1
|
Raslan WS, Shehab A, Matter AF, Youssuf HA, Farid OA, Sabek A, Magdy Y, Kadah A. Impact of essential oil and probiotics supplementation on growth performance, serum biomarkers, antioxidants status, bioenergetics and histomorphometry of intestine of Nile tilapia fingerlings challenged with Aeromonas veronii. BMC Vet Res 2025; 21:6. [PMID: 39773641 PMCID: PMC11706111 DOI: 10.1186/s12917-024-04433-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Probiotics and essential oils feed supplements are widely used in the aquaculture sector. This study was conducted to evaluate the effects of dietary supplementation with probiotics, essential oils and their combination on growth performance, serum biochemical parameters, antioxidant capacity, resistance against Aeromonas veronii, and intestinal histomorphology of Nile tilapia (Oreochromis niloticus). A total of 360 O. niloticus fingerlings were randomly assigned to four groups (3 replicates/ group; each replicate contains 30 fish) based on the different dietary treatments. The first group was fed a basal control diet (G1), the second group was fed a basal diet supplemented with 0.015% probiotic (Klu-zetar®) (G2), the third group was fed a basal diet with 0.015% essential oil (ACTIVO®) (G3), and the fourth group was fed a basal diet mixed with 0.015% Klu-zetar® and 0.015% ACTIVO®, (G4) for 6 weeks. At the end of the trial fish were intraperitoneally injected with pathogenic bacteria Aeromonas veronii and the fish mortality rate was recorded for 7 days post infection. RESULTS The results revealed that using probiotics and or essential oils in Nile tilapia diets improved growth performance, reduced oxidative stress, enhanced immunity, maintained intestinal integrity, and enhanced resistance to pathogenic infection (P ≤ 0.05). CONCLUSIONS It is concluded that the use of probiotics and/ or essential oils enhance the overall outcomes of Nile tilapia, so it is highly recommended to be used in aquaculture management.
Collapse
Affiliation(s)
- Walaa S Raslan
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Ahmed Shehab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Aya F Matter
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Hadeer A Youssuf
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Omar Ahmed Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Ahmed Sabek
- Department of Hygiene and Veterinary Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt.
| | - Yasmeen Magdy
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| | - Amgad Kadah
- Department of Physiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Qalyubia, 13736, Egypt
| |
Collapse
|
2
|
Picoli F, de Oliveira AD, Marques SO, Terhorst DC, Serafini S, Nora L, Neves FF, Emerenciano MGC, Lopes DLA, da Silva AS, Fabregat TEHP. A biofloc system avoids the adverse effects of diets with suboptimal protein levels on zootechnical performance, intestinal histomorphometry, and protein metabolism of Nile tilapia juvenile fed Spirulina biomass (Arthrospira platensis) as an alternative protein source. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:1605-1620. [PMID: 38739221 DOI: 10.1007/s10695-024-01358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
This study aimed to evaluate the effect of the biofloc technology (BFT) system and the replacement of fish meal with Spirulina biomass on productive performance, intestinal histomorphometry, plasma biochemistry, and oxidative stress of Nile tilapia juveniles (Oreochromis niloticus) fed suboptimal levels of protein. Two factors were evaluated: production systems (clear water × BFT) and replacement of fish meal with Spirulina (0, 33, 66 e 100%). The design was in a 2 × 4 randomized factorial scheme with four replications, and the fish were evaluated for 48 days. Four isoproteic (28% crude protein) diets were formulated with gross energy values close to 4300 kcal kg-1. Nile tilapia juveniles (0.23 ± 0.01 g) were distributed in 16 circular tanks (70 L) at seven fish/tank. The diets were formulated with protein levels approximately 20% below that required for the species and life stage. No interaction was observed between the factors evaluated (production systems × Spirulina inclusion). Rearing the fish in the BFT system avoided the adverse effects of diets with suboptimal protein levels on performance, intestinal histomorphometry, and protein metabolism. Lower values lower lipid peroxidation and higher antioxidant capacity were observed in fish reared in the BFT system, showing evidence of improvements in antioxidant responses and lower levels of physiological oxidative stress. Spirulina completely replaced fish meal in the diets of Nile tilapia juveniles without adverse effects on intestinal morphometry, protein metabolism, and antioxidant response. Replacing 66% of fish meal with Spirulina improved the productive performance, regardless of the rearing system.
Collapse
Affiliation(s)
- Fernanda Picoli
- UDESC - Santa Catarina State University, Agroveterinary Science Center (CAV), Lages, Santa Catarina, Brazil
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Alana D de Oliveira
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Suelyn O Marques
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Deise C Terhorst
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Suélen Serafini
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Luísa Nora
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Fabio F Neves
- UDESC - Santa Catarina State University, South Higher Education Center (CERES), Laguna, Santa Catarina, Brazil
| | - Maurício G C Emerenciano
- CSIRO Agriculture and Food, Aquaculture Program, Bribie Island Research Center, Bribie Island, QLD, Australia
| | - Diogo L A Lopes
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil
| | - Aleksandro S da Silva
- UDESC - Santa Catarina State University, West Higher Education Center (CEO), Chapecó, Santa Catarina, Brazil.
| | - Thiago E H P Fabregat
- UDESC - Santa Catarina State University, Agroveterinary Science Center (CAV), Lages, Santa Catarina, Brazil.
| |
Collapse
|
3
|
Mabrouk MM, Ashour M, Younis EM, Abdel-Warith AWA, Bauomi MA, Toutou MM, Mansour AIA, Abdelaty BS, Elokaby MA, Davies SJ, El-Haroun E, Gwida AGA. Arthrospira platensis nanoparticles dietary supplementation improves growth performance, steroid hormone balance, and reproductive productivity of Nile tilapia (Oreochromis niloticus) broodstock. PLoS One 2024; 19:e0299480. [PMID: 38917116 PMCID: PMC11198851 DOI: 10.1371/journal.pone.0299480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/10/2024] [Indexed: 06/27/2024] Open
Abstract
This study evaluates the impact of dietary supplementation of the blue-green alga Arthrospira platensis NIOF17/003 nanoparticles (AN) on the growth performance, whole-body biochemical compositions, blood biochemistry, steroid hormonal, and fry production efficiency of Nile tilapia (Oreochromis niloticus) broodstock, during the spawning season. After a 21-day preparation period to equip the females and ensure that their ovaries were filled with eggs, mating between the mature females and males took place in a 3:1 ratio during a 14-day spawning cycle. A total of 384 tilapia broodstock 288 females and 96 males with an initial body weight of 450.53±0.75, were divided into four groups; AN0: a basal diet as a control group with no supplementation of Arthrospira platensis, and the other three groups (AN2, AN4, and AN6) were diets supplemented with nanoparticles of A. platensis at levels of 2, 4, and 6 g kg─1 diet, respectively. The results found that fish-fed group AN6 showed the highest significant differences in weight gain (WG), final weight (FW), feed conversion ratio (FCR), protein efficiency ratio (PER), and feed efficiency ratio (FER). Females fed the AN6 diet showed the highest significant fat content. Compared to the AN0 group, fish fed on the supplemented diets showed significant improvement (p < 0.05) in triglyceride, glucose, and aspartate aminotransferase (AST). A gradual increase in AN inclusion level resulted in a gradual increase in the concentrations of luteinizing hormone (LH), and follicle-stimulating hormone (FSH), testosterone, progesterone, and prolactin. The rates (%) of increase in fry production for females fed supplemented diets were 10.5, 18.6, and 32.2% for AN2, AN4, and AN6, respectively, compared to the control group. This work concluded that the inclusion levels of 6 g kg─1 of A. platensis nanoparticles in the diet of Nile tilapia broodstock significantly improved the growth performances, steroid hormone concentrations, and increased the fry production efficiency by 32.2%, respectively. These findings revealed that A. platensis nanoparticles resulted in a significantly enhanced female' reproductive productivity of Nile tilapia broodstock.
Collapse
Affiliation(s)
- Mohamed M. Mabrouk
- Faculty of Agriculture in Cairo, Department of Fish Production, Al-Azhar University, Cairo, Egypt
| | - Mohamed Ashour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saudi University, Riyadh, Saudi Arabia
| | | | - Mohamed A. Bauomi
- Faculty of Agriculture in Cairo, Department of Fish Production, Al-Azhar University, Cairo, Egypt
| | - Mohamed M. Toutou
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Basem S. Abdelaty
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | | | - Simon J. Davies
- Carna Research Station, Ryan Institute, Aquaculture Nutrition Research Unit ANRU, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ehab El-Haroun
- Faculty of Agriculture, Animal Production Department, Fish Nutrition Research Laboratory, Cairo University, Cairo, Egypt
| | - Ahmed G. A. Gwida
- Faculty of Agriculture in Cairo, Department of Fish Production, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Abo El-Ela FI, Gamal A, El-Banna HA, Ibrahim MA, El-Banna AH, Abdel-Razik ARH, Abdel-Wahab A, Hassan WH, Abdelghany AK. Repro-protective activity of amygdalin and spirulina platensis in niosomes and conventional forms against aluminum chloride-induced testicular challenge in adult rats: role of CYP11A1, StAR, and HSD-3B expressions. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3211-3226. [PMID: 37910183 PMCID: PMC11074051 DOI: 10.1007/s00210-023-02788-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
The male reproductive system is negatively influenced by Al exposure. Al represented a considerable hazard to men's reproduction capabilities. Amygdalin (AMG) and spirulina platensis (SP) have been considered to have a strong antioxidant and repro-protective activity; also, targeted drug delivery systems called niosomes improve the distribution of water-soluble medications like amygdalin and spirulina. Current study targeted to determine the effectiveness of AMG and SP against negative reproductive impact resulted by aluminum chloride (AlCl3) toxicity. Sixty adult male albino rats were separated into 6 groups, including the control group, which received distilled water; AlCl3 group, which received AlCl3; AMG+AlCl3 group, which received AlCl3+AMG; AMGLN+AlCl3 group, which received AlCl3+amygdalin-loaded niosomes; SP+AlCl3 group, which received AlCl3+SP; and SPLN+AlCl3 group, which received AlCl3+spirulina-loaded niosomes. All treatments were orally gavaged daily for 5 weeks, and rats were weighed weekly. At the termination of the experiment, some males (three from each group) were used for fertility traits via mating thirty virgin rat females (in a ratio of 1:2 and 2:3 male:female, respectively) followed by recording of birth weights and litter size (number of pups per each female) at birth to assess males' reproductive capability. Other males were euthanized for collection of serum, epididymal semen samples, and tissue samples for biochemical, sperm evaluation, gene expression, and histopathological measurements. There are a considerable number of negative impacts of AlCl3 on male fertility clarified by declined serum testosterone levels; an increased oxidative stress (MDA, TAC); deteriorated semen quality; down-regulation of CYP11A1, StAR, and HSD-3b gene expressions; and testicular tissue degenerative changes. In addition, litter size (number of pups per each female) and birth weights of pups obtained from mated females were affected. AMG and SP treatments, either in niosomal or conventional form, alleviated the AlCl3 negative effects by reducing oxidative stress; increasing testosterone levels; improving semen quality; upregulating of CYP11A1, StAR, and HSD-3b gene expressions; and reducing degenerative changes of testicular tissue. Besides, negative reproductive effect was diminished as observed by changes in the litter size (number of pups per each female) and birth weights of pups obtained from mated females. AMG and SP treatments (either in niosomal or conventional form), ameliorated the AlCl3 negative effects as they possess powerful antioxidant activity, as well as they have the ability to improve the reproductive activity of affected males.
Collapse
Affiliation(s)
- Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | - Amr Gamal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | | | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed H El-Banna
- Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Aqaba, Jordan
| | - Abdel-Razik H Abdel-Razik
- Department of Histology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Ahmed Abdel-Wahab
- Department of Physiology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| | - Walid Hamdy Hassan
- Department of Microbiology Mycology and Immunology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Asmaa K Abdelghany
- Animal and Poultry Management and Wealth Development Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| |
Collapse
|
5
|
Zahran E, Ahmed F, Hassan Z, Ibrahim I, Khaled AA, Palić D, El Sebaei MG. Toxicity Evaluation, Oxidative, and Immune Responses of Mercury on Nile Tilapia: Modulatory Role of Dietary Nannochloropsis oculata. Biol Trace Elem Res 2024; 202:1752-1766. [PMID: 37491615 PMCID: PMC10859351 DOI: 10.1007/s12011-023-03771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/09/2023] [Indexed: 07/27/2023]
Abstract
The current study evaluated the potential ameliorative effect of a dietary immune modulator, Nannochloropsis oculata microalga, on the mercuric chloride (HgCl2)-induced toxicity of Nile tilapia. Nile tilapia (45-50 g) were fed a control diet or exposed to ¼ LC50 of HgCl2 (0.3 mg/L) and fed on a medicated feed supplemented with N. oculata (5% and 10% (50 or 100 g/kg dry feed)) for 21 days. Growth and somatic indices, Hg2+ bioaccumulation in muscles, and serum acetylcholinesterase (AChE) activity were investigated. Antioxidant and stress-related gene expression analyses were carried out in gills and intestines. Histopathological examinations of gills and intestines were performed to monitor the traits associated with Hg2+ toxicity or refer to detoxification. Hg2+ toxicity led to significant musculature bioaccumulation, inhibited AChE activity, downregulated genes related to antioxidants and stress, and elicited histopathological changes in the gills and intestine. Supplementation with N. oculata at 10% was able to upregulate the anti-oxidative-related genes while downregulated the stress apoptotic genes in gills and intestines compared to the unexposed group. In addition, minor to no histopathological traits were detected in the gills and intestines of the N. oculata-supplemented diets. Our data showed the benefit of dietary N. oculata in suppressing Hg2+ toxicity, which might support its efficacy as therapeutic/preventive agent to overcome environmental heavy metal pollution in aquatic habitats.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Zeinab Hassan
- Fish Disease Department, Faculty of Veterinary Medicine, Aswan University, Aswan, 81528, Egypt
| | - Iman Ibrahim
- Pathology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, Egypt
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Ludwig-Maximilians-University Munich, Munich, 80539, Germany
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Ghamry HI, Shukry M, Kassab MA, Farrag FA, El-Shafai NM, Elgendy E, Ibrahim AN, Elgendy SA, Behairy A, Ibrahim SF, Imbrea F, Florin C, Abdo M, Ahmed IA, Muhammad MH, Anwer H, Abdeen A. Arthrospira platensis Nanoparticles Mitigate Aging-Related Oxidative Injured Brain Induced by D-galactose in Rats Through Antioxidants, Anti-Inflammatory, and MAPK Pathways. Int J Nanomedicine 2023; 18:5591-5606. [PMID: 37808455 PMCID: PMC10558002 DOI: 10.2147/ijn.s416202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023] Open
Abstract
Background Loss of normal function is an inevitable effect of aging. Several factors contribute to the aging process, including cellular senescence and oxidative stress. Methods We investigate how Arthrospira platensis Nanoparticles (NSP) protect against aging injury induced by d-galactose (D-gal) in the rat. So, we subcutaneously (S/C) injected D-gal at 200 mg/kg BW to see if Arthrospira platensis Nanoparticles (NSP) might protect against the oxidative changes generated by D-gal. NSP (0.5 mg/kg body weight once daily by gastric gavage) was given to all groups apart from the control and D-gal groups. The d-gal + NSP group was supplemented with 200 mg of D-gal per kg BW once a day and NSP 0.5 mg/kg BW given orally for 45 days. Biochemical, mRNA expression, and histological investigations of brain tissues were used to evaluate the oxidative alterations caused by d-gal and the protective role of NSP. Results Our data demonstrated that d-gal was causing significant reductions in relative brain and body weight with increased malondialdehyde (MDA) and redox oxygen species (ROS) levels and increases in serum creatine phosphokinase (CPK) and creatine phosphokinase isoenzyme BB (CPK-BB) with marked decreases in the level of antioxidant enzyme activity in the brain and acetylcholinesterase activity augmented with a phosphorylated H2A histone family member X (γ-H2AX) level increased. The D-gal group had considerably higher phosphorylated p38 mitogen-activated protein kinases (P38MAPK) and C-Jun N-terminal (JNK) kinases. The d-gal administration stimulates the apoptotic gene expression by downregulating the brain superoxide dismutase (SOD), catalase (CAT), and nuclear factor erythroid 2-related factor 2 (Nrf2). The NSP administration saved these parameters in the direction of the control. The brain histopathologic and immunohistochemistry analysis findings support our findings on NSP's protective role. Conclusion The NSP may be a promising natural protective compound that can prevent aging and preserve health.
Collapse
Affiliation(s)
- Heba I Ghamry
- Nutrition and Food Science, Department of Home Economics, Faculty of Home Economics, King Khalid University, Abha, 61421, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Mohamed A Kassab
- Department of Histology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Foad A Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nagi M El-Shafai
- Nanotechnology Center, Chemistry Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Enas Elgendy
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Amany N Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Salwa A Elgendy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ali Behairy
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samah F Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia
| | - Florin Imbrea
- Department of Biology and Plant Protection, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timisoara, 300645, Romania
| | - Crista Florin
- Department of Soil Science, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timisoara, 300645, Romania
| | - Mohamed Abdo
- Department of Animal Histology and anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Badr City, Egypt
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Egypt
| | - Inas A Ahmed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Marwa H Muhammad
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Hala Anwer
- Department of Physiology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| |
Collapse
|
7
|
Abdel-Latif HMR, Soliman AA, Khaled AA, Kord M, Abdel-Tawwab M, Darwish S, Grana YS, Zaki M, Nour AE, Ali E, Khalil RH, Khalil HS. Growth performance, antioxidant activities, and immunological responses of hapa-reared thinlip mullet (Liza ramada) juveniles fed on diets supplemented with spirulina (Arthrospiraplatensis). FISH & SHELLFISH IMMUNOLOGY 2022; 130:359-367. [PMID: 36126837 DOI: 10.1016/j.fsi.2022.09.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/22/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Spirulina (Arthrospira platensis) (SP) has been utilized for a long time as a valued feed supplement because of its proteinous content and other beneficial phytochemical compounds. Herein, we investigated the influences of SP-supplemented diets on growth, body somatic indices, digestive enzymes, hepatic antioxidant activities, and immunological responses of hapa-reared thinlip mullet (Liza ramada) juveniles. Fish were assigned in six triplicate groups and were fed for consecutive 60 days on the prepared experimental diets containing varying SP levels as 0.0, 2.0, 4.0, 6.0, 8.0, and 10.0 g/kg diet and defined as control (CNT or SP0), SP2, SP4, SP6, SP8, and SP10 groups, respectively. The results indicated that dietary SP supplementation linearly and quadratically improved the fish growth performance, and the highest growth indices were found in the SP8 group. However, dietary SP supplementation did not significantly alter feed conversion ratio (FCR), survival rate (%), hepato-somatic index, and viscera-somatic index among all experimental groups. Meanwhile, digestive enzymes (lipase, α-amylase, and proteases) in the mid-intestine were also linearly and quadratically increased in all SP-fed groups, and their uppermost values were noted in the SP8 group. Hepatic antioxidants such as superoxide dismutase, catalase, and total antioxidant capacity in SP-supplemented groups were significantly elevated than the CNT group. Conversely, hepatic malondialdehyde contents were decreased significantly along with increasing dietary SP-supplementation levels. The immunological parameters such as lysozyme, respiratory burst, and alternative complement activities were significantly elevated in SP-fed groups than in the CNT group. These findings evoked that feeding SP-supplemented diets (especially at 8.0 g/kg diet) significantly promoted the growth, digestive enzymes, hepatic antioxidant status, and immunity of L. ramada juveniles.
Collapse
Affiliation(s)
- Hany M R Abdel-Latif
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt.
| | - Ali A Soliman
- National Institute of Oceanography and Fisheries (NIOF), Egypt
| | - Asmaa A Khaled
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Mohamed Kord
- Central Laboratory for Agricultural Climate, Agriculture Research Center, Giza, Egypt
| | - Mohsen Abdel-Tawwab
- Department of Fish Biology and Ecology, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Shawky Darwish
- Limnology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Youssif Shehata Grana
- Limnology Department, Central Laboratory for Aquaculture Research, Agriculture Research Center, Abbassa, Abo-Hammad, Sharqia, Egypt
| | - Mohamed Zaki
- Animal Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Abd-Elaziz Nour
- Animal Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Eglal Ali
- Animal and Fish Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, Egypt
| | - Riad H Khalil
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Alexandria, 22758, Egypt
| | | |
Collapse
|
8
|
Shaman AA, Zidan NS, Atteia HH, Alalawy AI, Alzahrani S, AlBishi LA, Helal AI, Braiji SH, Farrag F, Shukry M, Sakran MI. Arthrospira platensis nanoparticles defeat against diabetes-induced testicular injury in rat targeting, oxidative, apoptotic, and steroidogenesis pathways. Andrologia 2022; 54:e14456. [PMID: 35560246 DOI: 10.1111/and.14456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/12/2022] [Accepted: 04/10/2022] [Indexed: 11/29/2022] Open
Abstract
Varieties of studies have been used to investigate the health benefits of Spirulina (Arthrospira platensis); however, more research is needed to examine if its nano form may be utilized to treat or prevent several chronic diseases. So, we designed this study to explore the effect and the cellular intracellular mechanisms by which Arthrospira platensis Nanoparticles (NSP) alleviates the testicular injury induced by diabetes in male Wistar rats. Eighty Wistar male rats (n = 80) were randomly allocated into eight groups. Group 1 is untreated rats (control), Group 2 including STZ-induced diabetic rats with 65 mg/kg body weight STZ (STZ-diabetic), Group 3-5: including diabetic rats treated with NSP1, NSP2, and NSP3 at 0.25, 0.5, and 1 mg/kg body weight, respectively, once daily orally by the aid of gastric gavage for 12 consecutive weeks and groups 6-8 include normal rats received NSP (0.25, 0.5, and 1 mg/kg body weight once daily orally. The identical volume of normal saline was injected into both control and diabetic rats. After 12 weeks of diabetes induction, the rats were killed. According to our findings, NSP administration to diabetic rats enhances the total body weight and the weight of testes and accessory glands; in addition, NSP significantly reduced nitric oxide and malondialdehyde in testicular tissue improved sperm parameters. Intriguingly, it raises testicular GSH and SOD activity by a significant amount (p < 0.05). As well, Oral administration of NSP to diabetic rats resulted in a decrease in the blood glucose levels, HA1C, induced in the diabetic group, which overcame the diabetic complications NSP caused down-regulation of apoptotic genes with upregulation of BCL-2 mRNA expression (p < 0.05) and prominent up-regulation of steroidogenesis genes expression level in testes in comparison to the diabetic rats which resulted in improving the decreased levels of testosterone hormone, FSH, and LH induced by diabetes. In the same way, our histopathological findings support our biochemical and molecular findings; in conclusion, NSP exerted a protective effect against reproductive dysfunction induced by diabetes not only through its high antioxidant and hypoglycemic action but also through its down-regulation of Apoptotic genes and up-regulation of steroidogenesis regulatory genes expression level in diabetic testes.
Collapse
Affiliation(s)
- Amani Ali Shaman
- Faculty of Medicine, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Nahla S Zidan
- Faculty of Home Economics, University of Tabuk, Tabuk, Saudi Arabia
- Department of nutrition and food science Faculty of Specific Education, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Hebatallah H Atteia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Sharifa Alzahrani
- Pharmacilogy Department, Faculty of Pharmacy, University of Tabuk, Tabuk, Kingdom of Saudi Arabia
| | - Laila A AlBishi
- Pediatric Department, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Azza I Helal
- Faculty of Medicine, Histology and Cell Biology Department, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | | | - Foad Farrag
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Shaikh, Egypt
| | - Mohamed I Sakran
- Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Biochemistry Section, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Elabd H, Faggio C, Mahboub HH, Emam MA, Kamel S, El Kammar R, Abdelnaeim NS, Shaheen A, Tresnakova N, Matter A. Mucuna pruriens seeds extract boosts growth, immunity, testicular histology, and expression of immune-related genes of mono-sex Nile tilapia (Oreochromisniloticus). FISH & SHELLFISH IMMUNOLOGY 2022; 127:672-680. [PMID: 35817363 DOI: 10.1016/j.fsi.2022.06.055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Nutraceuticals have received increased attention in sustainable aquaculture. Consequently, the present study aimed to evaluate the dietary effects of Mucuna pruriens (MP) seed extract on growth performance, immune status, hepatic function, biochemical profiles, gonadal histology, and expression of immune-related genes in mono-sex Nile tilapia (Oreochromis niloticus). Fish were allocated into four groups and received MP at rates of 0 (control), 2, 4, and 6 g/kg diet, respectively, for 90 days. The results revealed that MP significantly (P<0.05) modulated growth performance (specific growth rate, final length, and length gain rate, body mass gain, and feed conversion ratio), lysozyme activity, and liver enzymes (AST, ALT). However, a non-significant effect on nitric oxide (NO) or immunoglobulin M (IgM) levels was detected, whereas the dietary inclusion of MP had a hypoglycemic effect. In terms of plasma globulin, albumin, globulin/albumin ratio, and cortisol, the MP receiving groups showed insignificant difference (P<0.05) when compared to controls, except for the 2 g MP-supplemented group. The lower inclusion concentration of MP (2 g/kg diet) demonstrated the best result (P < 0.05) for gonadosomatic index (GSI) and plasma testosterone level that was consistent with the histological findings reflecting an improvement in the testicular development compared with the control group. Expressions of complement component (C5) and interleukin 1-β (IL-1β) genes were significantly up-regulated in MP receiving groups. In conclusion, M. pruriens can be used as a safe natural economic feed additive and a low inclusion level of 2 g/kg diet is recommended to improve growth, enhance immunity, maintain liver functioning, improve testicular development, and to modulate immune-related genes in the mono-sex O. niloticus.
Collapse
Affiliation(s)
- Hiam Elabd
- Department of Aquatic Animals' Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 S, Agata-Messina, Italy.
| | - Heba H Mahboub
- Fish Diseases and Management Department, Faculty of Veterinary Medicine, Zagazig University, 44511, Zagazig, Sharkia, Egypt.
| | | | - Samar Kamel
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Reda El Kammar
- Histology Department, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Noha S Abdelnaeim
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Suez Canal University, P.O. Box 41522, Ismailia, Egypt
| | - Adel Shaheen
- Department of Aquatic Animals' Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| | - Nikola Tresnakova
- Research Institute of Fish Culture and Hydrobiology, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, The University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany, 389 25, Czech Republic
| | - Aya Matter
- Department of Aquatic Animals' Diseases and Management, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, 13736, Egypt
| |
Collapse
|
10
|
Sallam EA, Matter AF, Mohammed LS, Azam AE, Shehab A, Mohamed Soliman M. Replacing fish meal with rapeseed meal: potential impact on the growth performance, profitability measures, serum biomarkers, antioxidant status, intestinal morphometric analysis, and water quality of Oreochromis niloticus and Sarotherodon galilaeus fingerlings. Vet Res Commun 2021; 45:223-241. [PMID: 34283348 DOI: 10.1007/s11259-021-09803-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of this study was to assess the impact of using rapeseed meal as a partial replacement for fish meal in the diet of farmed tilapia. We evaluated the effect of this replacement on growth performance, profitability, serum biomarkers, antioxidant status, gut morphology, and water quality. A total of 960 apparently healthy Oreochromis niloticus (O. niloticus) and Sarotherodon galilaeus (S. galilaeus) fingerlings were randomly distributed into four dietary treatment groups for each tilapia species (triplicate design, 120 fish/group, and 40 fish/replicate). The diets consumed by these groups were formulated to replace fish meal (FM) with rapeseed meal (RM) at 0%, 10%, 20%, and 30%, respectively, for 12 consecutive weeks. Results indicated that replacing RM in the diet of S. galilaeus (up to 20%) and O. niloticus (up to 10%) resulted in increased growth performance parameters, including final weight, weight gain, length, length gain, weight gain rate, and specific growth rate (SGR), and return parameters such as a total return and relative return compared to the control group. Moreover, an increase in RM up to 30% improved net profit and increased the mucosal length, intestinal villi length, and the number of goblet cells compared with results in its relative control groups. Additionally, we observed a significant increase in serum and liver AST and ALT with increased RM replacement. With respect to water parameters, we observed a significant difference in the ammonia levels, turbidity, and conductivity with the changes to the percentage of RM in the diets. As for the effect on each species, O. niloticus showed a more significant increase in all examined parameters compared to results in S. galilaeus. In summary, up to 10% RM can be used to replace FM without any adverse effects on the growth performance, profitability measures, intestinal morphometric analysis, or water quality.
Collapse
Affiliation(s)
- Eman A Sallam
- Animal and Poultry Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt.
| | - Aya F Matter
- Department of Aquatic Animals Diseases and Management, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Liza S Mohammed
- Veterinary Economics and Farm Management, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Aya E Azam
- Animal Hygiene and Veterinary Management Department, Faculty of Veterinary Medicine, Benha University, Benha, 13736, Egypt
| | - Ahmed Shehab
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohamed Mohamed Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|