1
|
Rault LC, Morrison WR, Gerken AR, Bingham GV. Challenges in Assessing Repellency via the Behavioral Response by the Global Pest Tribolium castaneum to Protect Stored Grains. INSECTS 2024; 15:626. [PMID: 39194830 DOI: 10.3390/insects15080626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Food security is an increasingly pressing global issue, and by 2050, food production will not be sufficient to feed the growing population. Part of global food insecurity can be attributed to post-harvest losses, including quantity and quality losses caused by stored-product pests like insects. It is thus timely to find management strategies to mitigate these losses and counteract food insecurity. The red flour beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), a global stored-product pest with a wide range of food sources, was used in this study to assess repellency to a selection of essential oils. METHODS Multiple behaviorally relevant methods were used to determine the efficacy of the essential oils in assays to pinpoint the most promising repellents. Experiments were used to assess individual and group behaviors with or without airflow and examined the behavioral variation in distance moved and the time spent away from the oil. RESULTS It was found that exposure to essential oils and conditions of experimentation considerably influenced T. castaneum's behavioral response, but a clear candidate for repellency could not be chosen based on the collected data. CONCLUSIONS Follow-up research is needed to pinpoint repellents for integrated pest management practices to protect grains from stored-product pests and to justify their use in and around commodities.
Collapse
Affiliation(s)
- Leslie C Rault
- Department of Entomology, University of Nebraska-Lincoln, 103 Entomology Hall, Lincoln, NE 68583, USA
| | - William R Morrison
- United States Department of Agriculture, Agricultural Research Service, Stored Product Insects and Engineering Research Unit, 1515 College Ave., Manhattan, KS 66502, USA
| | - Alison R Gerken
- United States Department of Agriculture, Agricultural Research Service, Stored Product Insects and Engineering Research Unit, 1515 College Ave., Manhattan, KS 66502, USA
| | - Georgina V Bingham
- Department of Entomology, University of Nebraska-Lincoln, 103 Entomology Hall, Lincoln, NE 68583, USA
| |
Collapse
|
2
|
Tang H, Liu X, Wang S, Wang Y, Bai L, Peng X, Chen M. A relaxin receptor gene RpGPCR41 is involved in the resistance of Rhopalosiphum padi to pyrethroids. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105894. [PMID: 38685221 DOI: 10.1016/j.pestbp.2024.105894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/29/2024] [Accepted: 03/29/2024] [Indexed: 05/02/2024]
Abstract
Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.
Collapse
Affiliation(s)
- Hongcheng Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yixuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lingling Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Wang S, Bi J, Li C, Li B. Latrophilin, an adhesion GPCR with galactose-binding lectin domain involved in the innate immune response of Tribolium castaneum. Int J Biol Macromol 2023; 253:126707. [PMID: 37673160 DOI: 10.1016/j.ijbiomac.2023.126707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Latrophilin is a member of adhesion GPCRs involved in various physiological pro1cesses. The extracellular fragment of Tribolium castaneum Latrophilin (TcLph) contains a galactose-binding lectin (GBL) domain. However, the biological function of GBL domain remains mysterious. Here, we initially studied the role of TcLph in recognizing pathogens through its GBL domain and then triggering immune defense in invertebrates. Results showed that GBL domain was highly conserved, and its predicted 3D structure was similar to rhamnose-binding lectin domain of mouse Latrophilin-1 with a unique α/β fold and two long loops. Molecular docking and ELISA results revealed the GBL domain can bind to D-galactose, L-rhamnose, lipopolysaccharide and peptidoglycan. The recombinant extracellular segment of TcLph and the recombinant GBL exhibited strong agglutinating and binding activities to all tested bacteria in a Ca2+-dependent manner. Moreover, TcLph was markedly induced after infection by Escherichia coli or Staphylococcus aureus, while its silencing exacerbated bacterial loads and larvae mortality. TcLph-deficient larvae significantly decreased the transcription levels of antimicrobial peptides and prophenoloxidase activating system-related genes, leading to a significant reduction in phenoloxidase activity. It indicated that TcLph functioned as a pattern recognition receptor in pathogen recognition and activated immune responses to eliminate invasive microbes, suggesting a potential target for insecticides.
Collapse
Affiliation(s)
- Suisui Wang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Chengjun Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
4
|
Abendroth JA, Moural TW, Wei H, Zhu F. Roles of insect odorant binding proteins in communication and xenobiotic adaptation. FRONTIERS IN INSECT SCIENCE 2023; 3:1274197. [PMID: 38469469 PMCID: PMC10926425 DOI: 10.3389/finsc.2023.1274197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/15/2023] [Indexed: 03/13/2024]
Abstract
Odorant binding proteins (OBPs) are small water-soluble proteins mainly associated with olfaction, facilitating the transport of odorant molecules to their relevant receptors in the sensillum lymph. While traditionally considered essential for olfaction, recent research has revealed that OBPs are engaged in a diverse range of physiological functions in modulating chemical communication and defense. Over the past 10 years, emerging evidence suggests that OBPs play vital roles in purifying the perireceptor space from unwanted xenobiotics including plant volatiles and pesticides, potentially facilitating xenobiotic adaptation, such as host location, adaptation, and pesticide resistance. This multifunctionality can be attributed, in part, to their structural variability and effectiveness in transporting, sequestering, and concealing numerous hydrophobic molecules. Here, we firstly overviewed the classification and structural properties of OBPs in diverse insect orders. Subsequently, we discussed the myriad of functional roles of insect OBPs in communication and their adaptation to xenobiotics. By synthesizing the current knowledge in this field, our review paper contributes to a comprehensive understanding of the significance of insect OBPs in chemical ecology, xenobiotic adaptation, paving the way for future research in this fascinating area of study.
Collapse
Affiliation(s)
- James A. Abendroth
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Timothy W. Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Hongshuang Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
5
|
Zhang J, Guo T, Xiao Q, Wang P, Tian H. Effect of 4-chloro-2-methylphenoxy acetic acid on tomato gene expression and rhizosphere bacterial communities under inoculation with phosphate-solubilizing bacteria. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125767. [PMID: 33845264 DOI: 10.1016/j.jhazmat.2021.125767] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
The herbicide 4-chloro-2-methylphenoxy acetic acid (MCPA) is widely used to control the spread of broad-leaved weeds in agricultural soils, though it remains unclear how tomato plants cope with the phytotoxic effects of MCPA at the molecular level. In this study, RNA-seq and Illumina MiSeq were used to sequence bacterial communities in tomato rhizosphere soils treated with MCPA and the phosphate-solubilizing bacterial strain N3. The results showed that MCPA induced abnormal growth of lateral roots in tomato seedlings and reduced uptake of the nutrients N, P, and K as well as the hormone (ABA and GA3) levels. Inoculation with strain N3 increased nutrient uptake by roots and increased levels of the hormones ABA, ZEA, and JA in tomato seedlings and also increased the abundance of the phyla Proteobacteria and Gemmatimonadetes in soil under MCPA treatment. GO functional groups in which differentially expressed genes (DEGs) are involved included DNA binding transcription factor activity, transcriptional regulator activity, enzyme inhibitor activity, and cell wall biogenesis. The highest numbers of DEGs are annotated to ribosome, photosynthesis, and carbon metabolism categories. Our findings provide valuable information for the application of strain N3, which is beneficial for reducing the toxic effect of MCPA on vegetable plants.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China.
| | - Tingting Guo
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Qingqing Xiao
- School of Biology, Food and Environment, Hefei University, 230601 Anhui Province, China
| | - Pengcheng Wang
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| | - Hongmei Tian
- Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei 230031, Anhui Province, China; Key Laboratory of Genetic Improvement and Ecophysiology of Horticultural Crops, Hefei 230031, Anhui Province, China
| |
Collapse
|
6
|
Guo SH, Liu YM, Wang ZY, Wang FF, Mao YK, Hu YW, Han P, Cuthbertson AGS, Qiu BL, Sang W. Transcriptome analysis reveals TOR signalling-mediated plant flush shoots governing Diaphorina citri Kuwayama oviposition. INSECT MOLECULAR BIOLOGY 2021; 30:264-276. [PMID: 33410566 DOI: 10.1111/imb.12693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Asian Citrus Psyllid (ACP), Diaphorina citri, is a key vector transmitting the causative agent of Huanglongbing (HLB) disease. Population growth of ACP is evident after feeding on plant flush shoots, as they only oviposit here. However, the underlying mechanism as to why flush shoots govern oviposition is unclear. This study compares the fecundity and ovarian morphology of ACP between young flush and mature leaves. Furthermore, the transcriptome of mated females infesting Murraya paniculata was analysed. Finally, the gene of the key Target of Rapamycin (TOR) signalling pathway was silenced by RNAi. Results indicated that flush shoot feeding activated the development of the psyllids ovary and therefore induced oviposition. A total of 126 and 2794 differentially expressed genes were detected at 1 and 5 days, respectively, after pest infestation of flush shoots compared to mature leaves. Many genes are involved in protein metabolism, Mitogen-Activated Protein Kinase (MAPK) signalling pathway, hormone synthesis, and TOR signalling pathway: all thought to activate reproduction. Silencing of the positive regulator gene DcRheb in the TOR pathway resulted in lower levels of ecdysone and juvenile hormone and decreased vitellogenin synthesis, further disrupting reproductive ability. This study enhances understanding of the molecular mechanism underlying ACP's reproductive strategy.
Collapse
Affiliation(s)
- S-H Guo
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou, China
| | - Y-M Liu
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou, China
| | - Z-Y Wang
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou, China
| | - F-F Wang
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou, China
| | - Y-K Mao
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - Y-W Hu
- Guangdong Provincial Bioengineering Institute (Guangzhou Sugarcane Industry Research Institute), Guangzhou, China
| | - P Han
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Chinese Academy of Sciences, Ürümqi, China
| | | | - B-L Qiu
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou, China
| | - W Sang
- Key Laboratory of Bio-Pesticide Creation and Application, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Araújo CAC, Pacheco JPF, Waniek PJ, Geraldo RB, Sibajev A, Dos Santos AL, Evangelho VGO, Dyson PJ, Azambuja P, Ratcliffe NA, Castro HC, Mello CB. A rhamnose-binding lectin from Rhodnius prolixus and the impact of its silencing on gut bacterial microbiota and Trypanosoma cruzi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 114:103823. [PMID: 32800901 DOI: 10.1016/j.dci.2020.103823] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Lectins are ubiquitous proteins involved in the immune defenses of different organisms and mainly responsible for non-self-recognition and agglutination reactions. This work describes molecular and biological characterization of a rhamnose-binding lectin (RBL) from Rhodnius prolixus, which possesses a 21 amino acid signal peptide and a mature protein of 34.6 kDa. The in-silico analysis of the primary and secondary structures of RpLec revealed a lectin domain fully conserved among previous insects studied. The three-dimensional homology model of RpLec was similar to other RBL-lectins. Docking predictions with the monosaccharides showed rhamnose and galactose-binding sites comparable to Latrophilin-1 and N-Acetylgalactosamine-binding in a different site. The effects of RpLec gene silencing on levels of infecting Trypanosoma cruzi Dm 28c and intestinal bacterial populations in the R. prolixus midgut were studied by injecting RpLec dsRNA into the R. prolixus hemocoel. Whereas T. cruzi numbers remained unchanged compared with the controls, numbers of bacteria increased significantly. The silencing also induced the up regulation of the R. prolixus defC (defensin) expression gene. These results with RpLec reveal the potential importance of this little studied molecule in the insect vector immune response and homeostasis of the gut bacterial microbiota.
Collapse
Affiliation(s)
- C A C Araújo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - J P F Pacheco
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Waniek
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - R B Geraldo
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - A Sibajev
- Centro de Ciências da Saúde, Universidade Federal de Roraima, Av. Cap. Enê Garcez 2413, Boa Vista, RR, CEP 69400-000, Brazil
| | - A L Dos Santos
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - V G O Evangelho
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil
| | - P J Dyson
- Institute of Life Science, School of Medicine, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - P Azambuja
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação, Oswaldo Cruz, Fiocruz, Av. Brasil 4365, Rio de Janeiro, RJ, CEP 21045-900, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - N A Ratcliffe
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Department of Biosciences, Swansea University, Singleton Park, Swansea, SA28PP, UK
| | - H C Castro
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil.
| | - C B Mello
- Programa de Pós-Graduação Em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Laboratório de Biologia de Insetos, Departamento de Biologia Geral, Universidade Federal Fluminense, Campus Do Gragoatá, Bloco M, São Domingos, Niterói, Rio de Janeiro, RJ, CEP 24201-201, Brazil; Instituto Nacional de Ciência e Tecnologia Em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil.
| |
Collapse
|
8
|
Rösner J, Wellmeyer B, Merzendorfer H. Tribolium castaneum: A Model for Investigating the Mode of Action of Insecticides and Mechanisms of Resistance. Curr Pharm Des 2020; 26:3554-3568. [PMID: 32400327 DOI: 10.2174/1381612826666200513113140] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/02/2020] [Indexed: 11/22/2022]
Abstract
The red flour beetle, Tribolium castaneum, is a worldwide insect pest of stored products, particularly food grains, and a powerful model organism for developmental, physiological and applied entomological research on coleopteran species. Among coleopterans, T. castaneum has the most fully sequenced and annotated genome and consequently provides the most advanced genetic model of a coleopteran pest. The beetle is also easy to culture and has a short generation time. Research on this beetle is further assisted by the availability of expressed sequence tags and transcriptomic data. Most importantly, it exhibits a very robust response to systemic RNA interference (RNAi), and a database of RNAi phenotypes (iBeetle) is available. Finally, classical transposonbased techniques together with CRISPR/Cas-mediated gene knockout and genome editing allow the creation of transgenic lines. As T. castaneum develops resistance rapidly to many classes of insecticides including organophosphates, methyl carbamates, pyrethroids, neonicotinoids and insect growth regulators such as chitin synthesis inhibitors, it is further a suitable test system for studying resistance mechanisms. In this review, we will summarize recent advances in research focusing on the mode of action of insecticides and mechanisms of resistance identified using T. castaneum as a pest model.
Collapse
Affiliation(s)
- Janin Rösner
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Benedikt Wellmeyer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| | - Hans Merzendorfer
- Department of Chemistry-Biology, University of Siegen, Adolf-Reichwein-Strasse 2, 57068 Siegen, Germany
| |
Collapse
|
9
|
Yao Q, Dong Y, Chen J, Quan L, Zhang W, Chen B. Transcriptome Analysis of Female and Male Conopomorpha sinensis (Lepidoptera: Gracilariidae) Adults With a Focus on Hormone and Reproduction. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2966-2975. [PMID: 31504646 DOI: 10.1093/jee/toz225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Indexed: 06/10/2023]
Abstract
Conopomorpha sinensis Bradley is the dominant borer pest of litchi and longan in the Asian-pacific area. Reduction or interference of reproduction and mating of adult moths is one of the most used strategies to control C. sinensis. Insect reproduction is a critical biological process closely related to endocrine control. Conopomorpha sinensis genome and transcriptome information is limited, hampering both our understanding of the molecular mechanisms underlying hormone activity and reproduction and the development of control strategies for this borer pest. To explore the sex differences in gene expression profiles influencing these biological processes, de novo transcriptomes were assembled from female and male adult C. sinensis specimens. This analysis yielded 184,422 unigenes with an average length of 903 bp and 405,961 transcripts after sequencing and assembly. About 45.06, 22.41, 19.53, 34.05, 35.82, 36.42, and 19.85% of the unigenes had significant matches in seven public databases. Subsequently, gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment analysis revealed comprehensive information about the function of each gene and identified enriched categories and pathways that were associated with the 2,890 female-biased genes and 2,964 male-biased genes. In addition, we identified some important unigenes related to hormone activity and reproduction among the sex-differentially expressed genes (DEGs), including unigenes coding for ecdysone-induced protein 78C, juvenile hormone (JH)-regulated gene fatty acyl-CoA reductase, vitellogenin, etc. Our findings provide a more comprehensive portrait of the sex differences involved in the relationship of two important physiological features-hormone activity and reproduction in C. sinensis and members of the family Gracillariidae.
Collapse
Affiliation(s)
- Qiong Yao
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Yizhi Dong
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Zunyi Medical University, Zunyi, Guizhou, China
| | - Linfa Quan
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol and Institute of Entomology, Sun-Yat-sen University, Guangzhou, China
| | - Bingxu Chen
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Xiong W, Gao S, Mao J, Wei L, Xie J, Liu J, Bi J, Song X, Li B. CYP4BN6 and CYP6BQ11 mediate insecticide susceptibility and their expression is regulated by Latrophilin in Tribolium castaneum. PEST MANAGEMENT SCIENCE 2019; 75:2744-2755. [PMID: 30788896 DOI: 10.1002/ps.5384] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 02/01/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Many insect cytochrome P450 proteins (CYPs) are involved in the metabolic detoxification of exogenous compounds such as plant toxins and insecticides. Tribolium castaneum, the red flour beetle, is a major agricultural pest that damages stored grains and cereal products. With the completion of the sequencing of its genome, two T. castaneum species-specific CYP genes, CYP4BN6, and CYP6BQ11, were identified. However, it is unknown whether the functions of most CYPs are shared by TcCYP4BN6 and TcCYP6BQ11, and the upstream regulatory mechanism of these two CYPs remains elusive. RESULTS QRT-PCR analysis indicated that TcCYP4BN6 and TcCYP6BQ11 were both most highly expressed at the late pupal stage and were mainly observed in the head and gut, respectively, of adults. Moreover, the transcripts of these two CYPs were significantly induced by dichlorvos and carbofuran, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to these two insecticides. Intriguingly, knockdown of the latrophilin (lph) gene, which has been reported to be related to the insecticide susceptibility, reduced the expression of TcCYP4BN6 and TcCYP6BQ11 after insecticide treatment, suggesting that these two CYP genes are regulated by lph to participate in insecticide susceptibility in T. castaneum. CONCLUSION These results shed new light on the function and mechanism of CYP genes associated with insecticide susceptibility and could facilitate research on appropriate and sustainable pest control management. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
11
|
Xiong W, Gao S, Lu Y, Wei L, Mao J, Xie J, Cao Q, Liu J, Bi J, Song X, Li B. Latrophilin participates in insecticide susceptibility through positively regulating CSP10 and partially compensated by OBPC01 in Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 159:107-117. [PMID: 31400772 DOI: 10.1016/j.pestbp.2019.06.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 06/10/2023]
Abstract
Latrophilin (LPH) is an adhesion G protein-coupled receptor (aGPCR) that participates in multiple essential physiological processes. Our previous studies have shown that lph is not only indispensable for the development and reproduction of red flour beetles (Tribolium castaneum), but also for their resistance against dichlorvos or carbofuran insecticides. However, the regulatory mechanism of lph-mediated insecticide susceptibility remains unclear. Here, we revealed that knockdown of lph in beetles resulted in opposing changes in two chemoreception genes, chemosensory protein 10 (CSP10) and odorant-binding protein C01 (OBPC01), in which the expression of TcCSP10 was downregulated, whereas the expression of TcOBPC01 was upregulated. TcCSP10 and TcOBPC01 were expressed at the highest levels in early pupal and late larval stages, respectively. High levels of expression of both these genes were observed in the heads (without antennae) of adults. TcCSP10 and TcOBPC01 were significantly induced by dichlorvos or carbofuran between 12 and 72 h (hrs) after exposure, suggesting that they are likely associated with increasing the binding affinity of insecticides, leading to a decrease in sensitivity to the insecticides. Moreover, once these two genes were knocked down, the susceptibility of the beetles to dichlorvos or carbofuran was enhanced. Additionally, RNA interference (RNAi) targeting of lph followed by exposure to dichlorvos or carbofuran also caused the opposing expression levels of TcCSP10 and TcOBPC01 compared to the expression levels of wild-type larvae treated with insecticides alone. All these results indicate that lph is involved in insecticide susceptibility through positively regulating TcCSP10; and the susceptibility could also further partially compensated for through the negative regulation of TcOBPC01 when lph was knockdown in the red flour beetle. Our studies shed new light on the molecular regulatory mechanisms of lph related to insecticide susceptibility.
Collapse
Affiliation(s)
- Wenfeng Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Rui-Jin Hospital, Department of Medical Genetics, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shanshan Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yaoyao Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Luting Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jinjuan Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jia Xie
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Quanquan Cao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Marine Biodiversity, Exploitation and Conservation, University of Montpellier, France.
| | - Juanjuan Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingxiu Bi
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Xiaowen Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Bin Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
12
|
Wei L, Gao S, Xiong W, Liu J, Mao J, Lu Y, Song X, Li B. Latrophilin mediates insecticides susceptibility and fecundity through two carboxylesterases, esterase4 and esterase6, in Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:534-543. [PMID: 30789108 DOI: 10.1017/s0007485318000895] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Latrophilin (LPH) is known as an adhesion G-protein-coupled receptor which involved in multiple physiological processes in organisms. Previous studies showed that lph not only involved the susceptibility to anticholinesterase insecticides but also affected fecundity in Tribolium castaneum. However, its regulatory mechanisms in these biological processes are still not clear. Here, we identified two potential downstream carboxylesterase (cce) genes of Tclph, esterase4 and esterase6, and further characterized their interactions with Tclph. After treatment of T. castaneum larvae with carbofuran or dichlorvos insecticides, the transcript levels of Tcest4 and Tcest6 were significantly induced from 12 to 72 h. RNAi against Tcest4 or Tcest6 led to the higher mortality compared with the controls after the insecticides treatment, suggesting that these two genes play a vital role in detoxification of insecticides in T. castaneum. Furthermore, with insecticides exposure to Tclph knockdown beetles, the expression of Tcest4 was upregulated but Tcest6 was downregulated, indicating that beetles existed a compensatory response against the insecticides. Additionally, RNAi of Tcest6 resulted in 43% reductions in female egg laying and completely inhibited egg hatching, which showed the similar phenotype as that of Tclph knockdown. These results indicated that Tclph affected fecundity by positively regulating Tcest6 expression. Our findings will provide a new insight into the molecular mechanisms of Tclph involved in physiological functions in T. castaneum.
Collapse
Affiliation(s)
- L Wei
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - S Gao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - W Xiong
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - J Mao
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - Y Lu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - X Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| | - B Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China‡
| |
Collapse
|
13
|
Sun L, Liu P, Zhang C, Du H, Wang Z, Moural TW, Zhu F, Cao C. Ocular Albinism Type 1 Regulates Deltamethrin Tolerance in Lymantria dispar and Drosophila melanogaster. Front Physiol 2019; 10:766. [PMID: 31275171 PMCID: PMC6594220 DOI: 10.3389/fphys.2019.00766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/31/2019] [Indexed: 02/04/2023] Open
Abstract
The ocular albinism type 1 (OA1), a pigment cell-specific integral membrane glycoprotein, is a member of the G-protein-coupled receptor (GPCR) superfamily that binds to heterotrimeric G proteins in mammalian cells. We aimed to characterize the physiological functions an insect OA1 from Lymantria dispar (LdOA1) employs in the regulation of insecticide tolerance. In the present study, we investigated the roles of LdOA1 in response to deltamethrin exposure in both L. dispar and Drosophila melanogaster. LdOA1 was expressed at the lowest level during the 4th instar stage, while LdOA1 was significantly upregulated in the 5th instar and male stages. Knockdown of LdOA1 by injecting dsRNA of LdOA1 into gypsy moth larvae caused a 4.80-fold higher mortality than in control larvae microinjected with dsRNA of GFP under deltamethrin stress. Nine out of 11 L. dispar CYP genes were significantly downregulated under deltamethrin stress in LdOA1 silenced larvae as compared to control larvae. Moreover, the LdOA1 gene was successfully overexpressed in D. melanogaster using transgenic technique. The deltamethrin contact assay showed that the LdOA1 overexpression in flies significantly enhanced the tolerance to deltamethrin compared to the control flies. Furthermore, the downstream Drosophila CYP genes were upregulated in the LdOA1 overexpression flies, suggesting LdOA1 may play a master switch role in P450-mediated metabolic detoxification. This study is the first report of an insect OA1 gene regulating insecticide tolerance and potentially playing a role in the regulation of downstream cytochrome P450 expression. These results contribute to the future development of novel insecticides targeting insect GPCRs.
Collapse
Affiliation(s)
- Lili Sun
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Peng Liu
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Chenshu Zhang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Hui Du
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Zhiying Wang
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Timothy W Moural
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Fang Zhu
- Department of Entomology, Pennsylvania State University, University Park, PA, United States
| | - Chuanwang Cao
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|