1
|
Sommerfeld IK, Palm P, Hussnaetter KP, Pieper MI, Bulut S, Lile T, Wagner R, Walkowiak JJ, Elling L, Pich A. Microgels with Immobilized Glycosyltransferases for Enzymatic Glycan Synthesis. Biomacromolecules 2024; 25:3807-3822. [PMID: 38807305 DOI: 10.1021/acs.biomac.4c00409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Glycans, composed of linked monosaccharides, play crucial roles in biology and find diverse applications. Enhancing their enzymatic synthesis can be achieved by immobilizing enzymes on materials such as microgels. Here, we present microgels with immobilized glycosyltransferases, synthesized through droplet microfluidics, immobilizing enzymes either via encapsulation or postattachment. SpyTag-SpyCatcher interaction was used for enzyme binding, among others. Fluorescamine and permeability assays confirmed enzyme immobilization and microgel porosity, while enzymatic activities were determined using HPLC. The potential application of microgels in cascade reactions involving multiple enzymes was demonstrated by combining β4GalT and α3GalT in an enzymatic reaction with high yields. Moreover, a cascade of β4GalT and β3GlcNAcT was successfully implemented. These results pave the way toward a modular membrane bioreactor for automated glycan synthesis containing the presented biocatalytic microgels.
Collapse
Affiliation(s)
- Isabel Katja Sommerfeld
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Philip Palm
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Kai Philip Hussnaetter
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Maria Isabell Pieper
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Selin Bulut
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Tudor Lile
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
| | - Rebekka Wagner
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Jacek Janusz Walkowiak
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| | - Lothar Elling
- Laboratory for Biomaterials, Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, Aachen 52074, Germany
| | - Andrij Pich
- Functional and Interactive Polymers, Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, Aachen 52074, Germany
- DWI─Leibniz-Institute for Interactive Materials e.V., Forckenbeckstraße 50, Aachen 52074, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Maastricht University, Brightlands Chemelot Campus, Urmonderbaan 22, RD Geleen 6167, The Netherlands
| |
Collapse
|
2
|
Xie A, Wang J, Liu Y, Li G, Yang N. Impacts of β-1, 3-N-acetylglucosaminyltransferases (B3GNTs) in human diseases. Mol Biol Rep 2024; 51:476. [PMID: 38553573 DOI: 10.1007/s11033-024-09405-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
Glycosylation modification of proteins is a common post-translational modification that exists in various organisms and has rich biological functions. It is usually catalyzed by multiple glycosyltransferases located in the Golgi apparatus. β-1,3-N-acetylglucosaminyltransferases (B3GNTs) are members of the glycosyltransferases and have been found to be involved in the occurrence and development of a variety of diseases including autoimmunity diseases, cancers, neurodevelopment, musculoskeletal system, and metabolic diseases. The functions of B3GNTs represent the glycosylation of proteins is a crucial and frequently life-threatening step in progression of most diseases. In this review, we give an overview about the roles of B3GNTs in tumor, nervous system, musculoskeletal and metabolic diseases, describing the recent results about B3GNTs, in order to provide a research direction and exploration value for the prevention, diagnosis and treatment of these diseases.
Collapse
Affiliation(s)
- Anna Xie
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Jingjing Wang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Yi Liu
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Guoqing Li
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Nanyang Yang
- The Hengyang Key Laboratory of Cellular Stress Biology, Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
3
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
4
|
Heine V, Pelantová H, Bojarová P, Křen V, Elling L. Targeted fucosylation of glycans with engineered bacterial fucosyltransferase variants. ChemCatChem 2022. [DOI: 10.1002/cctc.202200037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Viktoria Heine
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Helena Pelantová
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Pavla Bojarová
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Vladimír Křen
- Czech Academy of Sciences: Akademie ved Ceske republiky Institute of Microbiology CZECH REPUBLIC
| | - Lothar Elling
- RWTH Aachen University: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering Pauwelsstr. 20 52074 Aachen GERMANY
| |
Collapse
|
5
|
Liu D, Wang S, Zhang J, Xiao W, Miao CH, Konkle BA, Wan XF, Li L. Site-Specific N- and O-Glycosylation Analysis of Human Plasma Fibronectin. Front Chem 2021; 9:691217. [PMID: 34211961 PMCID: PMC8239226 DOI: 10.3389/fchem.2021.691217] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/21/2021] [Indexed: 11/13/2022] Open
Abstract
Human plasma fibronectin is an adhesive protein that plays a crucial role in wound healing. Many studies had indicated that glycans might mediate the expression and functions of fibronectin, yet a comprehensive understanding of its glycosylation is still missing. Here, we performed a comprehensive N- and O-glycosylation mapping of human plasma fibronectin and quantified the occurrence of each glycoform in a site-specific manner. Intact N-glycopeptides were enriched by zwitterionic hydrophilic interaction chromatography, and N-glycosite sites were localized by the 18O-labeling method. O-glycopeptide enrichment and O-glycosite identification were achieved by an enzyme-assisted site-specific extraction method. An RP–LC–MS/MS system functionalized with collision-induced dissociation and stepped normalized collision energy (sNCE)-HCD tandem mass was applied to analyze the glycoforms of fibronectin. A total of 6 N-glycosites and 53 O-glycosites were identified, which were occupied by 38 N-glycoforms and 16 O-glycoforms, respectively. Furthermore, 77.31% of N-glycans were sialylated, and O-glycosylation was dominated by the sialyl-T antigen. These site-specific glycosylation patterns on human fibronectin can facilitate functional analyses of fibronectin and therapeutics development.
Collapse
Affiliation(s)
- Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| | - Junping Zhang
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Weidong Xiao
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Carol H Miao
- Center for Immunity and Immunotherapies, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Xiu-Feng Wan
- Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO, United States.,Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, United States.,Bond Life Sciences Center, University of Missouri, Columbia, MO, United States.,Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, Columbia, MO, United States
| | - Lei Li
- Department of Chemistry, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
6
|
Heine V, Kremers T, Menzel N, Schnakenberg U, Elling L. Electrochemical Impedance Spectroscopy Biosensor Enabling Kinetic Monitoring of Fucosyltransferase Activity. ACS Sens 2021; 6:1003-1011. [PMID: 33595293 DOI: 10.1021/acssensors.0c02206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monitoring glycosyltransferases on biosensors is of great interest for pathogen and cancer diagnostics. As a proof of concept, we here demonstrate the layer-by-layer immobilization of a multivalent neoglycoprotein (NGP) as a substrate for a bacterial fucosyltransferase (FucT) and the subsequent binding of the fucose-specific Aleuria aurantia lectin (AAL) on an electrochemical impedance spectroscopy (EIS) sensor. We report for the first time the binding kinetics of a glycosyltransferase in real-time. Highly stable EIS measurements are obtained by the modification of counter and reference electrodes with polypyrrole: polystyrene sulfonate (PPy:PSS). In detail, the N-acetyllactosamine (LacNAc)-carrying NGP was covalently immobilized on the gold working electrode and served as a substrate for the FucT-catalyzed reaction. The LacNAc epitopes were converted to Lewisx (Lex) and detected by AAL. AAL binding to the Lex epitope was further confirmed in a lectin displacement and a competitive lectin binding inhibition experiment. We monitored the individual kinetic processes via EIS. The time constant for covalent immobilization of the NGP was 653 s. The FucT kinetics was the slowest process with a time constant of 1121 s. In contrast, a short time constant of 11.8 s was determined for the interaction of AAL with the modified NGPs. When this process was competed by 400 mM fucose, the binding was significantly slowed down, as indicated by a time constant of 978 s. The kinetics for the displacement of bound AAL by free fucose was observed with a time constant of 424 s. We conclude that this novel EIS biosensor and the applied workflow has the potential to detect FucT and other GT activities in general and further monitor protein-glycan interactions, which may be useful for the detection of pathogenic bacteria and cancer cells in future biomedical applications.
Collapse
Affiliation(s)
- Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| | - Tom Kremers
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Nora Menzel
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Uwe Schnakenberg
- Chair of Micro- and Nanosystems and Institute of Materials in Electrical Engineering 1, RWTH Aachen University, Sommerfeldstraße 24, D-52074 Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, D-52074 Aachen, Germany
| |
Collapse
|
7
|
Hershewe J, Kightlinger W, Jewett MC. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J Ind Microbiol Biotechnol 2020; 47:977-991. [PMID: 33090335 PMCID: PMC7578589 DOI: 10.1007/s10295-020-02321-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar moieties, plays critical roles in cellular function, human health, and biotechnology. However, studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein synthesis systems, in which protein synthesis and glycosylation are performed in crude cell extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems with natural and synthetic N-linked glycosylation pathways. We discuss existing challenges and future opportunities in the use of cell-free systems for the design, manufacture, and study of glycoprotein biomedicines.
Collapse
Affiliation(s)
- Jasmine Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, IL, 60611-3068, USA. .,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL, 60611-2875, USA.
| |
Collapse
|
8
|
Dussouy C, Kishor C, Lambert A, Lamoureux C, Blanchard H, Grandjean C. Linear triazole-linked pseudo oligogalactosides as scaffolds for galectin inhibitor development. Chem Biol Drug Des 2020; 96:1123-1133. [PMID: 32220037 DOI: 10.1111/cbdd.13683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/10/2020] [Accepted: 03/14/2020] [Indexed: 11/30/2022]
Abstract
Galectins play key roles in numerous biological processes. Their mode of action depends on their localization which can be extracellular, cytoplasmic, or nuclear and is partly mediated through interactions with β-galactose containing glycans. Galectins have emerged as novel therapeutic targets notably for the treatment of inflammatory disorders and cancers. This has stimulated the design of carbohydrate-based inhibitors targeting the carbohydrate recognition domains (CRDs) of the galectins. Pursuing this approach, we reasoned that linear oligogalactosides obtained by straightforward iterative click chemistry could mimic poly-lactosamine motifs expressed at eukaryote cell surfaces which the extracellular form of galectin-3, a prominent member of the galectin family, specifically recognizes. Affinities toward galectin-3 consistently increased with the length of the representative oligogalactosides but without reaching that of oligo-lactosamines. Elucidation of the X-ray crystal structures of the galectin-3 CRD in complex with a synthesized di- and tri-galactoside confirmed that the compounds bind within the carbohydrate-binding site. The atomic structures revealed that binding interactions mainly occur with the galactose moiety at the non-reducing end, primarily with subsites C and D of the CRD, differing from oligo-lactosamine which bind more consistently across the whole groove formed by the five subsites (A-E) of the galectin-3 CRD.
Collapse
Affiliation(s)
- Christophe Dussouy
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| | - Chandan Kishor
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Annie Lambert
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| | - Clément Lamoureux
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| | - Helen Blanchard
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia.,School of Chemistry and Molecular Bioscience, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Cyrille Grandjean
- Unité Fonctionnalité et Ingénierie des Protéines (UFIP), CNRS, UMR 6286, Université de Nantes, Nantes, France
| |
Collapse
|
9
|
Fischöder T, Cajic S, Grote V, Heinzler R, Reichl U, Franzreb M, Rapp E, Elling L. Enzymatic Cascades for Tailored 13C 6 and 15N Enriched Human Milk Oligosaccharides. Molecules 2019; 24:E3482. [PMID: 31557948 PMCID: PMC6803985 DOI: 10.3390/molecules24193482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/06/2019] [Accepted: 09/22/2019] [Indexed: 12/21/2022] Open
Abstract
Several health benefits, associated with human milk oligosaccharides (HMOS), have been revealed in the last decades. Further progress, however, requires not only the establishment of a simple "routine" method for absolute quantification of complex HMOS mixtures but also the development of novel synthesis strategies to improve access to tailored HMOS. Here, we introduce a combination of salvage-like nucleotide sugar-producing enzyme cascades with Leloir-glycosyltransferases in a sequential pattern for the convenient tailoring of stable isotope-labeled HMOS. We demonstrate the assembly of [13C6]galactose into lacto-N- and lacto-N-neo-type HMOS structures up to octaoses. Further, we present the enzymatic production of UDP-[15N]GlcNAc and its application for the enzymatic synthesis of [13C6/15N]lacto-N-neo-tetraose for the first time. An exemplary application was selected-analysis of tetraose in complex biological mixtures-to show the potential of tailored stable isotope reference standards for the mass spectrometry-based quantification, using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF-MS) as a fast and straightforward method for absolute quantification of HMOS. Together with the newly available well-defined tailored isotopic HMOS, this can make a crucial contribution to prospective research aiming for a more profound understanding of HMOS structure-function relations.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Valerian Grote
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Raphael Heinzler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
- Chair of Bioprocess Engineering, Otto-von-Guericke-University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.
- glyXera GmbH, Leipziger Straße 44, 39120 Magdeburg, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
10
|
Heine V, Boesveld S, Pelantová H, Křen V, Trautwein C, Strnad P, Elling L. Identifying Efficient Clostridium difficile Toxin A Binders with a Multivalent Neo-Glycoprotein Glycan Library. Bioconjug Chem 2019; 30:2373-2383. [PMID: 31479241 DOI: 10.1021/acs.bioconjchem.9b00486] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Clostridium difficile infections cause gastrointestinal disorders and can lead to life-threatening conditions. The symptoms can vary from severe diarrhea to the formation of pseudomembranous colitis and therefore trigger a need for new therapies. The initial step of disease is the binding of the bacterial enterotoxins toxin A and B to the cell surface of epithelial intestinal cells. Scavenging of the toxins is crucial to inhibit their fatal effect in the human body and circumvent the administration of antibiotics. Cell surface glycans are common as ligands for TcdA. Although crucial for carbohydrate-protein interactions, a multivalent presentation of glycans for binding has been hardly considered. Here, we establish a neo-glycoprotein-based glycan library to identify an effective multivalent glycan ligand for TcdA. It comprises 40 different glycan epitopes based on N-acetyllactosamine precursors. Nine structures exhibit strong binding of the receptor domain. Among them, the Lewisy-Lewisx-epitope shows the best performance for binding both the receptor domain and the holotoxin. Therefore, the glycan was synthesized de novo and coupled to BSA as a scaffold for multivalent presentation. The corresponding neo-glycoprotein facilitates the proper scavenging of TcdA in vitro and effectively protects HT29 cells from TcdA-induced cell damage.
Collapse
Affiliation(s)
- Viktoria Heine
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| | - Sarah Boesveld
- Department of Internal Medicine III, University Hospital , RWTH Aachen University , Pauwelsstrasse 30 , 52074 Aachen , Germany
| | - Helena Pelantová
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague , Czech Republic
| | - Vladimír Křen
- Institute of Microbiology , Czech Academy of Sciences , Vídeňská 1083 , 14220 Prague , Czech Republic
| | - Christian Trautwein
- Department of Internal Medicine III, University Hospital , RWTH Aachen University , Pauwelsstrasse 30 , 52074 Aachen , Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital , RWTH Aachen University , Pauwelsstrasse 30 , 52074 Aachen , Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering , RWTH Aachen University , Pauwelsstrasse 20 , 52074 Aachen , Germany
| |
Collapse
|
11
|
Toward Automated Enzymatic Glycan Synthesis in a Compartmented Flow Microreactor System. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900709] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Bojarová P, Kulik N, Hovorková M, Slámová K, Pelantová H, Křen V. The β- N-Acetylhexosaminidase in the Synthesis of Bioactive Glycans: Protein and Reaction Engineering. Molecules 2019; 24:molecules24030599. [PMID: 30743988 PMCID: PMC6384963 DOI: 10.3390/molecules24030599] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/05/2023] Open
Abstract
N-Acetylhexosamine oligosaccharides terminated with GalNAc act as selective ligands of galectin-3, a biomedically important human lectin. Their synthesis can be accomplished by β-N-acetylhexosaminidases (EC 3.2.1.52). Advantageously, these enzymes tolerate the presence of functional groups in the substrate molecule, such as the thiourea linker useful for covalent conjugation of glycans to a multivalent carrier, affording glyconjugates. β-N-Acetylhexosaminidases exhibit activity towards both N-acetylglucosamine (GlcNAc) and N-acetylgalactosamine (GalNAc) moieties. A point mutation of active-site amino acid Tyr into other amino acid residues, especially Phe, His, and Asn, has previously been shown to strongly suppress the hydrolytic activity of β-N-acetylhexosaminidases, creating enzymatic synthetic engines. In the present work, we demonstrate that Tyr470 is an important mutation hotspot for altering the ratio of GlcNAcase/GalNAcase activity, resulting in mutant enzymes with varying affinity to GlcNAc/GalNAc substrates. The enzyme selectivity may additionally be manipulated by altering the reaction medium upon changing pH or adding selected organic co-solvents. As a result, we are able to fine-tune the β-N-acetylhexosaminidase affinity and selectivity, resulting in a high-yield production of the functionalized GalNAcβ4GlcNAc disaccharide, a selective ligand of galectin-3.
Collapse
Affiliation(s)
- Pavla Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Natalia Kulik
- Center for Nanobiology and Structural Biology, Institute of Microbiology, Czech Academy of Sciences, Zámek 136, CZ-37333 Nové Hrady, Czech Republic.
| | - Michaela Hovorková
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Kristýna Slámová
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Helena Pelantová
- Laboratory of Molecular Structure Characterization, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Praha 4, Czech Republic.
| |
Collapse
|
13
|
Zhang J, Chen C, Gadi MR, Gibbons C, Guo Y, Cao X, Edmunds G, Wang S, Liu D, Yu J, Wen L, Wang PG. Machine‐Driven Enzymatic Oligosaccharide Synthesis by Using a Peptide Synthesizer. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810661] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Jiabin Zhang
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Congcong Chen
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | | | | | - Yuxi Guo
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Xuefeng Cao
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Garrett Edmunds
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Shuaishuai Wang
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Ding Liu
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Jin Yu
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Liuqing Wen
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| | - Peng G. Wang
- Department of ChemistryGeorgia State University Atlanta GA 30303 USA
| |
Collapse
|
14
|
Zhang J, Chen C, Gadi MR, Gibbons C, Guo Y, Cao X, Edmunds G, Wang S, Liu D, Yu J, Wen L, Wang PG. Machine-Driven Enzymatic Oligosaccharide Synthesis by Using a Peptide Synthesizer. Angew Chem Int Ed Engl 2018; 57:16638-16642. [PMID: 30375138 PMCID: PMC6402783 DOI: 10.1002/anie.201810661] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/29/2018] [Indexed: 01/12/2023]
Abstract
For decades, researchers have endeavored to develop a general automated system to synthesize oligosaccharides that is comparable to the preparation of oligonucleotides and oligopeptides by commercially available machines. Inspired by the success of automated oligosaccharide synthesis through chemical glycosylation, a fully automated system is reported for oligosaccharides synthesis through enzymatic glycosylation in aqueous solution. The designed system is based on the use of a thermosensitive polymer and a commercially available peptide synthesizer. This study represents a proof-of-concept demonstration that the enzymatic synthesis of oligosaccharides can be achieved in an automated manner using a commercially available peptide synthesizer.
Collapse
Affiliation(s)
- Jiabin Zhang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Congcong Chen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | | | | | - Yuxi Guo
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Xuefeng Cao
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Garrett Edmunds
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Shuaishuai Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Ding Liu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Jin Yu
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Liuqing Wen
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Peng G Wang
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| |
Collapse
|
15
|
Heinzler R, Hübner J, Fischöder T, Elling L, Franzreb M. A Compartmented Flow Microreactor System for Automated Optimization of Bioprocesses Applying Immobilized Enzymes. Front Bioeng Biotechnol 2018; 6:189. [PMID: 30564572 PMCID: PMC6288360 DOI: 10.3389/fbioe.2018.00189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/19/2018] [Indexed: 01/19/2023] Open
Abstract
In the course of their development, industrial biocatalysis processes have to be optimized in small-scale, e. g., within microfluidic bioreactors. Recently, we introduced a novel microfluidic reactor device, which can handle defined reaction compartments of up to 250 μL in combination with magnetic micro carriers. By transferring the magnetic carriers between subsequent compartments of differing compositions, small scale synthesis, and bioanalytical assays can be conducted. In the current work, this device is modified and extended to broaden its application range to the screening and optimization of bioprocesses applying immobilized enzymes. Besides scaling the maximum compartment volume up to 3 mL, a temperature control module, as well as a focused infrared spot were integrated. By adjusting the pump rate, compartment volumes can be accurately dosed with an error <5% and adjusted to the requested temperature within less than a minute. For demonstration of bioprocess parameter optimization within such compartments, the influence of pH, temperature, substrate concentration, and enzyme carrier loading was automatically screened for the case of transferring UDP-Gal onto N-acetylglucosamine linked to a tert-butyloxycarbonyl protected amino group using immobilized β1,4-galactosyltransferase-1. In addition, multiple recycling of the enzyme carriers and the use of increased compartment volumes also allows the simple production of preparative amounts of reaction products.
Collapse
Affiliation(s)
- Raphael Heinzler
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Jonas Hübner
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Matthias Franzreb
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
16
|
Ennist JH, Termuehlen HR, Bernhard SP, Fricke MS, Cloninger MJ. Chemoenzymatic Synthesis of Galectin Binding Glycopolymers. Bioconjug Chem 2018; 29:4030-4039. [DOI: 10.1021/acs.bioconjchem.8b00599] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica H. Ennist
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Henry R. Termuehlen
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P. Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mackenzie S. Fricke
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Mary J. Cloninger
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
17
|
Islam S, Laaf D, Infanzón B, Pelantová H, Davari MD, Jakob F, Křen V, Elling L, Schwaneberg U. KnowVolution Campaign of an Aryl Sulfotransferase Increases Activity toward Cellobiose. Chemistry 2018; 24:17117-17124. [DOI: 10.1002/chem.201803729] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Shohana Islam
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Dominic Laaf
- Laboratory for BiomaterialsInstitute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Belén Infanzón
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Helena Pelantová
- Institute of MicrobiologyCzech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Felix Jakob
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| | - Vladimír Křen
- Institute of MicrobiologyCzech Academy of Sciences Vídeňská 1083 14220 Prague Czech Republic
| | - Lothar Elling
- Laboratory for BiomaterialsInstitute of Biotechnology and Helmholtz-Institute for Biomedical EngineeringRWTH Aachen University Pauwelsstraße 20 52074 Aachen Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz Institute for Interactive Materials Forckenbeckstraße 50 52056 Aachen Germany
- Institute of BiotechnologyRWTH Aachen University Worringerweg 3 52074 Aachen Germany
| |
Collapse
|
18
|
Fischöder T, Cajic S, Reichl U, Rapp E, Elling L. Enzymatic Cascade Synthesis Provides Novel Linear Human Milk Oligosaccharides as Reference Standards for xCGE-LIF Based High-Throughput Analysis. Biotechnol J 2018; 14:e1800305. [PMID: 30076755 DOI: 10.1002/biot.201800305] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/10/2018] [Indexed: 12/26/2022]
Abstract
A rising amount of known health benefits leads to an increased attention of science and nutrient industry to human milk oligosaccharides (HMOS). The unique diversity of HMOS includes several rare, complex, and high molecular weight structures. Therefore, identification and elucidation of complex structures, which may occur only in traces, poses a daunting analytical challenge, further complicated by the limited access to suitable standards. Regarding this, inherent diversity of HMOS and their structural complexity make them difficult to synthesize. The use of recombinant Leloir-glycosyltransferases offers a common strategy to overcome the latter issues. In this study, linear long-chained Lacto-N-biose-type (LNT) and Lacto-N-neo-type (LNnT) HMOS are tailored far beyond the known naturally occurring length. Thereby novel well-defined reference standards for screening HMOS composition by high performance and high throughput analytics are provided. It is shown here for the first time the synthesis of LNT oligomers up to 26 and LNnT oligomers up to 30 sugar units in a semi-sequential one-pot synthesis as analyzed by high performance multiplexed capillary gel electrophoresis with laser-induced fluorescence detection (xCGE-LIF). While being a high-throughput method, xCGE-LIF can also handle long chained linkage isomers of challenging similarity, some of them even present only in trace amounts.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,Prof. U. Reichl, Chair of Bioprocess Engineering Otto-von-Guericke-University, Universitätspl. 2, 39106 Magdeburg, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstraße 1, 39106 Magdeburg, Germany.,glyXera GmbH, Leipziger Str. 44, 39120 Magdeburg, Germany
| | - Lothar Elling
- Laboratory for Biomaterials and Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany
| |
Collapse
|
19
|
Hunter CD, Guo T, Daskhan G, Richards MR, Cairo CW. Synthetic Strategies for Modified Glycosphingolipids and Their Design as Probes. Chem Rev 2018; 118:8188-8241. [DOI: 10.1021/acs.chemrev.8b00070] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Carmanah D. Hunter
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tianlin Guo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Gour Daskhan
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Michele R. Richards
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Christopher W. Cairo
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
20
|
Bojarová P, Křen V. Sugared biomaterial binding lectins: achievements and perspectives. Biomater Sci 2018; 4:1142-60. [PMID: 27075026 DOI: 10.1039/c6bm00088f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lectins, a distinct group of glycan-binding proteins, play a prominent role in the immune system ranging from pathogen recognition and tuning of inflammation to cell adhesion or cellular signalling. The possibilities of their detailed study expanded along with the rapid development of biomaterials in the last decade. The immense knowledge of all aspects of glycan-lectin interactions both in vitro and in vivo may be efficiently used in bioimaging, targeted drug delivery, diagnostic and analytic biological methods. Practically applicable examples comprise photoluminescence and optical biosensors, ingenious three-dimensional carbohydrate microarrays for high-throughput screening, matrices for magnetic resonance imaging, targeted hyperthermal treatment of cancer tissues, selective inhibitors of bacterial toxins and pathogen-recognising lectin receptors, and many others. This review aims to present an up-to-date systematic overview of glycan-decorated biomaterials promising for interactions with lectins, especially those applicable in biology, biotechnology or medicine. The lectins of interest include galectin-1, -3 and -7 participating in tumour progression, bacterial lectins from Pseudomonas aeruginosa (PA-IL), E. coli (Fim-H) and Clostridium botulinum (HA33) or DC-SIGN, receptors of macrophages and dendritic cells. The spectrum of lectin-binding biomaterials covered herein ranges from glycosylated organic structures, calixarene and fullerene cores over glycopeptides and glycoproteins, functionalised carbohydrate scaffolds of cyclodextrin or chitin to self-assembling glycopolymer clusters, gels, micelles and liposomes. Glyconanoparticles, glycan arrays, and other biomaterials with a solid core are described in detail, including inorganic matrices like hydroxyapatite or stainless steel for bioimplants.
Collapse
Affiliation(s)
- P Bojarová
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| | - V Křen
- Laboratory of Biotransformation, Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220 Prague 4, Czech Republic.
| |
Collapse
|
21
|
Bumba L, Laaf D, Spiwok V, Elling L, Křen V, Bojarová P. Poly-N-Acetyllactosamine Neo-Glycoproteins as Nanomolar Ligands of Human Galectin-3: Binding Kinetics and Modeling. Int J Mol Sci 2018; 19:ijms19020372. [PMID: 29373511 PMCID: PMC5855594 DOI: 10.3390/ijms19020372] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/22/2023] Open
Abstract
Galectin-3 (Gal-3) is recognized as a prognostic marker in several cancer types. Its involvement in tumor development and proliferation makes this lectin a promising target for early cancer diagnosis and anti-cancer therapies. Gal-3 recognizes poly-N-acetyllactosamine (LacNAc)-based carbohydrate motifs of glycoproteins and glycolipids with a high specificity for internal LacNAc epitopes. This study analyzes the mode and kinetics of binding of Gal-3 to a series of multivalent neo-glycoproteins presenting complex poly-LacNAc-based oligosaccharide ligands on a scaffold of bovine serum albumin. These neo-glycoproteins rank among the strongest Gal-3 ligands reported, with Kd reaching sub-nanomolar values as determined by surface plasmon resonance. Significant differences in the binding kinetics were observed within the ligand series, showing the tetrasaccharide capped with N,N'-diacetyllactosamine (LacdiNAc) as the strongest ligand of Gal-3 in this study. A molecular model of the Gal-3 carbohydrate recognition domain with docked oligosaccharide ligands is presented that shows the relations in the binding site at the molecular level. The neo-glycoproteins presented herein may be applied for selective recognition of Gal-3 both on the cell surface and in blood serum.
Collapse
Affiliation(s)
- Ladislav Bumba
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | - Vojtěch Spiwok
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague 6, Czech Republic.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstrasse 20, 52074 Aachen, Germany.
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| | - Pavla Bojarová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic.
| |
Collapse
|
22
|
Islam S, Mate DM, Martínez R, Jakob F, Schwaneberg U. A robust protocol for directed aryl sulfotransferase evolution toward the carbohydrate building block GlcNAc. Biotechnol Bioeng 2018; 115:1106-1115. [PMID: 29288579 DOI: 10.1002/bit.26535] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/18/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022]
Abstract
Bacterial aryl sulfotransferases (AST) utilize p-nitrophenylsulfate (pNPS) as a phenolic donor to sulfurylate typically a phenolic acceptor. Interest in aryl sulfotransferases is growing because of their broad variety of acceptors and cost-effective sulfuryl-donors. For instance, aryl sulfotransferase A (ASTA) from Desulfitobacterium hafniense was recently reported to sulfurylate d-glucose. In this study, a directed evolution protocol was developed and validated for aryl sulfotransferase B (ASTB). Thereby the well-known pNPS quantification system was advanced to operate efficiently as a continuous screening system in 96-well MTP format with a true coefficient of variation of 14.3%. A random mutagenesis library (SeSaM library) of ASTB was screened (1,760 clones) to improve sulfurylation of the carbohydrate building block N-acetylglucosamine (GlcNAc). The beneficial variant ASTB-V1 (Val579Asp) showed an up to 3.4-fold increased specific activity toward GlcNAc when compared to ASTB-WT. HPLC- and MS-analysis confirmed ASTB-V1's increased GlcNAc monosulfurylation (2.4-fold increased product formation) representing the validation of the first successful directed evolution round of an AST for a saccharide substrate.
Collapse
Affiliation(s)
- Shohana Islam
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany
| | - Diana M Mate
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany
| | - Ronny Martínez
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz-Institut für Interaktive Materialien e.V., Aachen, Germany.,Lehrstuhl für Biotechnologie, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Laaf D, Steffens H, Pelantová H, Bojarová P, Křen V, Elling L. Chemo-Enzymatic Synthesis of BranchedN-Acetyllactosamine Glycan Oligomers for Galectin-3 Inhibition. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Hanna Steffens
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Helena Pelantová
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 14220 Prague Czech Republic
| | - Pavla Bojarová
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 14220 Prague Czech Republic
| | - Vladimír Křen
- Institute of Microbiology; Czech Academy of Sciences; Vídeňská 1083 14220 Prague Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| |
Collapse
|
24
|
Fischöder T, Laaf D, Dey C, Elling L. Enzymatic Synthesis of N-Acetyllactosamine (LacNAc) Type 1 Oligomers and Characterization as Multivalent Galectin Ligands. Molecules 2017; 22:molecules22081320. [PMID: 28796164 PMCID: PMC6152129 DOI: 10.3390/molecules22081320] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/07/2017] [Accepted: 08/08/2017] [Indexed: 01/05/2023] Open
Abstract
Repeats of the disaccharide unit N-acetyllactosamine (LacNAc) occur as type 1 (Galβ1, 3GlcNAc) and type 2 (Galβ1, 4GlcNAc) glycosylation motifs on glycoproteins and glycolipids. The LacNAc motif acts as binding ligand for lectins and is involved in many biological recognition events. To the best of our knowledge, we present, for the first time, the synthesis of LacNAc type 1 oligomers using recombinant β1,3-galactosyltransferase from Escherichia coli and β1,3-N-acetylglucosaminyltranferase from Helicobacter pylori. Tetrasaccharide glycans presenting LacNAc type 1 repeats or LacNAc type 1 at the reducing or non-reducing end, respectively, were conjugated to bovine serum albumin as a protein scaffold by squarate linker chemistry. The resulting multivalent LacNAc type 1 presenting neo-glycoproteins were further studied for specific binding of the tumor-associated human galectin 3 (Gal-3) and its truncated counterpart Gal-3∆ in an enzyme-linked lectin assay (ELLA). We observed a significantly increased affinity of Gal-3∆ towards the multivalent neo-glycoprotein presenting LacNAc type 1 repeating units. This is the first evidence for differences in glycan selectivity of Gal-3∆ and Gal-3 and may be further utilized for tracing Gal-3∆ during tumor progression and therapy.
Collapse
Affiliation(s)
- Thomas Fischöder
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Carina Dey
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstraße 20, 52074 Aachen, Germany.
| |
Collapse
|
25
|
Wu Z, Liu Y, Ma C, Li L, Bai J, Byrd-Leotis L, Lasanajak Y, Guo Y, Wen L, Zhu H, Song J, Li Y, Steinhauer DA, Smith DF, Zhao B, Chen X, Guan W, Wang PG. Identification of the binding roles of terminal and internal glycan epitopes using enzymatically synthesized N-glycans containing tandem epitopes. Org Biomol Chem 2016; 14:11106-11116. [PMID: 27752690 PMCID: PMC5951163 DOI: 10.1039/c6ob01982j] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glycans play diverse roles in a wide range of biological processes. Research on glycan-binding events is essential for learning their biological and pathological functions. However, the functions of terminal and internal glycan epitopes exhibited during binding with glycan-binding proteins (GBPs) and/or viruses need to be further identified. Therefore, a focused library of 36 biantennary asparagine (Asn)-linked glycans with some presenting tandem glycan epitopes was synthesized via a combined Core Isolation/Enzymatic Extension (CIEE) and one-pot multienzyme (OPME) synthetic strategy. These N-glycans include those containing a terminal sialyl N-acetyllactosamine (LacNAc), sialyl Lewis x (sLex) and Siaα2-8-Siaα2-3/6-R structures with N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc) sialic acid form, LacNAc, Lewis x (Lex), α-Gal, and Galα1-3-Lex; and tandem epitopes including α-Gal, Lex, Galα1-3-Lex, LacNAc, and sialyl LacNAc, presented with an internal sialyl LacNAc or 1-2 repeats of an internal LacNAc or Lex component. They were synthesized in milligram-scale, purified to over 98% purity, and used to prepare a glycan microarray. Binding studies using selected plant lectins, antibodies, and viruses demonstrated, for the first time, that when interpreting the binding between glycans and GBPs/viruses, not only the structure of the terminal glycan epitopes, but also the internal epitopes and/or modifications of terminal epitopes needs to be taken into account.
Collapse
Affiliation(s)
- Zhigang Wu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yunpeng Liu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Cheng Ma
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Lei Li
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Bai
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Lauren Byrd-Leotis
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yi Lasanajak
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuxi Guo
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Liuqing Wen
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - He Zhu
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Jing Song
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - David A Steinhauer
- Departments of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - David F Smith
- Department of Biochemistry and Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Baohua Zhao
- College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Xi Chen
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | - Wanyi Guan
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA. and College of Life Science, Hebei Normal University, Shijiazhuang, Hebei 050024, China.
| | - Peng George Wang
- Department of Chemistry and Center of Diagnostics & Therapeutics, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
26
|
Yu H, Li Y, Zeng J, Thon V, Nguyen DM, Ly T, Kuang HY, Ngo A, Chen X. Sequential One-Pot Multienzyme Chemoenzymatic Synthesis of Glycosphingolipid Glycans. J Org Chem 2016; 81:10809-10824. [PMID: 27736072 DOI: 10.1021/acs.joc.6b01905] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glycosphingolipids are a diverse family of biologically important glycolipids. In addition to variations on the lipid component, more than 300 glycosphingolipid glycans have been characterized. These glycans are directly involved in various molecular recognition events. Several naturally occurring sialic acid forms have been found in sialic acid-containing glycosphingolipids, namely gangliosides. However, ganglioside glycans containing less common sialic acid forms are currently not available. Herein, highly effective one-pot multienzyme (OPME) systems are used in sequential for high-yield and cost-effective production of glycosphingolipid glycans, including those containing different sialic acid forms such as N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), 2-keto-3-deoxy-d-glycero-d-galacto-nononic acid (Kdn), and 8-O-methyl-N-acetylneuraminic acid (Neu5Ac8OMe). A library of 64 structurally distinct glycosphingolipid glycans belonging to ganglio-series, lacto-/neolacto-series, and globo-/isoglobo-series glycosphingolipid glycans is constructed. These glycans are essential standards and invaluable probes for bioassays and biomedical studies.
Collapse
Affiliation(s)
- Hai Yu
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Yanhong Li
- Glycohub, Inc. , 4070 Truxel Road, Sacramento, California 95834, United States.,Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Jie Zeng
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States.,School of Food Science, Henan Institute of Science and Technology , Xinxiang, Henan 453003, China
| | - Vireak Thon
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Dung M Nguyen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Thao Ly
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Hui Yu Kuang
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Alice Ngo
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
27
|
Wahl C, Hirtz D, Elling L. Multiplexed Capillary Electrophoresis as Analytical Tool for Fast Optimization of Multi-Enzyme Cascade Reactions - Synthesis of Nucleotide Sugars: Dedicated to Prof. Dr. Vladimir Křen on the occasion of his 60 th birthday. Biotechnol J 2016; 11:1298-1308. [PMID: 27311566 DOI: 10.1002/biot.201600265] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/02/2016] [Accepted: 06/07/2016] [Indexed: 01/09/2023]
Abstract
Nucleotide sugars are considered as bottleneck and expensive substrates for enzymatic glycan synthesis using Leloir-glycosyltransferases. Synthesis from cheap substrates such as monosaccharides is accomplished by multi-enzyme cascade reactions. Optimization of product yields in such enzyme modules is dependent on the interplay of multiple parameters of the individual enzymes and governed by a considerable time effort when convential analytic methods like capillary electrophoresis (CE) or HPLC are applied. We here demonstrate for the first time multiplexed CE (MP-CE) as fast analytical tool for the optimization of nucleotide sugar synthesis with multi-enzyme cascade reactions. We introduce a universal separation method for nucleotides and nucleotide sugars enabling us to analyze the composition of six different enzyme modules in a high-throughput format. Optimization of parameters (T, pH, inhibitors, kinetics, cofactors and enzyme amount) employing MP-CE analysis is demonstrated for enzyme modules for the synthesis of UDP-α-D-glucuronic acid (UDP-GlcA) and UDP-α-D-galactose (UDP-Gal). In this way we achieve high space-time-yields: 1.8 g/L⋆h for UDP-GlcA and 17 g/L⋆h for UDP-Gal. The presented MP-CE methodology has the impact to be used as general analytical tool for fast optimization of multi-enzyme cascade reactions.
Collapse
Affiliation(s)
- Claudia Wahl
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Dennis Hirtz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
28
|
Li Y, Xue M, Sheng X, Yu H, Zeng J, Thon V, Chen Y, Muthana MM, Wang PG, Chen X. Donor substrate promiscuity of bacterial β1-3-N-acetylglucosaminyltransferases and acceptor substrate flexibility of β1-4-galactosyltransferases. Bioorg Med Chem 2016; 24:1696-705. [PMID: 26968649 DOI: 10.1016/j.bmc.2016.02.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 02/23/2016] [Accepted: 02/28/2016] [Indexed: 02/07/2023]
Abstract
β1-3-N-Acetylglucosaminyltransferases (β3GlcNAcTs) and β1-4-galactosyltransferases (β4GalTs) have been broadly used in enzymatic synthesis of N-acetyllactosamine (LacNAc)-containing oligosaccharides and glycoconjugates including poly-LacNAc, and lacto-N-neotetraose (LNnT) found in the milk of human and other mammals. In order to explore oligosaccharides and derivatives that can be synthesized by the combination of β3GlcNAcTs and β4GalTs, donor substrate specificity studies of two bacterial β3GlcNAcTs from Helicobacter pylori (Hpβ3GlcNAcT) and Neisseria meningitidis (NmLgtA), respectively, using a library of 39 sugar nucleotides were carried out. The two β3GlcNAcTs have complementary donor substrate promiscuity and 13 different trisaccharides were produced. They were used to investigate the acceptor substrate specificities of three β4GalTs from Neisseria meningitidis (NmLgtB), Helicobacter pylori (Hpβ4GalT), and bovine (Bβ4GalT), respectively. Ten of the 13 trisaccharides were shown to be tolerable acceptors for at least one of these β4GalTs. The application of NmLgtA in one-pot multienzyme (OPME) synthesis of two trisaccharides including GalNAcβ1-3Galβ1-4GlcβProN3 and Galβ1-3Galβ1-4Glc was demonstrated. The study provides important information for using these glycosyltransferases as powerful catalysts in enzymatic and chemoenzymatic syntheses of oligosaccharides and derivatives which can be useful probes and reagents.
Collapse
Affiliation(s)
- Yanhong Li
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Mengyang Xue
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; National Glycoengineering Research Center and Shandong Province Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China
| | - Xue Sheng
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Hai Yu
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Jie Zeng
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; School of Food Science, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Vireak Thon
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA; Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Musleh M Muthana
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Peng G Wang
- National Glycoengineering Research Center and Shandong Province Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan, Shandong 250100, China; Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Xi Chen
- Department of Chemistry, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Microwave-Assisted Synthesis of Glycoconjugates by Transgalactosylation with Recombinant Thermostable β-Glycosidase from Pyrococcus. Int J Mol Sci 2016; 17:210. [PMID: 26861292 PMCID: PMC4783942 DOI: 10.3390/ijms17020210] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/21/2016] [Accepted: 01/27/2016] [Indexed: 11/17/2022] Open
Abstract
The potential of the hyperthermophilic β-glycosidase from Pyrococcus woesei (DSM 3773) for the synthesis of glycosides under microwave irradiation (MWI) at low temperatures was investigated. Transgalactosylation reactions with β-N-acetyl-d-glucosamine as acceptor substrate (GlcNAc-linker-tBoc) under thermal heating (TH, 85 °C) and under MWI at 100 and 300 W resulted in the formation of (Galβ(1,4)GlcNAc-linker-tBoc) as the main product in all reactions. Most importantly, MWI at temperatures far below the temperature optimum of the hyperthermophilic glycosidase led to higher product yields with only minor amounts of side products β(1,6-linked disaccharide and trisaccharides). At high acceptor concentrations (50 mM), transgalactosylation reactions under MWI at 300 W gave similar product yields when compared to TH at 85 °C. In summary, we demonstrate that MWI is useful as a novel experimental set-up for the synthesis of defined galacto-oligosaccharides. In conclusion, glycosylation reactions under MWI at low temperatures have the potential as a general strategy for regioselective glycosylation reactions of hyperthermophilic glycosidases using heat-labile acceptor or donor substrates.
Collapse
|
30
|
Lange B, Šimonová A, Fischöder T, Pelantová H, Křen V, Elling L. Towards Keratan Sulfate - Chemoenzymatic Cascade Synthesis of SulfatedN-Acetyllactosamine (LacNAc) Glycan Oligomers. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500916] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Schmölzer K, Gutmann A, Diricks M, Desmet T, Nidetzky B. Sucrose synthase: A unique glycosyltransferase for biocatalytic glycosylation process development. Biotechnol Adv 2015; 34:88-111. [PMID: 26657050 DOI: 10.1016/j.biotechadv.2015.11.003] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/18/2015] [Accepted: 11/24/2015] [Indexed: 01/24/2023]
Abstract
Sucrose synthase (SuSy, EC 2.4.1.13) is a glycosyltransferase (GT) long known from plants and more recently discovered in bacteria. The enzyme catalyzes the reversible transfer of a glucosyl moiety between fructose and a nucleoside diphosphate (NDP) (sucrose+NDP↔NDP-glucose+fructose). The equilibrium for sucrose conversion is pH dependent, and pH values between 5.5 and 7.5 promote NDP-glucose formation. The conversion of a bulk chemical to high-priced NDP-glucose in a one-step reaction provides the key aspect for industrial interest. NDP-sugars are important as such and as key intermediates for glycosylation reactions by highly selective Leloir GTs. SuSy has gained renewed interest as industrially attractive biocatalyst, due to substantial scientific progresses achieved in the last few years. These include biochemical characterization of bacterial SuSys, overproduction of recombinant SuSys, structural information useful for design of tailor-made catalysts, and development of one-pot SuSy-GT cascade reactions for production of several relevant glycosides. These advances could pave the way for the application of Leloir GTs to be used in cost-effective processes. This review provides a framework for application requirements, focusing on catalytic properties, heterologous enzyme production and reaction engineering. The potential of SuSy biocatalysis will be presented based on various biotechnological applications: NDP-sugar synthesis; sucrose analog synthesis; glycoside synthesis by SuSy-GT cascade reactions.
Collapse
Affiliation(s)
- Katharina Schmölzer
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria.
| | - Alexander Gutmann
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| | - Margo Diricks
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Tom Desmet
- Centre for Industrial Biotechnology and Biocatalysis, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium.
| | - Bernd Nidetzky
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, Petersgasse 12/I, 8010 Graz, Austria.
| |
Collapse
|
32
|
Applying Acylated Fucose Analogues to Metabolic Glycoengineering. Bioengineering (Basel) 2015; 2:213-234. [PMID: 28952479 PMCID: PMC5597091 DOI: 10.3390/bioengineering2040213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022] Open
Abstract
Manipulations of cell surface glycosylation or glycan decoration of selected proteins hold immense potential for exploring structure-activity relations or increasing glycoprotein quality. Metabolic glycoengineering describes the strategy where exogenously supplied sugar analogues intercept biosynthetic pathways and are incorporated into glycoconjugates. Low membrane permeability, which so far limited the large-scale adaption of this technology, can be addressed by the introduction of acylated monosaccharides. In this work, we investigated tetra-O-acetylated, -propanoylated and -polyethylene glycol (PEG)ylated fucoses. Concentrations of up to 500 µM had no substantial effects on viability and recombinant glycoprotein production of human embryonic kidney (HEK)-293T cells. Analogues applied to an engineered Chinese hamster ovary (CHO) cell line with blocked fucose de novo synthesis revealed an increase in cell surface and recombinant antibody fucosylation as proved by lectin blotting, mass spectrometry and monosaccharide analysis. Significant fucose incorporation was achieved for tetra-O-acetylated and -propanoylated fucoses already at 20 µM. Sequential fucosylation of the recombinant glycoprotein, achieved by the application of increasing concentrations of PEGylated fucose up to 70 µM, correlated with a reduced antibody’s binding activity in a Fcγ receptor IIIa (FcγRIIIa) binding assay. Our results provide further insights to modulate fucosylation by exploiting the salvage pathway via metabolic glycoengineering.
Collapse
|
33
|
Henze M, Schmidtke S, Hoffmann N, Steffens H, Pietruszka J, Elling L. Combination of Glycosyltransferases and a Glycosynthase in Sequential and One-Pot Reactions for the Synthesis of Type 1 and Type 2N-Acetyllactosamine Oligomers. ChemCatChem 2015. [DOI: 10.1002/cctc.201500645] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manja Henze
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Simon Schmidtke
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Natalie Hoffmann
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
| | - Hanna Steffens
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| | - Jörg Pietruszka
- Institut für Bioorganische Chemie; Heinrich-Heine-Universität Düsseldorf; Forschungszentrum Jülich; Stetternicher Forst Gebäude 15.8 52426 Jülich Germany
- IBG-1: Biotechnology; Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute of Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstrasse 20 52074 Aachen Germany
| |
Collapse
|
34
|
Böcker S, Laaf D, Elling L. Galectin Binding to Neo-Glycoproteins: LacDiNAc Conjugated BSA as Ligand for Human Galectin-3. Biomolecules 2015. [PMID: 26213980 PMCID: PMC4598770 DOI: 10.3390/biom5031671] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Carbohydrate-lectin interactions are relatively weak. As they play an important role in biological recognition processes, multivalent glycan ligands are designed to enhance binding affinity and inhibitory potency. We here report on novel neo-glycoproteins based on bovine serum albumin as scaffold for multivalent presentation of ligands for galectins. We prepared two kinds of tetrasaccharides (N-acetyllactosamine and N,N-diacetyllactosamine terminated) by multi-step chemo-enzymatic synthesis utilizing recombinant glycosyltransferases. Subsequent conjugation of these glycans to lysine groups of bovine serum albumin via squaric acid diethyl ester yielded a set of 22 different neo-glycoproteins with tuned ligand density. The neo-glycoproteins were analyzed by biochemical and chromatographic methods proving various modification degrees. The neo-glycoproteins were used for binding and inhibition studies with human galectin-3 showing high affinity. Binding strength and inhibition potency are closely related to modification density and show binding enhancement by multivalent ligand presentation. At galectin-3 concentrations comparable to serum levels of cancer patients, we detect the highest avidities. Selectivity of N,N-diacetyllactosamine terminated structures towards galectin-3 in comparison to galectin-1 is demonstrated. Moreover, we also see strong inhibitory potency of our scaffolds towards galectin-3 binding. These novel neo-glycoproteins may therefore serve as selective and strong galectin-3 ligands in cancer related biomedical research.
Collapse
Affiliation(s)
- Sophia Böcker
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Dominic Laaf
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Pauwelsstr. 20, 52074 Aachen, Germany.
| |
Collapse
|
35
|
Restuccia A, Tian YF, Collier JH, Hudalla GA. Self-assembled glycopeptide nanofibers as modulators of galectin-1 bioactivity. Cell Mol Bioeng 2015; 8:471-487. [PMID: 26495044 DOI: 10.1007/s12195-015-0399-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that act as extracellular signaling molecules in various normal and pathological processes. Galectin bioactivity is mediated by specific non-covalent interactions with cell-surface and extracellular matrix (ECM) glycoproteins, which can enhance or inhibit signaling events that influence various cellular behaviors, including adhesion, proliferation, differentiation, and apoptosis. Here, we developed a materials approach to modulate galectin bioactivity by mimicking natural galectin-glycoprotein interactions. Specifically, we created a variant of a peptide that self-assembles into β-sheet nanofibers under aqueous conditions, QQKFQFQFEQQ (Q11), which has an asparagine residue modified with the monosaccharide N-acetylglucosamine (GlcNAc) at its N-terminus (GlcNAc-Q11). GlcNAc-Q11 self-assembled into β-sheet nanofibers under similar conditions as Q11. Nanofibrillar GlcNAc moieties were efficiently converted to the galectin-binding disaccharide N-acetyllactosamine (LacNAc) via the enzyme β-1,4-galactosyltransferase and the sugar donor UDP-galactose, while retaining β-sheet structure and nanofiber morphology. LacNAc-Q11 nanofibers bound galectin-1 and -3 in a LacNAc concentration-dependent manner, although nanofibers bound galectin-1 with higher affinity than galectin-3. In contrast, galectin-1 bound weakly to GlcNAc-Q11 nanofibers, while no galectin-3 binding to these nanofibers was observed. Galectin-1 binding to LacNAc-Q11 nanofibers was specific because it could be inhibited by excess soluble β-lactose, a galectin-binding carbohydrate. LacNAc-Q11 nanofibers inhibited galectin-1-mediated apoptosis of Jurkat T cells in a LacNAc concentration-dependent manner, but were unable to inhibit galectin-3 activity, consistent with galectin-binding affinity of the nanofibers. We envision that glycopeptide nanofibers capable of modulating galectin-1 bioactivity will be broadly useful as biomaterials for various medical applications, including cancer therapeutics, immunotherapy, tissue regeneration, and viral prophylaxis.
Collapse
Affiliation(s)
| | - Ye F Tian
- Department of Surgery, University of Chicago. ; Department of Biomedical Engineering, Illinois Institute of Technology
| | | | - Gregory A Hudalla
- J. Crayton Pruitt Family Department of Biomedical Engineering. ; Department of Surgery, University of Chicago
| |
Collapse
|
36
|
Slámová K, Krejzová J, Marhol P, Kalachova L, Kulik N, Pelantová H, Cvačka J, Křen V. Synthesis of Derivatized Chitooligomers using Transglycosidases Engineered from the Fungal GH20 β-N-Acetylhexosaminidase. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500075] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Prudden AR, Chinoy ZS, Wolfert MA, Boons GJ. A multifunctional anomeric linker for the chemoenzymatic synthesis of complex oligosaccharides. Chem Commun (Camb) 2015; 50:7132-5. [PMID: 24854112 DOI: 10.1039/c4cc02222j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new anomeric linker has been developed that facilitates the purification of glycans prepared by chemoenzymatic approaches and can readily give compounds that are appropriately modified for microarray development or glycan derivatives with a free reducing end that are needed as standards for the development of analytical protocols.
Collapse
Affiliation(s)
- Anthony R Prudden
- Complex Carbohydrate Research Center, The University of Georgia, 315 Riverbend Road, Athens, Georgia 30602, USA.
| | | | | | | |
Collapse
|
38
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
39
|
Park H, Rosencrantz RR, Elling L, Böker A. Glycopolymer Brushes for Specific Lectin Binding by Controlled Multivalent Presentation ofN-Acetyllactosamine Glycan Oligomers. Macromol Rapid Commun 2014; 36:45-54. [DOI: 10.1002/marc.201400453] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Hyunji Park
- DWI - Leibniz-Institut für Interaktive Materialien; Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI - Leibniz-Institut für Interaktive Materialien; Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
40
|
Rational design of a glycosynthase by the crystal structure of β-galactosidase from Bacillus circulans (BgaC) and its use for the synthesis of N-acetyllactosamine type 1 glycan structures. J Biotechnol 2014; 191:78-85. [PMID: 25034434 DOI: 10.1016/j.jbiotec.2014.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 07/01/2014] [Accepted: 07/04/2014] [Indexed: 11/20/2022]
Abstract
The crystal structure of β-galactosidase from Bacillus circulans (BgaC) was determined at 1.8Å resolution. The overall structure of BgaC consists of three distinct domains, which are the catalytic domain with a TIM-barrel structure and two all-β domains (ABDs). The main-chain fold and steric configurations of the acidic and aromatic residues at the active site were very similar to those of Streptococcus pneumoniae β(1,3)-galactosidase BgaC in complex with galactose. The structure of BgaC was used for the rational design of a glycosynthase. BgaC belongs to the glycoside hydrolase family 35. The essential nucleophilic amino acid residue has been identified as glutamic acid at position 233 by site-directed mutagenesis. Construction of the active site mutant BgaC-Glu233Gly gave rise to a galactosynthase transferring the sugar moiety from α-d-galactopyranosyl fluoride (αGalF) to different β-linked N-acetylglucosamine acceptor substrates in good yield (40-90%) with a remarkably stable product formation. Enzymatic syntheses with BgaC-Glu233Gly afforded the stereo- and regioselective synthesis of β1-3-linked key galactosides like galacto-N-biose or lacto-N-biose.
Collapse
|
41
|
Wang Z, Chinoy ZS, Ambre SG, Peng W, McBride R, de Vries RP, Glushka J, Paulson JC, Boons GJ. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013; 341:379-83. [PMID: 23888036 DOI: 10.1126/science.1236231] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.
Collapse
Affiliation(s)
- Zhen Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Beer MV, Rech C, Gasteier P, Sauerzapfe B, Salber J, Ewald A, Möller M, Elling L, Groll J. The next step in biomimetic material design: poly-LacNAc-mediated reversible exposure of extra cellular matrix components. Adv Healthc Mater 2013. [PMID: 23184377 DOI: 10.1002/adhm.201200080] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meike V Beer
- Department of Functional Materials in Medicine and Dentistry, University of Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Bojarová P, Rosencrantz RR, Elling L, Křen V. Enzymatic glycosylation of multivalent scaffolds. Chem Soc Rev 2013; 42:4774-97. [DOI: 10.1039/c2cs35395d] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Adamiak K, Anders T, Henze M, Keul H, Möller M, Elling L. Chemo-enzymatic synthesis of functionalized oligomers of N-acetyllactosamine glycan derivatives and their immobilization on biomaterial surfaces. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Mally M, Fontana C, Leibundgut-Landmann S, Laacisse L, Fan YY, Widmalm G, Aebi M. Glycoengineering of host mimicking type-2 LacNAc polymers and Lewis X antigens on bacterial cell surfaces. Mol Microbiol 2012; 87:112-31. [PMID: 23163552 DOI: 10.1111/mmi.12086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2012] [Indexed: 01/27/2023]
Abstract
Bacterial carbohydrate structures play a central role in mediating a variety of host-pathogen interactions. Glycans can either elicit protective immune response or lead to escape of immune surveillance by mimicking host structures. Lipopolysaccharide (LPS), a major component on the surface of Gram-negative bacteria, is composed of a lipid A-core and the O-antigen polysaccharide. Pathogens like Neisseria meningitidis expose a lipooligosaccharide (LOS), which outermost glycans mimick mammalian epitopes to avoid immune recognition. Lewis X (Galβ1-4(Fucα1-3)GlcNAc) antigens of Helicobacter pylori or of the helminth Schistosoma mansoni modulate the immune response by interacting with receptors on human dendritic cells. In a glycoengineering approach we generate human carbohydrate structures on the surface of recombinant Gram-negative bacteria, such as Escherichia coli and Salmonella enterica sv. Typhimurium that lack O-antigen. A ubiquitous building block in mammalian N-linked protein glycans is Galβ1-4GlcNAc, referred to as a type-2 N-acetyllactosamine, LacNAc, sequence. Strains displaying polymeric LacNAc were generated by introducing a combination of glycosyltransferases that act on modified lipid A-cores, resulting in efficient expression of the carbohydrate epitope on bacterial cell surfaces. The poly-LacNAc scaffold was used as an acceptor for fucosylation leading to polymers of Lewis X antigens. We analysed the distribution of the carbohydrate epitopes by FACS, microscopy and ELISA and confirmed engineered LOS containing LacNAc and Lewis X repeats by MALDI-TOF and NMR analysis. Glycoengineered LOS induced pro-inflammatory response in murine dendritic cells. These bacterial strains can thus serve as tools to analyse the role of defined carbohydrate structures in different biological processes.
Collapse
Affiliation(s)
- Manuela Mally
- ETH Zurich, Institute of Microbiology, Wolfgang-Pauli-Str. 10, HCI F 406, CH- 8093 Zurich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
46
|
Peng W, Pranskevich J, Nycholat C, Gilbert M, Wakarchuk W, Paulson JC, Razi N. Helicobacter pylori β1,3-N-acetylglucosaminyltransferase for versatile synthesis of type 1 and type 2 poly-LacNAcs on N-linked, O-linked and I-antigen glycans. Glycobiology 2012; 22:1453-64. [PMID: 22786570 DOI: 10.1093/glycob/cws101] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Poly-N-acetyllactosamine extensions on N- and O-linked glycans are increasingly recognized as biologically important structural features, but access to these structures has not been widely available. Here, we report a detailed substrate specificity and catalytic efficiency of the bacterial β3-N-acetylglucosaminyltransferase (β3GlcNAcT) from Helicobacter pylori that can be adapted to the synthesis of a rich diversity of glycans with poly-LacNAc extensions. This glycosyltransferase has surprisingly broad acceptor specificity toward type-1, -2, -3 and -4 galactoside motifs on both linear and branched glycans, found commonly on N-linked, O-linked and I-antigen glycans. This finding enables the production of complex ligands for glycan-binding studies. Although the enzyme shows preferential activity for type 2 (Galβ1-4GlcNAc) acceptors, it is capable of transferring N-acetylglucosamine (GlcNAc) in β1-3 linkage to type-1 (Galβ1-3GlcNAc) or type-3/4 (Galβ1-3GalNAcα/β) sequences. Thus, by alternating the use of the H. pylori β3GlcNAcT with galactosyltransferases that make the β1-4 or β1-3 linkages, various N-linked, O-linked and I-antigen acceptors could be elongated with type-2 and type-1 LacNAc repeats. Finally, one-pot incubation of di-LacNAc biantennary N-glycopeptide with the β3GlcNAcT and GalT-1 in the presence of uridine diphosphate (UDP)-GlcNAc and UDP-Gal, yielded products with 15 additional LacNAc units on the precursor, which was seen as a series of sequential ion peaks representing alternative additions of GlcNAc and Gal residues, on matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis. Overall, our data demonstrate a broader substrate specificity for the H. pylori β3GlcNAcT than previously recognized and demonstrate its ability as a potent resource for preparative chemo-enzymatic synthesis of complex glycans.
Collapse
Affiliation(s)
- Wenjie Peng
- Glycan Array Synthesis Core D, Consortium for Functional Glycomics, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Gebus C, Cottin C, Randriantsoa M, Drouillard S, Samain E. Synthesis of α-galactosyl epitopes by metabolically engineered Escherichia coli. Carbohydr Res 2012; 361:83-90. [PMID: 23000215 DOI: 10.1016/j.carres.2012.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/09/2012] [Accepted: 05/15/2012] [Indexed: 11/30/2022]
Abstract
The α-Gal epitope is a carbohydrate structure, Galα-3Galβ-4GlcNAc-R, expressed on glycoconjuguates in many mammals, but not in humans. Species that do not express this epitope have present in their serum large amounts of natural anti-Gal antibodies, which contribute to organ hyperacute rejection during xenotransplantation. We first describe the efficient conversion of lactose into isoglobotriaose (Galα-3Galβ-4Glc) using high cell density cultures of a genetically engineered Escherichia coli strain expressing the bovine gene for α-1,3-galactosyltransferase. Attempts to produce the Galili pentasaccharide (Galα-3Galβ-4GlcNAcβ-3Galβ-4Glc) by additionally expressing the Neisseria meningitis lgtA gene for β-1,3-N-acetylglucosaminyltransferase and the Helicobacter pylori gene for β-1,4-galactosyltransferase were unsuccessful and led to the formation of a series of long chain oligosaccharides formed by the repeated addition of the trisaccharide motif [Galβ-4GlcNAcβ-3Galα-3] onto a lacto-N-neotetraose primer. The replacement of LgtA by a more specific β-1,3-N-acetylglucosaminyltransferase from H. pylori, which was unable to glycosylate α-galactosides, prevented the formation of these unwanted compounds and allowed the successful formation of the Galili pentasaccharide and longer α-Gal epitopes.
Collapse
Affiliation(s)
- Caroline Gebus
- Centre de recherche sur Macromolécules Végétales (CERMAV-CNRS), BP 53, F-38041 Grenoble Cedex 9, France
| | | | | | | | | |
Collapse
|
48
|
Nycholat CM, McBride R, Ekiert DC, Xu R, Rangarajan J, Peng W, Razi N, Gilbert M, Wakarchuk W, Wilson IA, Paulson JC. Recognition of sialylated poly-N-acetyllactosamine chains on N- and O-linked glycans by human and avian influenza A virus hemagglutinins. Angew Chem Int Ed Engl 2012; 51:4860-3. [PMID: 22505324 PMCID: PMC3517101 DOI: 10.1002/anie.201200596] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2012] [Indexed: 11/11/2022]
Abstract
Human influenza viruses are proposed to recognize sialic acids (pink diamonds) on glycans extended with poly-LacNAc chains (LacNAc=(yellow circle+blue square)). N- and O-linked glycans were extended with different poly-LacNAc chains with α2-3- and α2-6-linked sialic acids recognized by human and avian influenza viruses, respectively. The specificity of recombinant hemagglutinins (receptors in green) was investigated by using glycan microarray technology.
Collapse
Affiliation(s)
- Corwin M. Nycholat
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Ryan McBride
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Damian C. Ekiert
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Rui Xu
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Janani Rangarajan
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Wenjie Peng
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Nahid Razi
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - Michel Gilbert
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6 (Canada)
| | - Warren Wakarchuk
- Institute for Biological Sciences, National Research Council Canada, Ottawa, ON K1A 0R6 (Canada)
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| | - James C. Paulson
- Department of Chemical Physiology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037 (USA)
| |
Collapse
|
49
|
Nycholat CM, McBride R, Ekiert DC, Xu R, Rangarajan J, Peng W, Razi N, Gilbert M, Wakarchuk W, Wilson IA, Paulson JC. Recognition of Sialylated Poly-N-acetyllactosamine Chains on N- and O-Linked Glycans by Human and Avian Influenza A Virus Hemagglutinins. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201200596] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Kupper CE, Rosencrantz RR, Henßen B, Pelantová H, Thönes S, Drozdová A, Křen V, Elling L. Chemo-enzymatic modification of poly-N-acetyllactosamine (LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) based on galactose oxidase treatment. Beilstein J Org Chem 2012; 8:712-25. [PMID: 23015818 PMCID: PMC3388858 DOI: 10.3762/bjoc.8.80] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 04/12/2012] [Indexed: 01/02/2023] Open
Abstract
The importance of glycans in biological systems is highlighted by their various functions in physiological and pathological processes. Many glycan epitopes on glycoproteins and glycolipids are based on N-acetyllactosamine units (LacNAc; Galβ1,4GlcNAc) and often present on extended poly-LacNAc glycans ([Galβ1,4GlcNAc](n)). Poly-LacNAc itself has been identified as a binding motif of galectins, an important class of lectins with functions in immune response and tumorigenesis. Therefore, the synthesis of natural and modified poly-LacNAc glycans is of specific interest for binding studies with galectins as well as for studies of their possible therapeutic applications. We present the oxidation by galactose oxidase and subsequent chemical or enzymatic modification of terminal galactose and N-acetylgalactosamine residues of poly-N-acetyllactosamine (poly-LacNAc) oligomers and N,N-diacetyllactosamine (LacDiNAc) by galactose oxidase. Product formation starting from different poly-LacNAc oligomers was characterised and optimised regarding formation of the C6-aldo product. Further modification of the aldehyde containing glycans, either by chemical conversion or enzymatic elongation, was established. Base-catalysed β-elimination, coupling of biotin-hydrazide with subsequent reduction to the corresponding hydrazine linkage, and coupling by reductive amination to an amino-functionalised poly-LacNAc oligomer were performed and the products characterised by LC-MS and NMR analysis. Remarkably, elongation of terminally oxidised poly-LacNAc glycans by β3GlcNAc- and β4Gal-transferase was also successful. In this way, a set of novel, modified poly-LacNAc oligomers containing terminally and/or internally modified galactose residues were obtained, which can be used for binding studies and various other applications.
Collapse
Affiliation(s)
- Christiane E Kupper
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Ruben R Rosencrantz
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Birgit Henßen
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Helena Pelantová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Stephan Thönes
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| | - Anna Drozdová
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Vladimir Křen
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ 14220, Czech Republic
| | - Lothar Elling
- Laboratory for Biomaterials, Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering, RWTH Aachen University, Worringer Weg 1, Aachen, 52074, Germany
| |
Collapse
|