1
|
Shinde D, Bhat SK, Ganesh CB. The opioid peptide β-endorphin interferes with the pituitary-testis axis in the Mozambique tilapia Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:733-743. [PMID: 38277042 DOI: 10.1007/s10695-024-01302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
Although the involvement of β-endorphin (β-ERP) in vertebrate reproduction has been suggested, its role in testicular activity is not clear in fish. We describe the influence of β-ERP on spermatogenesis in a cichlid fish in the present paper. In comparison to the control group, the administration of β-ERP (3 µg) caused a significant increase in the number of spermatogonia-A and spermatids. Following treatment with β-ERP (6 µg), a significant increase in the number of spermatogonia-A was observed, whereas the numbers of all the other germ cells, excluding spermatogonia-B, significantly decreased in comparison to those in the control group. In addition, treatment of fish with 6 µg β-ERP resulted in a significant reduction in the dimensions of the lumen and seminiferous lobules, the level of immunopositive androgen receptor (AR) expression in Sertoli cells, and the percentage of luteinizing hormone (LH) immunolabeled in the pituitary compared to those in the control group or the group treated with 3 µg β-ERP. In contrast, the intensity of AR immunoreactivity and the percentage of LH immunolabeling were substantially increased in fish treated with 3 µg β-ERP compared to those in the control group. These findings reveal for the first time that a low dose of β-ERP stimulates the recruitment of spermatogonia as well as spermateleosis, whereas a high concentration affects the recruitment of germ cells prior to meiotic division in tilapia. These results suggest that β-ERP exerts modulatory effects at the testicular and hypophysial levels through alterations in AR expression and LH secretory activity, respectively, in teleosts.
Collapse
Affiliation(s)
- Deepak Shinde
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - Shilpa K Bhat
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
2
|
Ganeyan A, Ganesh CB. The influence of the opioid pentapeptide methionine-enkephalin on seasonal and FSH-induced ovarian recrudescence in the gecko Hemidactylus frenatus. Gen Comp Endocrinol 2023; 342:114353. [PMID: 37536461 DOI: 10.1016/j.ygcen.2023.114353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Although methionine-enkephalin (M-ENK) is implicated in the regulation of reproductive functions in vertebrates, its function in reptiles is little understood. This study aims to elucidate the role of M-ENK on seasonal and follicle stimulating hormone (FSH)-induced ovarian recrudescence in the gecko Hemidactylus frenatus. In the first experiment, administration of 5 µg M-ENK did not affect germinal bed activity or follicular developmental stages I, II, and III (previtellogenic) and IV (vitellogenic), but there were no stage V (vitellogenic) follicles in the ovary. However, there was a significant decrease in the mean numbers of oogonia and primary oocytes in the germinal bed associated with the complete absence of stage IV and V follicles in 25 µg M-ENK-treated lizards in contrast to experimental controls. Furthermore, there was a significant decrease in gonadotropin-releasing hormone - immunoreactive (GnRH-ir) content in the median eminence (ME) and pars distalis (PD) of the pituitary gland and sparse labelling of hypothalamic GnRH-ir neurons in 25 µg M-ENK-treated lizards. In the second experiment, treatment with FSH during the regression phase of the ovarian cycle resulted in the appearance of stage IV and V follicles, in contrast to their absence in the initial controls and treatment controls. However, treatment with 25 µg M-ENK + FSH did not result in the appearance of these follicles, indicating the inhibitory effect of M-ENK on FSH-induced ovarian recrudescence. These findings suggest that M-ENK inhibits the germinal bed and vitellogenic follicular growth in a dose-dependent manner, possibly mediated through the suppression of GnRH release in the ME and PD. In addition, M-ENK may also act at the level of the ovary in the gecko.
Collapse
Affiliation(s)
- Ananya Ganeyan
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad 580 003, India.
| |
Collapse
|
3
|
Xiong X, Zhang S, Zang L, Xin Y, Pang Y, Zhang S, Yang Y, Tu R, Zhang L, Du Y, Yang J. Cell apoptosis in the testis of male rats is elevated by intervention with β-endorphin and the mu opioid receptor. Reprod Biol 2023; 23:100789. [PMID: 37499346 DOI: 10.1016/j.repbio.2023.100789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/04/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
β-endorphin (β-EP) is involved in the regulation of male germ cells; however, little is known about the effect of β-EP on primary germ cells via opioid receptors. In this study, we first revealed significant cell apoptosis in the testis of male rats after β-EP intervention. Subsequently, the expression of the mu opioid receptor (MOR) was detected in both Leydig cells (LCs) and spermatogonia (SGs) by fluorescence colocalization; overlapping signals were also detected in apoptotic cells. In addition, LCs and SGs were separated from the testis of male rats and primary cells were treated with β-EP; this increased the mRNA levels of MOR and was accompanied by acute cell apoptosis. Our findings provide a foundation for the further study of apoptosis in reproductive cells regulated by β-EP and the MOR receptor.
Collapse
Affiliation(s)
- Xiaofan Xiong
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Siyu Zhang
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Lulu Zang
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Yanlong Xin
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China; National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, PR China
| | - Yixin Pang
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Shuting Zhang
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Yu Yang
- Western China Science and Technology Innovation Port in Precision Medicine Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, PR China
| | - Rongfu Tu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China
| | - Lingyu Zhang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Yuefeng Du
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, PR China.
| | - Juan Yang
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| |
Collapse
|
4
|
Kumbar J, Ganesh CB. The effect of α-MSH treatment on the hypothalamic-pituitary-gonad axis in the cichlid fish Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1659-1668. [PMID: 34460040 DOI: 10.1007/s10695-021-01005-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
In this investigation, we examined the influence of alpha-melanocyte stimulating hormone (α-MSH), a proopiomelanocortin-derived peptide, along the hypothalamic-pituitary-gonad axis in a cichlid fish Oreochromis mossambicus. Administration of α-MSH (40 µg/0.1 ml saline) for 22 days did not affect the number of stage I (previtellogenic) follicles but caused significant reduction in the mean numbers of previtellogenic (stages II and III), vitellogenic (stage IV) and preovulatory (stage V) follicles compared to those of controls. While the gonadosomatic index was significantly lower, the rate of follicular atresia in stages II, III and IV remained significantly higher in α-MSH-treated fish compared to the controls. Furthermore, the mean percent area of gonadotropin-releasing hormone-immunoreactive (GnRH-ir) fibres and luteinizing hormone-immunoreactive (LH-ir) cells were significantly reduced in the proximal pars distalis of the pituitary gland in α-MSH-treated fish compared with the controls. Together, our findings suggest for the first time that the treatment of α-MSH blocks the follicular developmental process during the ovarian cycle, possibly through the inhibition of GnRH-LH pathway in teleosts.
Collapse
Affiliation(s)
- Jyoti Kumbar
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India
| | - C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
5
|
Rousseau K, Prunet P, Dufour S. Special features of neuroendocrine interactions between stress and reproduction in teleosts. Gen Comp Endocrinol 2021; 300:113634. [PMID: 33045232 DOI: 10.1016/j.ygcen.2020.113634] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/10/2020] [Accepted: 09/20/2020] [Indexed: 02/08/2023]
Abstract
Stress and reproduction are both essential functions for vertebrate survival, ensuring on one side adaptative responses to environmental changes and potential life threats, and on the other side production of progeny. With more than 25,000 species, teleosts constitute the largest group of extant vertebrates, and exhibit a large diversity of life cycles, environmental conditions and regulatory processes. Interactions between stress and reproduction are a growing concern both for conservation of fish biodiversity in the frame of global changes and for the development of sustainability of aquaculture including fish welfare. In teleosts, as in other vertebrates, adverse effects of stress on reproduction have been largely documented and will be shortly overviewed. Unexpectedly, stress notably via cortisol, may also facilitate reproductive function in some teleost species in relation to their peculiar life cyles and this review will provide some examples. Our review will then mainly address the neuroendocrine axes involved in the control of stress and reproduction, namely the corticotropic and gonadotropic axes, as well as their interactions. After reporting some anatomo-functional specificities of the neuroendocrine systems in teleosts, we will describe the major actors of the corticotropic and gonadotropic axes at the brain-pituitary-peripheral glands (interrenals and gonads) levels, with a special focus on the impact of teleost-specific whole genome duplication (3R) on the number of paralogs and their potential differential functions. We will finally review the current knowledge on the neuroendocrine mechanisms of the various interactions between stress and reproduction at different levels of the two axes in teleosts in a comparative and evolutionary perspective.
Collapse
Affiliation(s)
- Karine Rousseau
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France
| | - Patrick Prunet
- INRAE, UR1037, Laboratoire de Physiologie et de Génomique des Poissons (LPGP), Rennes, France
| | - Sylvie Dufour
- Muséum National d'Histoire Naturelle, Research Unit BOREA, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, SU, UCN, UA, Paris, France.
| |
Collapse
|
6
|
Ganesh CB. The opioid peptide dynorphin suppresses pituitary-ovary axis in the tilapia Oreochromis mossambicus. JOURNAL OF FISH BIOLOGY 2020; 96:747-754. [PMID: 32003470 DOI: 10.1111/jfb.14269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
The opioid peptides are involved in the regulation of neuroendocrine functions in vertebrates. Nonetheless, the influence of an opioid peptide, dynorphin A (DYN), on reproduction in fish is understudied. The aim of this work was to study the influence of DYN on the pituitary-ovary axis in Oreochromis mossambicus. Daily injections (ip) of 250 μg DYN kg-1 body weight for 22 days during the ovarian cycle caused a reduction in the intensity and the per cent area of luteinizing hormone (LH) immunoreactive content in the proximal pars distalis region of the pituitary gland compared with an intense immunostaining in time-matched controls. In the ovary, DYN treatment caused a decrease in the number of stage I (previtellogenic) follicles compared with time-matched controls. No difference was observed in the number of stage IV (vitellogenic) follicles among different experimental groups, whereas the numbers of stage II and stage III follicles (previtellogenic) were higher in DYN-treated fish than in time-matched controls. Nonetheless, there was a reduction in the number of stage V (preovulatory) follicles in DYN-treated fish compared with time-matched controls. Taken together, these results indicate that DYN exerts an inhibitory effect on follicular recruitment at the late vitellogenic stage, through the suppression of LH secretion in fish.
Collapse
Affiliation(s)
- C B Ganesh
- Neuroendocrinology Research Laboratory, Department of Studies in Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
7
|
Ganesh CB. Influence of endomorphins along the pituitary-ovary axis in the Mozambique Tilapia Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:429-438. [PMID: 31776826 DOI: 10.1007/s10695-019-00731-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
Endomorphins (EM-1 and EM-2) are the tetrapeptides involved in pain and neuroendocrine responses with a high affinity for μ-opioid receptors in vertebrates. However, their role in fish reproduction is not clear. The aim of this study was to investigate the influence of EM-1 and EM-2 on the pituitary-ovary axis in the Mozambique tilapia Oreochromis mossambicus. The experimental set-up consisted of four groups, namely, initial controls, controls, EM-1- and EM-2-treated groups (n = 10 in each group consisting of two replicates). Although the number of stage IV (vitellogenic) follicles was significantly lower (P < 0.05) in controls compared to initial controls, the stage V (preovulatory) follicles were present in controls in contrast to their absence in initial controls. Treatment of 40 μg EM-1/0.1 ml saline/fish/day for 22 days resulted in significant increase (P < 0.05) in the number of stage I follicles compared to controls. While similar treatment of EM-2 did not significantly alter the number of stage I follicles compared to controls, the number of stage II follicles was significantly lower (P < 0.05) in this group compared to those of controls and EM-1 treated fish. The number of stage III and IV follicles did not significantly differ among controls, EM-1- and EM-2-treated groups. However, a significant reduction (P < 0.05) in the mean number of stage V follicles was observed in EM-1- and EM-2-treated fish compared to controls. These changes were concomitant with significant reduction (P < 0.05) in the intensity and the percent area of immunoreactivity of luteinizing hormone (LH) secreting cells in the proximal pars distalis (PPD) of the pituitary gland and significantly higher (P < 0.05) percent occurrence of follicular atresia in EM-1- and EM-2-treated fish compared to those of controls. Taken together, these results suggest an inhibitory effect for endomorphins along the pituitary-ovary axis, for the first time in fish.
Collapse
Affiliation(s)
- C B Ganesh
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, 580003, India.
| |
Collapse
|
8
|
Ganesh CB. Influence of leucine-enkephalin on pituitary-ovary axis of the cichlid fish Oreochromis mossambicus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:1253-1264. [PMID: 28382489 DOI: 10.1007/s10695-017-0369-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The present investigation was conducted to elucidate the influence of an opioid peptide, leucine-enkephalin (L-ENK), on the reproductive axis of the tilapia Oreochromis mossambicus. In the first experiment, administration (i.p.) of 25, 100, and 300 μg L-ENK to the stripped female tilapia, for a period of 22 days, resulted in a significantly higher number of stage I follicles compared to those of initial controls and experimental controls, whereas the mean number of stage II and III follicles and serum levels of E2 did not significantly differ among different experimental groups. A significant increase in the number of stage V (fully ripened) follicles was concomitant with significant reduction in the follicular diameter in 25 or 100 μg L-ENK-treated fish compared to those of experimental controls. However, significant reduction in the mean number and diameter of these follicles was observed in 300 μg L-ENK-treated fish compared to those of experimental controls and 25 or 100 μg L-ENK-treated fish. In the second experiment, the stimulatory effect of 25 μg L-ENK on the ovary was abolished in combination with gonadotropin-releasing hormone antagonist (GnRH-A). In conclusion, these results suggest that L-ENK exerts stimulatory as well as inhibitory effects on the ovary in a dose-dependent manner, and that these effects are possibly mediated through the GnRH, for the first time in fish.
Collapse
Affiliation(s)
- C B Ganesh
- Department of Studies in Zoology, Karnatak University, Dharwad, 580 003, India.
| |
Collapse
|
9
|
Neuroanatomical evidence for the involvement of β-endorphin during reproductive stress response in the fish Oreochromis mossambicus. J Chem Neuroanat 2016; 77:161-168. [DOI: 10.1016/j.jchemneu.2016.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 12/23/2022]
|
10
|
Intermittent Moderate Energy Restriction Improves Weight Loss Efficiency in Diet-Induced Obese Mice. PLoS One 2016; 11:e0145157. [PMID: 26784324 PMCID: PMC4718562 DOI: 10.1371/journal.pone.0145157] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background Intermittent severe energy restriction is popular for weight management. To investigate whether intermittent moderate energy restriction may improve this approach by enhancing weight loss efficiency, we conducted a study in mice, where energy intake can be controlled. Methods Male C57/Bl6 mice that had been rendered obese by an ad libitum diet high in fat and sugar for 22 weeks were then fed one of two energy-restricted normal chow diets for a 12-week weight loss phase. The continuous diet (CD) provided 82% of the energy intake of age-matched ad libitum chow-fed controls. The intermittent diet (ID) provided cycles of 82% of control intake for 5–6 consecutive days, and ad libitum intake for 1–3 days. Weight loss efficiency during this phase was calculated as (total weight change) ÷ [(total energy intake of mice on CD or ID)–(total average energy intake of controls)]. Subsets of mice then underwent a 3-week weight regain phase involving ad libitum re-feeding. Results Mice on the ID showed transient hyperphagia relative to controls during each 1–3-day ad libitum feeding period, and overall ate significantly more than CD mice (91.1±1.0 versus 82.2±0.5% of control intake respectively, n = 10, P<0.05). There were no significant differences between CD and ID groups at the end of the weight loss or weight regain phases with respect to body weight, fat mass, circulating glucose or insulin concentrations, or the insulin resistance index. Weight loss efficiency was significantly greater with ID than with CD (0.042±0.007 versus 0.018±0.001 g/kJ, n = 10, P<0.01). Mice on the CD exhibited significantly greater hypothalamic mRNA expression of proopiomelanocortin (POMC) relative to ID and control mice, with no differences in neuropeptide Y or agouti-related peptide mRNA expression between energy-restricted groups. Conclusion Intermittent moderate energy restriction may offer an advantage over continuous moderate energy restriction, because it induces significantly greater weight loss relative to energy deficit in mice.
Collapse
|
11
|
|
12
|
Chabbi A, Ganesh CB. Evidence for the involvement of dopamine in stress-induced suppression of reproduction in the cichlid fish Oreochromis mossambicus. J Neuroendocrinol 2015; 27:343-56. [PMID: 25712855 DOI: 10.1111/jne.12269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 02/02/2015] [Accepted: 02/19/2015] [Indexed: 01/23/2023]
Abstract
In the present study, we examined whether stress-induced suppression of reproduction is mediated through the catecholaminergic neurotransmitter dopamine (DA) in the female cichlid fish Oreochromis mossambicus. In the first experiment, application of antibody against tyrosine hydroxylase (TH; a marker for DA) in brain sections revealed the presence of intensely stained TH immunoreactive cells in the preoptic area (POA) and nucleus preopticus (NPO) during the previtellogenic phase. These cells showed weak immunoreactivity during the vitellogenic and prespawning phases concomitant with darkly stained luteinising hormone (LH) immunoreactive content in the proximal pars distalis (PPD) of the pituitary gland and fully ripened follicles (stage V) in the ovary of control fish. However, in fish exposed to aquacultural stressors, TH secreting cells remained intensely stained in POA and NPO regions during the prespawning phase, indicating increased synthetic and secretory activity, which was reflected by a significantly higher DA content compared to controls. Increased DA activity as a result of stress was associated with a decrease in the LH immunoreactive content in the PPD and an absence of stage V follicles in the ovary. In the second experiment, administration of DA caused effects similar to those in stressed fish, whereas DA receptor antagonist domperidone (DOM) treatment significantly increased the LH content in the PPD and the number of stage V follicles in unstressed fish. On the other hand, treatment of stressed fish with DOM resulted in dark accumulations of LH immunoreactive content in the PPD accompanied by the presence of stage V follicles in the ovary. Taken together, these results suggest an additional pathway for the inhibitory effects of stress through dopaminergic neurones along the reproductive axis.
Collapse
Affiliation(s)
- A Chabbi
- Neuroendocrinology Research Lab, Department of Studies in Zoology, Karnatak University, Dharwad, Karnataka, India
| | | |
Collapse
|
13
|
Abstract
This paper is the thirty-sixth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2013 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia; stress and social status; tolerance and dependence; learning and memory; eating and drinking; alcohol and drugs of abuse; sexual activity and hormones, pregnancy, development and endocrinology; mental illness and mood; seizures and neurologic disorders; electrical-related activity and neurophysiology; general activity and locomotion; gastrointestinal, renal and hepatic functions; cardiovascular responses; respiration and thermoregulation; and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Chabbi A, Ganesh CB. Glucocorticoid synthesis inhibitor metyrapone blocks stress-induced suppression along luteinizing hormone secreting cells–ovary axis in the fish Oreochromis mossambicus. ACTA ACUST UNITED AC 2014; 321:125-34. [PMID: 24639434 DOI: 10.1002/jez.1842] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/15/2013] [Indexed: 12/14/2022]
Abstract
We showed previously that exposure to mild acute stressors leads to inhibition of follicular development and luteinizing hormone (LH) secretion in tilapia. In this study, we examined whether the hypothalamo–pituitary–interrenal axis was involved in such inhibition. Administration (i.p.) of corticotropin-releasing hormone (CRH) to stripped Oreochromis mossambicus (eggs manually removed from mouth brooder) during the ovarian cycle for 22 days resulted in a significant increase in the serum levels of cortisol, and significantly lower gonadosomatic and hepatosomatic indices concomitant with complete absence of stage V (vitellogenic) follicles in the ovary compared to controls. Furthermore, the LH secreting cells at the proximal pars distalis (PPD) in the pituitary gland showed weak immunostaining in contrast to the intensely stained immunoreactive cells in controls during prespawning phase. On the other hand, while exposure of fish to aquacultural stressors produced effects similar to that of CRH treatment, treatment of glucocorticoid synthesis inhibitor metyrapone to stressed fish during the ovarian cycle did not show significant serum cortisol response. The LH secreting cells in these fish showed intense immunostaining at the PPD in the pituitary gland, and the ovary contained stage V follicles similar to that of controls prior to spawning phase. These results suggest that the inhibitory effects of CRH treatment on LH secretion and recruitment of follicles for vitellogenic growth are mediated through the stress hormone cortisol in O. mossambicus.
Collapse
|
15
|
Schneider JE, Wise JD, Benton NA, Brozek JM, Keen-Rhinehart E. When do we eat? Ingestive behavior, survival, and reproductive success. Horm Behav 2013; 64:702-28. [PMID: 23911282 DOI: 10.1016/j.yhbeh.2013.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/21/2013] [Accepted: 07/22/2013] [Indexed: 12/13/2022]
Abstract
The neuroendocrinology of ingestive behavior is a topic central to human health, particularly in light of the prevalence of obesity, eating disorders, and diabetes. The study of food intake in laboratory rats and mice has yielded some useful hypotheses, but there are still many gaps in our knowledge. Ingestive behavior is more complex than the consummatory act of eating, and decisions about when and how much to eat usually take place in the context of potential mating partners, competitors, predators, and environmental fluctuations that are not present in the laboratory. We emphasize appetitive behaviors, actions that bring animals in contact with a goal object, precede consummatory behaviors, and provide a window into motivation. Appetitive ingestive behaviors are under the control of neural circuits and neuropeptide systems that control appetitive sex behaviors and differ from those that control consummatory ingestive behaviors. Decreases in the availability of oxidizable metabolic fuels enhance the stimulatory effects of peripheral hormones on appetitive ingestive behavior and the inhibitory effects on appetitive sex behavior, putting a new twist on the notion of leptin, insulin, and ghrelin "resistance." The ratio of hormone concentrations to the availability of oxidizable metabolic fuels may generate a critical signal that schedules conflicting behaviors, e.g., mate searching vs. foraging, food hoarding vs. courtship, and fat accumulation vs. parental care. In species representing every vertebrate taxa and even in some invertebrates, many putative "satiety" or "hunger" hormones function to schedule ingestive behavior in order to optimize reproductive success in environments where energy availability fluctuates.
Collapse
Affiliation(s)
- Jill E Schneider
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem, PA 18015, USA
| | | | | | | | | |
Collapse
|