817-828. [PMID: 25581258 DOI: 10.1111/1365-2656.12330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/17/2014] [Indexed: 11/27/2022]
Abstract
Spatiotemporal variation in the degree of melanism is often considered in the context of thermal adaptation, melanism being advantageous under suboptimal thermal conditions. Yet, other mutually nonexclusive explanations exist. Analysis of geographical patterns combined with laboratory experiments on the mechanisms of morph induction helps to unveil the adaptive value of particular cases of polyphenism. In the context of the thermal melanism hypothesis and seasonal adaptations, we explored an array of environmental factors that may affect the expression and performance of nonmelanic vs. melanic larval morphs in different latitudinal populations of the facultatively bivoltine moth Chiasmia clathrata (Lepidoptera: Geometridae). Geographical variation in larval coloration was independent of average temperatures experienced by the populations in the wild. The melanic morph was, however, more abundant in dry than in mesic habitats. In the laboratory, the melanic morph was induced especially under a high level of incident radiation but also at relatively high temperatures, but independently of photoperiod. Melanic larvae had higher growth rates and shorter development times than the nonmelanic ones when both temperature and the level of incident radiation were high. Our results that melanism is induced and advantageous in warm desiccating conditions contradict the thermal melanism hypothesis for this species. Neither has melanism evolved to compensate time constraints due to forthcoming autumn. Instead, larvae solve seasonal variation in the time available for growth by an elevated growth rate and a shortened larval period in the face of autumnal photoperiods. The phenotypic response to the level of incident radiation and a lack of adaptive adjustment of larval growth trajectories in univoltine populations underpin the role of deterministic environmental variation in the evolution of irreversible adaptive plasticity and seasonal polyphenism.
Collapse
Affiliation(s)
- Panu Välimäki
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Sami M Kivelä
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Jani Raitanen
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Veli-Matti Pakanen
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Emma Vatka
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Maarit I Mäenpää
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Netta Keret
- Department of Ecology, University of Oulu, PO Box 3000, Oulu, FI-90014, Finland
| | - Toomas Tammaru
- Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, Tartu, EE-51014, Estonia
| |
Collapse
|
19
|
Matute DR, Harris A. The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila. Evolution 2013; 67:2451-60. [PMID: 23888866 DOI: 10.1111/evo.12122] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Accepted: 03/07/2013] [Indexed: 11/28/2022]
Abstract
Drosophila yakuba and D. santomea are sister species that differ in their levels of abdominal pigmentation; D. yakuba shows heavily pigmented posterior abdominal segments in both sexes, whereas D. santomea lacks dark pigment anywhere on its body. Using naturally collected lines, we demonstrate the existence of altitudinal variation in abdominal pigmentation in D. yakuba but not in D. santomea. We use the variation in pigmentation within D. yakuba and two body-color mutants in D. yakuba to elucidate selective advantage of differences in pigmentation. Our results indicate that although differences in abdominal pigmentation have no effect on desiccation resistance, lighter pigmentation confers ultraviolet radiation resistance in this pair of species.
Collapse
Affiliation(s)
- Daniel R Matute
- Department of Human Genetics, The University of Chicago, 1101 East 57th Street, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
20
|
Parkash R, Ramniwas S, Kajla B. Genetic analysis of body color phenotypes in the fruit fly Drosophila melanogaster: supporting evidence through laboratory-selected dark and light strains. CAN J ZOOL 2012. [DOI: 10.1139/z2012-022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the fruit fly Drosophila melanogaster Meigen, 1830, abdominal melanisation varies in a quantitative manner, but little attention has been paid to the genetic basis of different phenotypic classes and their ecological significance in the wild populations. Laboratory-selected darker and lighter body color strains were used for determining the genetic basis of body color phenotypes. Based on such genetic characterization, we interpreted body color variation of wild flies collected along a latitudinal gradient. Our results are interesting in several respects. First, laboratory selection produced lighter females and also lighter males, in contradiction of the well-known sexual dimorphism in D. melanogaster. The laboratory-selected darker and lighter strains showed lack of phenotypic plasticity, whereas F1flies from reciprocal crosses showed significant levels of phenotypic plasticity. Second, for both sexes, F2phenotypic classes resulting from reciprocal crosses between selected darker and lighter strains fit a two-locus model with a stronger maternal effect in males than in females. Third, changes in continuously varying abdominal melanisation of wild-caught flies were sorted into phenotypic bins of body color phenotypic classes and such data on geographical populations of D. melanogaster are consistent with climatic selection. Thus, we may suggest that for ecological genetic studies, greater emphasis should be laid on the analysis of bins of phenotypic classes of body melanisation in laboratory and wild populations of D. melanogaster.
Collapse
Affiliation(s)
- Ravi Parkash
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, India
| | - Seema Ramniwas
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, India
| | - Babita Kajla
- Department of Genetics, Maharshi Dayanand University, Rohtak-124001, India
| |
Collapse
|
21
|
Forsman A, Karlsson M, Wennersten L, Johansson J, Karpestam E. Rapid evolution of fire melanism in replicated populations of pygmy grasshoppers. Evolution 2011; 65:2530-40. [PMID: 21884054 DOI: 10.1111/j.1558-5646.2011.01324.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Evolutionary theory predicts an interactive process whereby spatiotemporal environmental heterogeneity will maintain genetic variation, while genetic and phenotypic diversity will buffer populations against stress and allow for fast adaptive evolution in rapidly changing environments. Here, we study color polymorphism patterns in pygmy grasshoppers (Tetrix subulata) and show that the frequency of the melanistic (black) color variant was higher in areas that had been ravaged by fires the previous year than in nonburned habitats, that, in burned areas, the frequency of melanistic grasshoppers dropped from ca. 50% one year after a fire to 30% after four years, and that the variation in frequencies of melanistic individuals among and within populations was genetically based on and represented evolutionary modifications. Dark coloration may confer a selective benefit mediated by enhanced camouflage in recently fire-ravaged areas characterized by blackened visual backgrounds before vegetation has recovered. These findings provide rare evidence for unusually large, extremely rapid adaptive contemporary evolution in replicated natural populations in response to divergent and fluctuating selection associated with spatiotemporal environmental changes.
Collapse
Affiliation(s)
- Anders Forsman
- School of Natural Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden.
| | | | | | | | | |
Collapse
|