1
|
Marks RA, Smith JJ, VanBuren R, McLetchie DN. Expression dynamics of dehydration tolerance in the tropical plant Marchantia inflexa. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:209-222. [PMID: 33119914 DOI: 10.1111/tpj.15052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 09/10/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Tolerance to prolonged water deficit occurs along a continuum in plants, with dehydration tolerance (DhT) and desiccation tolerance (DT) representing some of the most extreme adaptations to water scarcity. Although DhT and DT presumably vary among individuals of a single species, this variability remains largely unstudied. Here, we characterized expression dynamics throughout a dehydration-rehydration time-course in six diverse genotypes of the dioecious liverwort Marchantia inflexa. We identified classical signatures of stress response in M. inflexa, including major changes in transcripts related to metabolism, expression of LEA and ELIP genes, and evidence of cell wall remodeling. However, we detected very little temporal synchronization of these responses across different genotypes of M. inflexa, which may be related to genotypic variation among samples, constitutive expression of dehydration-associated transcripts, the sequestration of mRNAs in ribonucleoprotein partials prior to drying, or the lower tolerance of M. inflexa relative to most bryophytes studied to date. Our characterization of intraspecific variation in expression dynamics suggests that differences in the timing of transcriptional adjustments contribute to variation among genotypes, and that developmental differences impact the relative tolerance of meristematic and differentiated tissues. This work highlights the complexity and variability of water stress tolerance, and underscores the need for comparative studies that seek to characterize variation in DT and DhT.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Robert VanBuren
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
2
|
Marks RA, Pike BD, Nicholas McLetchie D. Water stress tolerance tracks environmental exposure and exhibits a fluctuating sexual dimorphism in a tropical liverwort. Oecologia 2019; 191:791-802. [DOI: 10.1007/s00442-019-04538-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 10/19/2019] [Indexed: 01/01/2023]
|
3
|
Marks RA, Smith JJ, Cronk Q, Grassa CJ, McLetchie DN. Genome of the tropical plant Marchantia inflexa: implications for sex chromosome evolution and dehydration tolerance. Sci Rep 2019; 9:8722. [PMID: 31217536 PMCID: PMC6584576 DOI: 10.1038/s41598-019-45039-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 05/29/2019] [Indexed: 01/29/2023] Open
Abstract
We present a draft genome assembly for the tropical liverwort, Marchantia inflexa, which adds to a growing body of genomic resources for bryophytes and provides an important perspective on the evolution and diversification of land plants. We specifically address questions related to sex chromosome evolution, sexual dimorphisms, and the genomic underpinnings of dehydration tolerance. This assembly leveraged the recently published genome of related liverwort, M. polymorpha, to improve scaffolding and annotation, aid in the identification of sex-linked sequences, and quantify patterns of sequence differentiation within Marchantia. We find that genes on sex chromosomes are under greater diversifying selection than autosomal and organellar genes. Interestingly, this is driven primarily by divergence of male-specific genes, while divergence of other sex-linked genes is similar to autosomal genes. Through analysis of sex-specific read coverage, we identify and validate genetic sex markers for M. inflexa, which will enable diagnosis of sex for non-reproductive individuals. To investigate dehydration tolerance, we capitalized on a difference between genetic lines, which allowed us to identify multiple dehydration associated genes two of which were sex-linked, suggesting that dehydration tolerance may be impacted by sex-specific genes.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA.
| | - Jeramiah J Smith
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| | - Quentin Cronk
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
| | - Christopher J Grassa
- Department of Botany, University of British Columbia, 6270 University Boulevard, Vancouver, BC, V6T 1Z4, Canada
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, 22 Divinity Avenue, Cambridge, MA, 02138, USA
| | - D Nicholas McLetchie
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY, 40506, USA
| |
Collapse
|
4
|
Castillo JM, Gallego-Tévar B, Figueroa E, Grewell BJ, Vallet D, Rousseau H, Keller J, Lima O, Dréano S, Salmon A, Aïnouche M. Low genetic diversity contrasts with high phenotypic variability in heptaploid Spartina densiflora populations invading the Pacific coast of North America. Ecol Evol 2018; 8:4992-5007. [PMID: 29876076 PMCID: PMC5980529 DOI: 10.1002/ece3.4063] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 03/06/2018] [Accepted: 03/15/2018] [Indexed: 02/06/2023] Open
Abstract
Species can respond to environmental pressures through genetic and epigenetic changes and through phenotypic plasticity, but few studies have evaluated the relationships between genetic differentiation and phenotypic plasticity of plant species along changing environmental conditions throughout wide latitudinal ranges. We studied inter‐ and intrapopulation genetic diversity (using simple sequence repeats and chloroplast DNA sequencing) and inter‐ and intrapopulation phenotypic variability of 33 plant traits (using field and common‐garden measurements) for five populations of the invasive cordgrass Spartina densiflora Brongn. along the Pacific coast of North America from San Francisco Bay to Vancouver Island. Studied populations showed very low genetic diversity, high levels of phenotypic variability when growing in contrasted environments and high intrapopulation phenotypic variability for many plant traits. This intrapopulation phenotypic variability was especially high, irrespective of environmental conditions, for those traits showing also high phenotypic plasticity. Within‐population variation represented 84% of the total genetic variation coinciding with certain individual plants keeping consistent responses for three plant traits (chlorophyll b and carotenoid contents, and dead shoot biomass) in the field and in common‐garden conditions. These populations have most likely undergone genetic bottleneck since their introduction from South America; multiple introductions are unknown but possible as the population from Vancouver Island was the most recent and one of the most genetically diverse. S. densiflora appears as a species that would not be very affected itself by climate change and sea‐level rise as it can disperse, establish, and acclimate to contrasted environments along wide latitudinal ranges.
Collapse
Affiliation(s)
- Jesús M Castillo
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Blanca Gallego-Tévar
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Enrique Figueroa
- Departamento de Biología Vegetal y Ecología Universidad de Sevilla Sevilla Spain
| | - Brenda J Grewell
- Department of Plant Sciences MS-4 USDA-ARS Exotic & Invasive Weeds Research Unit University of California Davis California
| | | | | | - Jean Keller
- UMR CNRS 6553 ECOBIO Université Rennes 1 Rennes France
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO Université Rennes 1 Rennes France
| | - Stéphane Dréano
- Faculté de Médecine Institut de génétique et Développement de Rennes (IGDR) UMR6290, CNRS Université de Rennes1 Rennes France
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO Université Rennes 1 Rennes France
| | | |
Collapse
|
5
|
Marks RA, Smith JJ, Cronk Q, McLetchie DN. Variation in the bacteriome of the tropical liverwort, Marchantia inflexa, between the sexes and across habitats. Symbiosis 2017. [DOI: 10.1007/s13199-017-0522-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Reproductive strategy of the alien moss Campylopus introflexus (Leucobryaceae, Bryophyta) in areas of mining enterprises in Lviv Region. UKRAINIAN BOTANICAL JOURNAL 2017. [DOI: 10.15407/ukrbotj74.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
7
|
Pereira MR, Dambros CS, Zartman CE. Prezygotic resource-allocation dynamics and reproductive trade-offs in Calymperaceae (Bryophyta). AMERICAN JOURNAL OF BOTANY 2016; 103:1838-1846. [PMID: 27765777 DOI: 10.3732/ajb.1600240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
PREMISE OF THE STUDY Resource allocation is difficult to characterize in plants because of the challenges of quantifying gametes and propagules. We surveyed six sympatric, unisexual species in the family Calymperaceae (Bryophyta) to test for trade-offs in prezygotic sexual and asexual expression and density-dependent survivorship of female gametangia. METHODS We tallied gametangial and asexual propagule output for 1820 shoots from 17 populations of six species at monthly intervals during one year (2010-2011) in a central Amazonian forest. Generalized linear mixed models were used to test for trade-offs in sexual and asexual expression and density-dependent senescence probability of gametangia. Precipitation and microsite variables were also included in the model. KEY RESULTS For all species, sexual and asexual expression were positively correlated with mean monthly precipitation. Asexually expressing shoots produced significantly fewer gametangia than nonexpressing ones, and the probability of senescence increased with shoot density. Archegonium density per shoot was also consistently lower than the modeled optimum to maximize the number of receptive archegonia. CONCLUSIONS Trade-offs among reproductive strategies and positive density-dependent senescence of female gametangia suggest that prezygotic sexual and asexual expression come at a tangible investment. However, the apparently inefficient resource-allocation dynamics in the production of female gametangia makes the possible advantages of squandering such investments unclear. One possibility is that the study populations, like those of many dioicous mosses, are skewed toward expressing females with low sporophyte production, which would suggest that asexual reproduction predominates and upstages efficient resource allocation in prezygotic investment.
Collapse
Affiliation(s)
- Marta R Pereira
- National Institute for Amazonian Research, Department of Biodiversity, Av. André Araújo, 2936, Petrópolis, CEP 69060-001, Manaus, Amazonas, Brazil
| | - Cristian S Dambros
- Department of Biology, University of Vermont, 120A Marsh Life Sciences, 109 Carrigan Drive, Burlington, Vermont 05405, USA
| | - Charles E Zartman
- National Institute for Amazonian Research, Department of Biodiversity, Av. André Araújo, 2936, Petrópolis, CEP 69060-001, Manaus, Amazonas, Brazil
| |
Collapse
|
8
|
Hedenäs L, Korpelainen H, Bisang I. Identifying sex in non-fertile individuals of the moss Drepanocladus turgescens (Bryophyta: Amblystegiaceae) using a novel molecular approach. JOURNAL OF PLANT RESEARCH 2016; 129:1005-1010. [PMID: 27262589 DOI: 10.1007/s10265-016-0837-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
Sex identification before sexual maturity is notoriously difficult in plants with separate sexes, but is crucial to address many life history related issues. To study the performance of the two sexes in the rarely sexually reproducing dioecious moss Drepanocladus turgescens a molecular sex marker is needed. The female-targeting marker previously developed for D. trifarius and D. lycopodioides amplifies for a few D. turgescens males, which can thus not be distinguished from females. In a significant addition to the earlier developed method we sequenced the portion successfully amplified by the primers PT-3f and PT-3r for six females and three males. Differences between males and females were revealed at five sequence positions. Examination of a total of fourteen females and seven marker amplifying males confirm that females and such males differ consistently at these positions. The usefulness of a previous protocol for moss sex identification is thus extended to another dioecious moss by the addition of a step where a portion of the sex-correlated region is sequenced.
Collapse
Affiliation(s)
- Lars Hedenäs
- Department of Botany, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden.
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, 00014, Helsinki, Finland
| | - Irene Bisang
- Department of Botany, Swedish Museum of Natural History, Box 50007, 104 05, Stockholm, Sweden
| |
Collapse
|
9
|
Marks RA, Burton JF, McLetchie DN. Sex differences and plasticity in dehydration tolerance: insight from a tropical liverwort. ANNALS OF BOTANY 2016; 118:347-56. [PMID: 27325895 PMCID: PMC4970365 DOI: 10.1093/aob/mcw102] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/09/2016] [Accepted: 04/25/2016] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Adaptations allowing plants to cope with drying are particularly relevant in the light of predicted climate change. Dehydration tolerance (DhT, also dehydration-tolerant) is one such adaptation enabling tissue to survive substantial drying. A great deal of work has been conducted on highly DhT species. However, bryophytes showing less intense and variable DhT are understudied, despite the potential for these species to provide an informative link between highly tolerant and sensitive species. In this study, we tested the degree to which DhT varies across populations and the sexes of a species expected to exhibit a moderate DhT phenotype. METHODS To test predicted patterns of tolerance we assessed DhT in males and females of Marchantia inflexa from two distinct habitat types that differ in water availability. Both common garden and field-collected tissue was subjected to drying assays at multiple intensities and recovery was monitored by chlorophyll florescence. Verification studies were conducted to confirm the level of dehydration, the rate of drying and the associated changes in photosynthetic physiology. KEY RESULTS We confirmed our expectation that M. inflexa is able to tolerate moderate dehydration. We also found that females exhibited higher DhT than males, but populations did not differ in DhT when cultured in a common garden. However, field-collected samples exhibited differences in DhT corresponding to environmental dryness, suggesting plasticity in DhT. CONCLUSIONS By studying a less extreme DhT phenotype we gained insight into how more sensitive (yet still tolerant) organisms cope with dehydration. Additionally, the identified sex-specific variation in DhT may explain ecological patterns such as female-biased sex ratios. Furthermore, plasticity in DhT has the potential to inform management practices aimed at increasing tolerance to drought conditions.
Collapse
Affiliation(s)
- Rose A Marks
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - James F Burton
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - D Nicholas McLetchie
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| |
Collapse
|
10
|
Laenen B, Machac A, Gradstein SR, Shaw B, Patiño J, Désamoré A, Goffinet B, Cox CJ, Shaw AJ, Vanderpoorten A. Increased diversification rates follow shifts to bisexuality in liverworts. THE NEW PHYTOLOGIST 2016; 210:1121-1129. [PMID: 27074401 DOI: 10.1111/nph.13835] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/01/2015] [Indexed: 06/05/2023]
Abstract
Shifts in sexual systems are one of the key drivers of species diversification. In contrast to angiosperms, unisexuality prevails in bryophytes. Here, we test the hypotheses that bisexuality evolved from an ancestral unisexual condition and is a key innovation in liverworts. We investigate whether shifts in sexual systems influence diversification using hidden state speciation and extinction analysis (HiSSE). This new method compares the effects of the variable of interest to the best-fitting latent variable, yielding robust and conservative tests. We find that the transitions in sexual systems are significantly biased toward unisexuality, even though bisexuality is coupled with increased diversification. Sexual systems are strongly conserved deep within the liverwort tree but become much more labile toward the present. Bisexuality appears to be a key innovation in liverworts. Its effects on diversification are presumably mediated by the interplay of high fertilization rates, massive spore production and long-distance dispersal, which may separately or together have facilitated liverwort speciation, suppressed their extinction, or both. Importantly, shifts in liverwort sexual systems have the opposite effect when compared to angiosperms, leading to contrasting diversification patterns between the two groups. The high prevalence of unisexuality among liverworts suggests, however, a strong selection for sexual dimorphism.
Collapse
Affiliation(s)
- Benjamin Laenen
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, Stockholm, 10691, Sweden
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
| | - Antonin Machac
- Center for Macroecology, Evolution, and Climate, Natural History Museum of Denmark, Universitetsparken 15, DK 2100, Copenhagen, Denmark
- Department of Ecology, Charles University, Vinicna 7, Prague 2, 12844, Czech Republic
- Center for Theoretical Study, Charles University and Academy of Sciences of the Czech Republic, Jilska 1, Prague 1, 11000, Czech Republic
| | - S Robbert Gradstein
- Département Systématique et Evolution, Muséum National d'Histoire Naturelle, Paris, 75005, France
| | - Blanka Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Jairo Patiño
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
| | - Aurélie Désamoré
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
- Department of Zoology, Naturhistoriska Riksmuseet, Stockholm, 10405, Sweden
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Cymon J Cox
- Centro de Ciências do Mar (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, 8005-139, Portugal
| | - A Jonathan Shaw
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Alain Vanderpoorten
- Department of Conservation Biology and Evolution, Institute of Botany, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
11
|
Bisang I, Ehrlén J, Korpelainen H, Hedenäs L. No evidence of sexual niche partitioning in a dioecious moss with rare sexual reproduction. ANNALS OF BOTANY 2015; 116:771-9. [PMID: 26359424 PMCID: PMC4590334 DOI: 10.1093/aob/mcv133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 05/08/2015] [Accepted: 07/20/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND AND AIMS Roughly half of the species of bryophytes have separate sexes (dioecious) and half are hermaphroditic (monoecious). This variation has major consequences for the ecology and evolution of the different species. In some sexually reproducing dioecious bryophytes, sex ratio has been shown to vary with environmental conditions. This study focuses on the dioecious wetland moss Drepanocladus trifarius, which rarely produces sexual branches or sporophytes and lacks apparent secondary sex characteristics, and examines whether genetic sexes exhibit different habitat preferences, i.e. whether sexual niche partitioning occurs. METHODS A total of 277 shoots of D. trifarius were randomly sampled at 214 locations and 12 environmental factors were quantified at each site. Sex was assigned to the individual shoots collected in the natural environments, regardless of their reproductive status, using a specifically designed molecular marker associated with female sex. KEY RESULTS Male and female shoots did not differ in shoot biomass, the sexes were randomly distributed with respect to each other, and environmental conditions at male and female sampling locations did not differ. Collectively, this demonstrates a lack of sexual niche segregation. Adult genetic sex ratio was female-biased, with 2·8 females for every male individual. CONCLUSIONS The results show that although the sexes of D. trifarius did not differ with regard to annual growth, spatial distribution or habitat requirements, the genetic sex ratio was nevertheless significantly female-biased. This supports the notion that factors other than sex-related differences in reproductive costs and sexual dimorphism can also drive the evolution of biased sex ratios in plants.
Collapse
Affiliation(s)
- Irene Bisang
- Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden,
| | - Johan Ehrlén
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden and
| | - Helena Korpelainen
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014 Helsinki, Finland
| | - Lars Hedenäs
- Swedish Museum of Natural History, Department of Botany, Box 50007, SE-104 05 Stockholm, Sweden
| |
Collapse
|
12
|
Hillis JJ, Garvey JE, Lydy MJ. Contaminants reduce male contribution to reproduction at the population scale. Ecosphere 2015. [DOI: 10.1890/es14-00391.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jeffrey J. Hillis
- Department of Zoology, Center for Fisheries, Aquaculture, and Aquatic Sciences, Center for Ecology, Southern Illinois University, Carbondale, Illinois 62901 USA
| | - James E. Garvey
- Department of Zoology, Center for Fisheries, Aquaculture, and Aquatic Sciences, Center for Ecology, Southern Illinois University, Carbondale, Illinois 62901 USA
| | - Michael J. Lydy
- Department of Zoology, Center for Fisheries, Aquaculture, and Aquatic Sciences, Center for Ecology, Southern Illinois University, Carbondale, Illinois 62901 USA
| |
Collapse
|
13
|
Hedenäs L, Bisang I. Infraspecific diversity in a spore-dispersed species with limited distribution range. SYST BIODIVERS 2014. [DOI: 10.1080/14772000.2014.968234] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|