1
|
Tang J, Li G, Chen D, Jiang L, Huang B, Jiang P, Zhang C, Qin X. Effect of vitamin E on energy metabolism indicators and gill tissue structure of crucian carp (Carassius auratus) under cooling stress. Sci Rep 2024; 14:19484. [PMID: 39174601 PMCID: PMC11341694 DOI: 10.1038/s41598-024-66327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/01/2024] [Indexed: 08/24/2024] Open
Abstract
The aim of this work is to examine the effects of vitamin E addition to water on the structure of the gill tissue and energy metabolism of crucian carp (Carassius auratus) under cooling stress. The crucian carp were chilled using a cold acclimation intelligent chilling equipment from 20 °C to 5 °C. They were divided into three groups: the control group (E1), the negative control group (E2), and the 100 mg/L vitamin E (E3) solution. Three different temperature points (20 °C, 10 °C, and 5 °C) were used to collect, test, and analyze the samples. The findings demonstrated that in the E3 treatment group, phosphoenolpyruvate carboxykinase, acetyl coenzyme A carboxylase, total cholesterol, urea nitrogen, triglyceride, and fatty acid synthase contents were significantly lower under cooling stress than those in the E1 and E2 treatment groups (P < 0.05). The E3 therapy group had significantly greater blood glucose, glycogen, and glycogen synthase levels than the E1 and E2 treatment groups (P < 0.05). The levels of pyruvate kinase in the E1, E2, and E3 treatment groups did not differ significantly. Crucian carp's gill tissue changed under cooling stress, including capillary dilatation, and the E3 treatment group experienced less damage overall than the E1 and E2 treatment groups. In conclusion, supplementing water with vitamin E to treat crucian carp can decrease damage, improve the body's ability to withstand cold, and slow down the stress response brought on by cooling stress. This provides a theoretical basis for supplementing water with vitamin E to fish stress relief.
Collapse
Affiliation(s)
- Jiaming Tang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China.
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Gongyan Li
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dongjie Chen
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Lexia Jiang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Baosheng Huang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China.
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China.
| | - Peihong Jiang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan, 250103, China
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China
| | - Changfeng Zhang
- National Engineering Research Center for Agricultural Products Logistics, Jinan, 250103, China.
- Shandong Guonong Logistics Technology Co., Ltd., Jinan, 250103, China.
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
2
|
Jiang J, Lu X, Dong LX, Peng D, Zhang JM, Tian J, Wen H, Jiang M. Dietary cholesterol intervention could alleviate the intestinal injury of Oreochromis niloticus induced by plant-based diet via the intestinal barriers. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109621. [PMID: 38740230 DOI: 10.1016/j.fsi.2024.109621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
This study aims to explore the effects of supplementing cholesterol in plant-based feed on intestinal barriers (including physical barrier, chemical barrier, immune barrier, biological barrier) of GIFT strain tilapia (Oreochromis niloticus). Four isonitrogenous and isolipidic diets were prepared as follows: plant-based protein diet (Con group) containing corn protein powder, soybean meal, cottonseed meal, and rapeseed meal, with the addition of cholesterol at a level of 0.6 % (C0.6 % group), 1.2 % (C1.2 % group), and 1.8 % (C1.8 % group), respectively. A total of 360 fish (mean initial weight of (6.08 ± 0.12) g) were divided into 12 tanks with 30 fish per tank, each treatment was set with three tanks and the feeding period lasted 9 weeks. Histological analysis revealed that both the C0.6 % and C1.2 % groups exhibited a more organized intestinal structure, with significantly increased muscle layer thickness compared to the Con group (P < 0.05). Furthermore, in the C1.2 % group, there was a significant up-regulation of tight junction-related genes (claudin-14, occludin, zo-1) compared to the Con group (P < 0.05). 5-ethynyl-2'-deoxyuridine staining results also demonstrated a notable enhancement in intestinal cell proliferation within the C1.2 % group (P < 0.05). Regarding the intestinal chemical barrier, trypsin and lipase activities were significantly elevated in the C1.2 % group (P < 0.05), while hepcidin gene expression was considerably down-regulated in this group but up-regulated in the C1.8 % group (P < 0.05). In terms of the intestinal immune barrier, inflammation-related gene expression levels (tnf-α, il-1β, caspase 9, ire1, perk, atf6) were markedly reduced in the C1.2 % group (P < 0.05). Regarding the intestinal biological barrier, the composition of the intestinal microbiota indicated that compared to the Con group, both the 0.6 % and 1.2 % groups showed a significant increase in Shannon index (P < 0.05). Additionally, there was a significant increase in the abundance of Firmicutes and Clostridium in the C1.2 % group (P < 0.05). In summary, supplementation of 1.2 % cholesterol in the plant-based diet exhibits the potential to enhance intestinal tight junction function and improve the composition of intestinal microbiota, thereby significantly promoting tilapia's intestinal health.
Collapse
Affiliation(s)
- Jiayuan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xing Lu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Li-Xue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Di Peng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jian-Min Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| |
Collapse
|
3
|
Song T, Liang X, Wang H, Xue M, Wang J. Gut microbiota-bile acid crosstalk and metabolic fatty liver in spotted seabass ( Lateolabrax maculatus): The role of a cholesterol, taurine and glycine supplement. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:87-99. [PMID: 38766518 PMCID: PMC11101744 DOI: 10.1016/j.aninu.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/11/2024] [Accepted: 03/28/2024] [Indexed: 05/22/2024]
Abstract
The prevalent practice of substituting fishmeal with plant protein frequently leads to disturbances in bile acid metabolism, subsequently increasing the incidence of metabolic liver diseases. Bile acid nutrients such as cholesterol, taurine and glycine have been shown to enhance bile acid synthesis and confer beneficial effects on growth. Therefore, this study aimed to investigate the effects of cholesterol-taurine-glycine (Ch-Tau-Gly) supplement on bile acid metabolism and liver health in spotted seabass (Lateolabrax maculatus) fed a plant-based diet. Two isonitrogenous and isolipidic diets were formulated: (1) plant protein-based diet (PP); (2) PP supplemented 0.5% cholesterol, 0.5% taurine and 1.3% glycine (CTG). Each experimental diet was randomly fed to quadruplicate groups of 30 feed-trained spotted seabass in each tank. The results revealed that supplementing plant-based diet with Ch-Tau-Gly supplement led to an increase in carcass ratio (meat yield) in spotted seabass (P < 0.05), indirectly contributing positively to their growth. The dietary supplement effectively suppressed endogenous cholesterol synthesis in the liver, promoted the expression of bile acid synthesis enzyme synthesis, and simultaneously the expression of intestinal fxr and its downstream genes, including hnf4α and shp (P < 0.05). The reduction in Lactobacillus_salivarius and bile salt hydrolase (BSH) were observed in CTG group with concurrently increased conjugated chenodeoxycholic acid (CDCA) bile acids (P < 0.05), suggesting the enhancement of the hydrophilicity of the bile acid pool. In CTG group, fatty liver was alleviated with a corresponding increase in lipid metabolism, characterized by a downregulation of genes associated with lipogenesis and lipid droplet deposition, along with an upregulation of genes related to lipolysis. Our study underscored the ability of Ch-Tau-Gly supplement to influence the gut microbiota, leading to an increase in the levels of conjugated CDCA (P < 0.05) in the bile acid pool of spotted seabass. The interplay between the gut microbiota and bile acids might constitute a crucial pathway in the promotion of liver health. These findings offer a promising solution, suggesting that Ch-Tau-Gly supplement have the potential to promote the growth of aquatic species and livestock fed on plant-based diets while addressing issues related to metabolic fatty liver.
Collapse
Affiliation(s)
- Tingting Song
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Jiang J, Lu X, Dong L, Tian J, Zhang J, Guo Z, Luo Y, Cui Z, Wen H, Jiang M. Enhancing growth, liver health, and bile acid metabolism of tilapia ( Oreochromis niloticus) through combined cholesterol and bile acid supplementation in plant-based diets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:335-346. [PMID: 38800736 PMCID: PMC11127100 DOI: 10.1016/j.aninu.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 05/29/2024]
Abstract
The present study aimed to compare the nutritional effects of cholesterol, bile acids, and combination of cholesterol with bile acids in plant-based diets on juvenile genetically improved farmed tilapia (GIFT; Oreochromis niloticus). The isonitrogenous (321 g/kg crude protein) and isolipidic (76 g/kg crude fat) diets (Con diet) were based on plant protein sources, which included corn gluten meal, soybean meal, cottonseed meal and rapeseed meal. The Con diet was supplemented with 12 g/kg cholesterol (CHO diet), 0.2 g/kg bile acids (BAs diet), a combination of 12 g/kg cholesterol and 0.2 g/kg bile acids (CHO-BAs diet), respectively. Each diet was fed to three tanks in an indoor recirculating aquaculture system for 9 weeks. Results showed that compared to the Con group, fish had a higher weight gain rate, hepatosomatic index, and a lower feed conversion ratio in the CHO-BAs group. The highest levels of whole-fish fat and ash were found in the Con group. Serum parameters, including activities of alanine aminotransferase (ALT) and aspartate transaminase (AST), along with levels of glucose (GLU) and triglyceride (TG) except for total cholesterol (TCHO), were lower in the CHO, BAs, and CHO-BAs groups than those in the Con group (P < 0.001). Histological examination revealed that fish in the Con group exhibited severe hepatocyte vacuolization and diminished hepatocyte proliferation. Gene expression analysis indicated that the transcriptional levels of bile acid metabolism-related genes (including fxr, fgf19, bsep) were up-regulated in the CHO-BAs group (P < 0.05), whereas cholesterol metabolism-related genes (acly and hmgcr) were down-regulated in both CHO and CHO-BAs groups (P < 0.001). Moreover, UPLC-MS/MS analysis revealed that the higher taurine-conjugated bile acids (T-BAs), followed by free bile acids (Free-BAs) and glycine (G-BAs) were determined in tilapia bile. Among these, taurochenodeoxycholic bile acid was the predominant bile acid. Dietary bile acids supplementation also increased the proportion of T-BAs (tauro β-muricholic acid and taurodehydrocholic acid) while decreasing Free-BAs in the fish bile. In conclusion, the incorporation of cholesterol with bile acids into plant-based diets can effectively reduce cholesterol uptake, suppress bile acids synthesis, enhance bile acids efflux, and promote hepatocyte proliferation, which is helpful for maintaining the normal liver morphology in tilapia, and thus improving its growth performance.
Collapse
Affiliation(s)
- Jiayuan Jiang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Xing Lu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Lixue Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Juan Tian
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Jianmin Zhang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | | | - Yongju Luo
- Guangxi Institute of Fisheries, Nanning, China
| | - Zongbin Cui
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Hua Wen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Ming Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
5
|
Song Z, Xiong H, Meng X, Ma Q, Wei Y, Li Y, Liu J, Liang M, Xu H. Dietary Cholesterol Supplementation Inhibits the Steroid Biosynthesis but Does Not Affect the Cholesterol Transport in Two Marine Teleosts: A Hepatic Transcriptome Study. AQUACULTURE NUTRITION 2023; 2023:2308669. [PMID: 37312679 PMCID: PMC10260315 DOI: 10.1155/2023/2308669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/09/2023] [Accepted: 05/26/2023] [Indexed: 06/15/2023]
Abstract
Cholesterol has been used as additive in fish feeds due to the reduced use of fish meal and fish oil. In order to evaluate the effects of dietary cholesterol supplementation (D-CHO-S) on fish physiology, a liver transcriptome analysis was performed following a feeding experiment on turbot and tiger puffer with different levels of dietary cholesterol. The control diet contained 30% fish meal (0% fish oil) without cholesterol supplementation, while the treatment diet was supplemented with 1.0% cholesterol (CHO-1.0). A total of 722 and 581 differentially expressed genes (DEG) between the dietary groups were observed in turbot and tiger puffer, respectively. These DEG were primarily enriched in signaling pathways related to steroid synthesis and lipid metabolism. In general, D-CHO-S downregulated the steroid synthesis in both turbot and tiger puffer. Msmo1, lss, dhcr24, and nsdhl might play key roles in the steroid synthesis in these two fish species. Gene expressions related to cholesterol transport (npc1l1, abca1, abcg1, abcg2, abcg5, abcg8, abcb11a, and abcb11b) in the liver and intestine were also extensively investigated by qRT-PCR. However, the results suggest that D-CHO-S rarely affected the cholesterol transport in both species. The protein-protein interaction (PPI) network constructed on steroid biosynthesis-related DEG showed that in turbot, Msmo1, Lss, Nsdhl, Ebp, Hsd17b7, Fdft1, and Dhcr7 had high intermediary centrality in the dietary regulation of steroid synthesis. In conclusion, in both turbot and tiger puffer, the supplementation of dietary cholesterol inhibits the steroid metabolism but does not affect the cholesterol transport.
Collapse
Affiliation(s)
- Ziling Song
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Haiyan Xiong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Xiaoxue Meng
- College of Fisheries and Life Sciences, Shanghai Ocean University, 999 Huchenghuan Road, Shanghai 201306, China
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yanlu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Jian Liu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
6
|
Meng X, Bi Q, Ma Q, Wei Y, Li Y, Liang M, Xu H. Dietary Cholesterol Differentially Regulates the Muscle Lipidomics of Farmed Turbot and Tiger Puffer. Animals (Basel) 2023; 13:ani13101632. [PMID: 37238062 DOI: 10.3390/ani13101632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Exogenous cholesterol has been supplemented into aqua-feeds due to the reduced proportions of fishmeal and fish oil. This study aimed to investigate the effects of dietary cholesterol supplementation on the muscle lipidomics of two marine fish species, turbot and tiger puffer. A 70-day feeding trial was conducted, where two low-fishmeal diets supplemented with 0 or 1% cholesterol were used. The lipidomic analysis with targeted tandem mass spectrometry showed that, in turbot, a total of 49 individual lipids exhibited significant differences in their abundance in response to dietary cholesterol, whereas the number was 30 for tiger puffer. Dietary cholesterol up-regulated the abundance of cholesterol and cholesterol ester in both species. In turbot, the dietary cholesterol also increased the abundance of triacylglycerol and acylcarnitine, whereas in tiger puffer, it primarily regulated the abundance of phospholipids and BMP. This was the first time the responses of marine fish muscle lipidomics to dietary cholesterol supplementation have been investigated.
Collapse
Affiliation(s)
- Xiaoxue Meng
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
- College of Fisheries, Guangdong Ocean University, 1 Haida Road, Zhanjiang 524008, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Qiang Ma
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yuliang Wei
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Yanlu Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| |
Collapse
|
7
|
Liu Y, Ma S, Lv W, Shi H, Qiu G, Chang H, Lu S, Wang D, Wang C, Han S, Liu H. Effects of replacing fishmeal with cottonseed protein concentrate on growth performance, blood metabolites, and the intestinal health of juvenile rainbow trout ( Oncorhynchus mykiss). Front Immunol 2022; 13:1079677. [PMID: 36618404 PMCID: PMC9811179 DOI: 10.3389/fimmu.2022.1079677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Cottonseed protein concentrate (CPC) is a potential non-food protein source for fishmeal replacement in fish feed. However, a high inclusion level of CPC in diets may have adverse effects on the metabolism and health of carnivorous fish. This study aimed to investigate CPC as a fishmeal alternative in the diet of rainbow trout Oncorhynchus mykiss based on growth performance, blood metabolites, and intestinal health. Five isonitrogenous (46% crude protein) and isolipidic (16% crude lipid) diets were formulated: a control diet (30% fishmeal) and four experimental diets with substitution of fishmeal by CPC at 25%, 50%, 75%, and 100%. A total of 600 fish (mean body weight 11.24g) were hand-fed the five formulated diets to apparent satiation for eight weeks. The results showed no adverse effects on growth performance when 75% dietary fishmeal was replaced by CPC. However, reduced growth and feed intake were observed in rainbow trout fed a fishmeal-free diet based on CPC (CPC100%). Changes in serum metabolites were also observed in CPC100% compared with the control group, including an increase in alanine aminotransferase (ALT), a decrease in alkaline phosphatase (ALP), alterations in free amino acids, and reductions in cholesterol metabolism. In addition, the CPC-based diet resulted in reduced intestinal trypsin, decreased villus height and width in the distal intestine, upregulated mRNA expression levels of inflammatory cytokines in the intestine, and impaired gut microbiota with reduced bacterial diversity and decreased abundance of Bacillaceae compared with the control group. The findings suggest that the optimum substitution rate of dietary fishmeal by CPC for rainbow trout should be less than 75%.
Collapse
Affiliation(s)
- Yang Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Shuwei Ma
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Weihua Lv
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Honghe Shi
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Animal Science and Technology College of Northeast Agricultural University, Harbin, China
| | - Guangwen Qiu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Animal Science and Technology College of Northeast Agricultural University, Harbin, China
| | - Hongmiao Chang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Shaoxia Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Di Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Changan Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
| | - Shicheng Han
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| | - Hongbai Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, China
| |
Collapse
|
8
|
Romersi RF, Nicklisch SCT. Interactions of Environmental Chemicals and Natural Products With ABC and SLC Transporters in the Digestive System of Aquatic Organisms. Front Physiol 2022; 12:767766. [PMID: 35095552 PMCID: PMC8793745 DOI: 10.3389/fphys.2021.767766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/18/2021] [Indexed: 12/03/2022] Open
Abstract
An organism’s diet is a major route of exposure to both beneficial nutrients and toxic environmental chemicals and natural products. The uptake of dietary xenobiotics in the intestine is prevented by transporters of the Solute Carrier (SLC) and ATP Binding Cassette (ABC) family. Several environmental chemicals and natural toxins have been identified to induce expression of these defense transporters in fish and aquatic invertebrates, indicating that they are substrates and can be eliminated. However, certain environmental chemicals, termed Transporter-Interfering Chemicals or TICs, have recently been shown to bind to and inhibit fish and mammalian P-glycoprotein (ABCB1), thereby sensitizing cells to toxic chemical accumulation. If and to what extent other xenobiotic defense or nutrient uptake transporters can also be inhibited by dietary TICs is still unknown. To date, most chemical-transporter interaction studies in aquatic organisms have focused on ABC-type transporters, while molecular interactions of xenobiotics with SLC-type transporters are poorly understood. In this perspective, we summarize current advances in the identification, localization, and functional analysis of protective MXR transporters and nutrient uptake systems in the digestive system of fish and aquatic invertebrates. We collate the existing literature data on chemically induced transporter gene expression and summarize the molecular interactions of xenobiotics with these transport systems. Our review emphasizes the need for standardized assays in a broader panel of commercially important fish and seafood species to better evaluate the effects of TIC and other xenobiotic interactions with physiological substrates and MXR transporters across the aquatic ecosystem and predict possible transfer to humans through consumption.
Collapse
|
9
|
Xu C, Li E, Xu Z, Su Y, Lu M, Qin JG, Chen L, Wang X. Growth and Stress Axis Responses to Dietary Cholesterol in Nile Tilapia ( Oreochromis niloticus) in Brackish Water. Front Physiol 2018; 9:254. [PMID: 29632493 PMCID: PMC5879489 DOI: 10.3389/fphys.2018.00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/06/2018] [Indexed: 11/15/2022] Open
Abstract
Six isonitrogenous and isocaloric diets were formulated to contain 0% (control), 0.4, 0.8, 1.2, 1.6, or 2.4% dietary cholesterol and fed to juvenile Nile tilapia (Oreochromis niloticus) (2.20 ± 0.12 g) twice daily to apparent satiation for 8 weeks in triplicate at a salinity of 16. Fish fed 0.4% cholesterol showed a higher weight gain and specific growth rate and a lower feed coefficient ratio than fish fed other diets. No difference was found in the survival of Nile tilapia fed various levels of cholesterol. Cholesterol in the serum and liver and low-density lipoprotein cholesterol in the serum increased with the increase in the dietary cholesterol content. Relative to the control, no significant difference was found in the expression of head kidney P450scc mRNA between treatment groups. The expression of head kidney 11β-HSD2 mRNA was the highest in the control group, and it decreased significantly with increasing levels of diet cholesterol. Fish fed 0.4 or 1.2% cholesterol had a higher 20β-HSD2 mRNA expression in the head kidney than those fed other diets. Fish fed 0.8% cholesterol had higher expressions of GR1 and GR2B mRNA in the liver than other groups. Fish fed 0.4% cholesterol had the highest activity of gill Na+/K+-ATPase. Fish fed 0.8 to 2.4% cholesterol had higher serum cortisol contents than the fish in the control group and the fish fed 0.4% cholesterol. This study suggests that dietary cholesterol is not essential for Nile tilapia survival in brackish water, but 0.4% cholesterol supplementation in the Nile tilapia diet contributes to the improvement of hyperosmotic adaptation and increases in gill Na+/K+-ATPase activity and serum cortisol content by regulating the hypothalamic-pituitary-interrenal stress axis.
Collapse
Affiliation(s)
- Chang Xu
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, China.,School of Life Sciences, East China Normal University, Shanghai, China
| | - Erchao Li
- Department of Aquaculture, College of Marine Sciences, Hainan University, Haikou, China
| | - Zhixin Xu
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Yujie Su
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Minghui Lu
- Hainan Dingda Aquaculture Co., Ltd., Wenchang, China
| | - Jian G Qin
- School of Biological Sciences, Flinders University, Adelaide, SA, Australia
| | - Liqiao Chen
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Xiaodan Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|