1
|
Harvey DJ, Struwe WB, Behrens AJ, Vasiljevic S, Crispin M. Formation and fragmentation of doubly and triply charged ions in the negative ion spectra of neutral N-glycans from viral and other glycoproteins. Anal Bioanal Chem 2021; 413:7277-7294. [PMID: 34342671 PMCID: PMC8329908 DOI: 10.1007/s00216-021-03480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/28/2021] [Accepted: 06/15/2021] [Indexed: 11/05/2022]
Abstract
Structural determination of N-glycans by mass spectrometry is ideally performed by negative ion collision-induced dissociation because the spectra are dominated by cross-ring fragments leading to ions that reveal structural details not available by many other methods. Most glycans form [M - H]- or [M + adduct]- ions but larger ones (above approx. m/z 2000) typically form doubly charged ions. Differences have been reported between the fragmentation of singly and doubly charged ions but a detailed comparison does not appear to have been reported. In addition to [M + adduct]- ions (this paper uses phosphate as the adduct) other doubly, triply, and quadruply charged ions of composition [Mn + (H2PO4)n]n- have been observed in mixtures of N-glycans released from viral and other glycoproteins. This paper explores the formation and fragmentation of these different types of multiply charged ions with particular reference to the presence of diagnostic fragments in the CID spectra and comments on how these ions can be used to characterize these glycans.
Collapse
Affiliation(s)
- David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, UK.
| | - Weston B Struwe
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3TA, UK
| | - Anna-Janina Behrens
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- GlycoEra AG, Grabenstrasse 3, 8952, Schlieren, Switzerland
| | - Snezana Vasiljevic
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Max Crispin
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Biological Sciences, Faculty of Natural and Environmental Sciences, University of Southampton, Highfield Campus, Southampton, SO17 1BJ, UK
| |
Collapse
|
2
|
Kumari M, Tetala KKR. A review on recent advances in the enrichment of glycopeptides and glycoproteins by liquid chromatographic methods: 2016-Present. Electrophoresis 2021; 43:388-402. [PMID: 34757643 DOI: 10.1002/elps.202100172] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 01/06/2023]
Abstract
Among various protein post-translational modifications (PTMs), glycosylation has received special attention due to its immense role in molecular interactions, cellular signal transduction, immune response, etc. Aberration in glycan moieties of a glycoprotein is associated with cancer, diabetes, and bacterial and viral infections. In biofluids (plasma, saliva, urine, milk, etc.), glycoproteins are low in abundance and are masked by the presence of high abundant proteins. Hence, prior to their identification using mass spectrometry methods, liquid chromatography (LC)-based approaches were widely used. A general enrichment strategy involves a protein digestion step, followed by LC-based enrichment and desorption of glycopeptides, and enzymatic excision of the glycans. The focus of this review article is to highlight the articles published since 2016 that dealt with different LC-based approaches for glycopeptide and glycoprotein enrichment. The preparation of stationary phases, their surface activation, and ligand immobilization strategies have been discussed in detail. Finally, the major developments and future trends in the field have been summarized.
Collapse
Affiliation(s)
- Mona Kumari
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| | - Kishore K R Tetala
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamilnadu, India
| |
Collapse
|
3
|
Trefulka M, Černocká H, Havran L, Hasoň S, Fojt L, Ostatná V. Voltammetric sensing of glycans modified by osmium(VI)ligand complexes. The influence of N-acetyl neuraminic acid. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
4
|
Zhang Y, Hu Z, Zhang C, Liu BF, Liu X. A robust glycan labeling strategy using a new cationic hydrazide tag for MALDI-MS-based rapid and sensitive glycomics analysis. Talanta 2020; 219:121356. [PMID: 32887081 DOI: 10.1016/j.talanta.2020.121356] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
Chemical derivatization of glycans is a common strategy to increase the analytical performance of MALDI-MS-based glycan profiling techniques. Hydrazide, one of the most popular tags, offers important advantages including allowing purification-free procedures. Several hydrazides have thus been used for glycomics combined with an on-target strategy to further simplify the analytical procedures. Usually, gentle heating and mildly acidic conditions with somewhat long reaction times are needed for these hydrazide derivatizations to reach a high reaction efficiency, which makes the current hydrazide tags not yet perfectly conducive to high-throughput analysis. To further optimize these hydrazide tags for high-throughput analysis, based on the structure of a reported hydrazide and the theoretical calculations, a new cationic hydrazide tag, 4-(hydrazinecarbonyl)-N,N,N-trimethylbenzenaminium (HTMBA), was designed, synthesized and tested in this work. HTMBA could completely derivatize glycans at room temperature in several seconds under very mildly acidic conditions (<3% acetic acid). A 19-fold enhancement in the signal intensity was obtained without interference from alkali adduct ions in the MALDI-MS detection of HTMBA-labeled maltoheptaose. To broaden the applicability of HTMBA, an HTMBA on-target derivatization (HOD) strategy was developed and fully validated with maltoheptaose and RNase B, and the method showed a good repeatability and stability. Finally, the HOD strategy was successfully applied to serum samples, 44 glycans in human serum were detected, and the O-acetylation information of sialic acid in horse serum was preserved. These results showed that the HOD strategy was suitable for the MS-based rapid analysis of all glycoforms in complex biological samples.
Collapse
Affiliation(s)
- Yifang Zhang
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhaoyu Hu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chun Zhang
- Technology National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| | - Bi-Feng Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
5
|
N-Glycome changes reflecting resistance to platinum-based chemotherapy in ovarian cancer. J Proteomics 2020; 230:103964. [PMID: 32898699 DOI: 10.1016/j.jprot.2020.103964] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
A number of studies have reported aberrant glycosylation in connection with malignancy. Our investigation further expands on this topic through the examination of N-glycans, which could be associated with the resistance of advanced stage, high-grade non-mucinous ovarian cancer to platinum/taxane based chemotherapy. We used tissue samples of 83 ovarian cancer patients, randomly divided into two independent cohorts (basic and validation). Both groups involved either cases with/without postoperative tumor residue or the cases determined either resistant or sensitive to this chemotherapy. In the validation cohort, preoperative serum samples were also available. N-glycans released from tumors and sera were permethylated and analyzed by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS). The MS analysis yielded a consecutive detection of 68 (tissue) and 63 (serum) N-glycan spectral signals. Eight of these were found to be differentially abundant in tissues of both independent cohorts including the cases with a postoperative cancer residue. One of these glycans was detected as differentially abundant in sera of the validation cohort. No statistically significant differences in intensities due to the same N-glycans were found in the cases without postoperative macroscopic residues in either the basic or validation cohort. From the biochemical point of view, the statistically significant N-glycans correspond to the structures carrying bisecting (terminal) GlcNAc residue and tetra-antennary structures with sialic acid and/or fucose residues. Among them, six tissue N-glycans could be considered potential markers connected with a resistance to chemotherapy in ovarian cancer patients. The prediction of primary resistance to standard chemotherapy may identify the group of patients suitable for alternative treatment strategies. SIGNIFICANCE: Drug resistance has become a major impediment to a successful treatment of patients with advanced ovarian cancer. The glycomic measurements related to cancer are becoming increasingly popular in identification of the key molecules as potential diagnostic and prognostic indicators. Our report deals with identification of differences in N-glycosylation of proteins in tissue and serum samples from the individuals showing sensitivity or resistance to platinum/taxane-based chemotherapy. The detection sensitivity to chemotherapy is vitally important for these patients.
Collapse
|
6
|
Khodadadi E, Zeinalzadeh E, Taghizadeh S, Mehramouz B, Kamounah FS, Khodadadi E, Ganbarov K, Yousefi B, Bastami M, Kafil HS. Proteomic Applications in Antimicrobial Resistance and Clinical Microbiology Studies. Infect Drug Resist 2020; 13:1785-1806. [PMID: 32606829 PMCID: PMC7305820 DOI: 10.2147/idr.s238446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/23/2020] [Indexed: 12/11/2022] Open
Abstract
Sequences of the genomes of all-important bacterial pathogens of man, plants, and animals have been completed. Still, it is not enough to achieve complete information of all the mechanisms controlling the biological processes of an organism. Along with all advances in different proteomics technologies, proteomics has completed our knowledge of biological processes all around the world. Proteomics is a valuable technique to explain the complement of proteins in any organism. One of the fields that has been notably benefited from other systems approaches is bacterial pathogenesis. An emerging field is to use proteomics to examine the infectious agents in terms of, among many, the response the host and pathogen to the infection process, which leads to a deeper knowledge of the mechanisms of bacterial virulence. This trend also enables us to identify quantitative measurements for proteins extracted from microorganisms. The present review study is an attempt to summarize a variety of different proteomic techniques and advances. The significant applications in bacterial pathogenesis studies are also covered. Moreover, the areas where proteomics may lead the future studies are introduced.
Collapse
Affiliation(s)
- Ehsaneh Khodadadi
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Zeinalzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepehr Taghizadeh
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Mehramouz
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, DK 2100, Denmark
| | - Ehsan Khodadadi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | | | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Milad Bastami
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Bacteriophage Based Biosensors: Trends, Outcomes and Challenges. NANOMATERIALS 2020; 10:nano10030501. [PMID: 32168802 PMCID: PMC7153619 DOI: 10.3390/nano10030501] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 01/04/2023]
Abstract
Foodborne pathogens are one of the main concerns in public health, which can have a serious impact on community health and health care systems. Contamination of foods by bacterial pathogens (such as Staphylococcus aureus, Streptococci, Legionella pneumophila, Escherichia coli, Campylobacter jejuni and Salmonella typhimurium) results in human infection. A typical example is the current issue with Coronavirus, which has the potential for foodborne transmission and ruling out such concerns is often difficult. Although, the possible dissemination of such viruses via the food chain has been raised. Standard bacterial detection methods require several hours or even days to obtain the results, and the delay may result in food poisoning to eventuate. Conventional biochemical and microbiological tests are expensive, complex, time-consuming and not always reliable. Therefore, there are urgent demands to develop simple, cheap, quick, sensitive, specific and reliable tests for the detection of these pathogens in foods. Recent advances in smart materials, nanomaterials and biomolecular modeling have been a quantum leap in the development of biosensors in overcoming the limitations of a conventional standard laboratory assay. This research aimed to critically review bacteriophage-based biosensors, used for the detection of foodborne pathogens, as well as their trends, outcomes and challenges are discussed. The future perspective in the use of simple and cheap biosensors is in the development of lab-on-chips, and its availability in every household to test the quality of their food.
Collapse
|
8
|
Distinguishing the glycan isomers 2,3-sialyllactose and 2,6-sialyllactose by voltammetry after modification with osmium(VI) complexes. Anal Chim Acta 2019; 1067:56-62. [PMID: 31047149 DOI: 10.1016/j.aca.2019.03.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/19/2019] [Accepted: 03/28/2019] [Indexed: 11/22/2022]
Abstract
Altered glycosylation is a universal feature of cancer cells and certain glycans are well-known markers of tumor progression. In this work we studied two glycan isomers, 2,3-sialyllactose (3-SL) and 2,6-sialyllactose (6-SL), frequently appearing in glycoproteins connected with cancer. A combination of square wave voltammetry and glycan modification with osmium(VI) N,N,N',N'-tetramethylethylenediamine (Os(VI)tem) allowed to distinguish between these regioisomers, since the 6-SL molecule can bind three Os(VI), while the 3-SL only two Os(VI) moieties, as experiments using capillary electrophoresis, inductively coupled plasma mass spectrometry and thin layer chromatography showed. A similar pattern of Os(VI)-modification was found for isomers of sialyl-N-acetyllactosamine and sialylgalactose. Covalent adducts of Os(VI)tem with glycans yielded three reduction voltammetric peaks. The ratio of peak I/peak II heights depends on the content of individual regioisomer in the sample. Our proposed approach allows the determination of isomer percentage representation in the mixture after one voltammogram recording. These results show a new appropriate method for the discrimination of glycan isomers containing terminal sialic acid important for distinguishing between cancerous and non-cancerous origin of biomarkers.
Collapse
|
9
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
10
|
Profiling of N-linked glycans from 100 cells by capillary electrophoresis with large-volume dual preconcentration by isotachophoresis and stacking. J Chromatogr A 2018; 1565:138-144. [DOI: 10.1016/j.chroma.2018.06.034] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/06/2018] [Accepted: 06/14/2018] [Indexed: 01/19/2023]
|
11
|
Lakshminarayanan A, Richard M, Davis BG. Studying glycobiology at the single-molecule level. Nat Rev Chem 2018. [DOI: 10.1038/s41570-018-0019-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013-2014. MASS SPECTROMETRY REVIEWS 2018; 37:353-491. [PMID: 29687922 DOI: 10.1002/mas.21530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 11/29/2016] [Indexed: 06/08/2023]
Abstract
This review is the eighth update of the original article published in 1999 on the application of Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2014. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly- saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2018 Wiley Periodicals, Inc. Mass Spec Rev 37:353-491, 2018.
Collapse
Affiliation(s)
- David J Harvey
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
13
|
Studying the Structural Significance of Galectin Design by Playing a Modular Puzzle: Homodimer Generation from Human Tandem-Repeat-Type (Heterodimeric) Galectin-8 by Domain Shuffling. Molecules 2017; 22:molecules22091572. [PMID: 28925965 PMCID: PMC6151538 DOI: 10.3390/molecules22091572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 09/17/2017] [Indexed: 01/10/2023] Open
Abstract
Tissue lectins are emerging (patho)physiological effectors with broad significance. The capacity of adhesion/growth-regulatory galectins to form functional complexes with distinct cellular glycoconjugates is based on molecular selection of matching partners. Engineering of variants by changing the topological display of carbohydrate recognition domains (CRDs) provides tools to understand the inherent specificity of the functional pairing. We here illustrate its practical implementation in the case of human tandem-repeat-type galectin-8 (Gal-8). It is termed Gal-8 (NC) due to presence of two different CRDs at the N- and C-terminal positions. Gal-8N exhibits exceptionally high affinity for 3'-sialylated/sulfated β-galactosides. This protein is turned into a new homodimer, i.e., Gal-8 (NN), by engineering. The product maintained activity for lactose-inhibitable binding of glycans and glycoproteins. Preferential association with 3'-sialylated/sulfated (and 6-sulfated) β-galactosides was seen by glycan-array analysis when compared to the wild-type protein, which also strongly bound to ABH-type epitopes. Agglutination of erythrocytes documented functional bivalency. This result substantiates the potential for comparative functional studies between the variant and natural Gal-8 (NC)/Gal-8N.
Collapse
|
14
|
Sensitive and comprehensive analysis of O-glycosylation in biotherapeutics: a case study of novel erythropoiesis stimulating protein. Bioanalysis 2017; 9:1373-1383. [PMID: 28920453 DOI: 10.4155/bio-2017-0085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Glycosylation of recombinant human erythropoietins (rhEPOs) is significantly associated with drug's quality and potency. Thus, comprehensive characterization of glycosylation is vital to assess the biotherapeutic quality and establish the equivalency of biosimilar rhEPOs. However, current glycan analysis mainly focuses on the N-glycans due to the absence of analytical tools to liberate O-glycans with high sensitivity. We developed selective and sensitive method to profile native O-glycans on rhEPOs. RESULTS O-glycosylation on rhEPO including O-acetylation on a sialic acid was comprehensively characterized. Details such as O-glycan structure and O-acetyl-modification site were obtained from tandem MS. CONCLUSION This method may be applied to QC and batch analysis of not only rhEPOs but also other biotherapeutics bearing multiple O-glycosylations.
Collapse
|
15
|
Nagy G, Peng T, Pohl NLB. Recent Liquid Chromatographic Approaches and Developments for the Separation and Purification of Carbohydrates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2017; 9:3579-3593. [PMID: 28824713 PMCID: PMC5558844 DOI: 10.1039/c7ay01094j] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbohydate purification remains a bottleneck in securing analytical standards from natural sources or by chemical or enzymatic synthesis. This review highlights the scope and remaining limitations of recent approaches and methods development in liquid chromatography for robust and higher-throughput carbohydrate separation and isolation.
Collapse
Affiliation(s)
- Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Tianyuan Peng
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | - Nicola L B Pohl
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
16
|
Adua E, Russell A, Roberts P, Wang Y, Song M, Wang W. Innovation Analysis on Postgenomic Biomarkers: Glycomics for Chronic Diseases. ACTA ACUST UNITED AC 2017; 21:183-196. [DOI: 10.1089/omi.2017.0035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Eric Adua
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Alyce Russell
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Peter Roberts
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Youxin Wang
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Manshu Song
- Beijing Key Laboratory of Clinical Epidemiology, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| |
Collapse
|
17
|
Affiliation(s)
- Stefan Gaunitz
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Gabe Nagy
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Nicola L. B. Pohl
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
- Regional Center for Applied Molecular Oncology, Masaryk Memorial Oncological Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
18
|
Detection and first characterization of an uncommon haptoglobin in porcine saliva of pigs with rectal prolapse by using boronic acid sample enrichment. Animal 2017; 11:845-853. [DOI: 10.1017/s1751731116002159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
19
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Snyder CM, Alley WR, Campos MI, Svoboda M, Goetz JA, Vasseur JA, Jacobson SC, Novotny MV. Complementary Glycomic Analyses of Sera Derived from Colorectal Cancer Patients by MALDI-TOF-MS and Microchip Electrophoresis. Anal Chem 2016; 88:9597-9605. [PMID: 27575585 PMCID: PMC5097869 DOI: 10.1021/acs.analchem.6b02310] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Colorectal cancer is the fourth most prevalent cancer in the United States, yet there are no reliable noninvasive early screening methods available. Serum-based glycomic profiling has the necessary sensitivity and specificity to distinguish disease states and provide diagnostic potential for this deadly form of cancer. We applied microchip electrophoresis and MALDI-TOF-MS-based glycomic procedures to 20 control serum samples and 42 samples provided by patients diagnosed with colorectal cancer. Within the identified glycans, the position of fucose units was located to quantitate possible changes of fucosyl isomeric species associated with the pathological condition. MALDI-MS data revealed several fucosylated tri- and tetra-antennary glycans which were significantly elevated in their abundance levels in the cancer samples and distinguished the control samples from the colorectal cancer cohort in the comprehensive profiles. When compared to other cancers studied previously, some unique changes appear to be associated with colorectal cancer, being primarily associated with fucosyl isomers. Through MS and microchip electrophoresis-based glycomic methods, several potential biomarkers were identified to aid in the diagnosis and differentiation of colorectal cancer. With its unique capability to resolve isomers, microchip electrophoresis can yield complementary analytical information to MS-based profiling.
Collapse
Affiliation(s)
| | - William R. Alley
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Margit I. Campos
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Martin Svoboda
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - John A. Goetz
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | | | - Milos V. Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
21
|
Identification of multiple transferrin species in the spleen and serum from mice with collagen-induced arthritis which may reflect changes in transferrin glycosylation associated with disease activity: The role of CD38. J Proteomics 2016; 134:127-137. [DOI: 10.1016/j.jprot.2015.11.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 11/11/2015] [Accepted: 11/26/2015] [Indexed: 12/12/2022]
|
22
|
Simpson DJ, Sacher JC, Szymanski CM. Development of an Assay for the Identification of Receptor Binding Proteins from Bacteriophages. Viruses 2016; 8:v8010017. [PMID: 26761028 PMCID: PMC4728577 DOI: 10.3390/v8010017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, a large number of new technologies have been developed that exploit the unique properties of bacteriophage receptor binding proteins (RBPs). These include their use in diagnostic applications that selectively capture bacteria and as therapeutics that reduce bacterial colonization in vivo. RBPs exhibit comparable, and in many cases superior, stability, receptor specificity, and affinity to other carbohydrate binding proteins such as antibodies or lectins. In order to further exploit the use of RBPs, we have developed an assay for discovering RBPs using phage genome expression libraries and protein screens to identify binding partners that recognize the host bacterium. When phage P22 was screened using this assay, Gp9 was the only RBP discovered, confirming previous predictions that this is the sole RBP encoded by this phage. We then examined the Escherichia coli O157:H7 typing phage 1 in our assay and identified a previously undescribed RBP. This general approach has the potential to assist in the identification of RBPs from other bacteriophages.
Collapse
Affiliation(s)
- David J Simpson
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Jessica C Sacher
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Christine M Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
23
|
|
24
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Improved tryptic digestion assisted with an acid-labile anionic surfactant for the separation and characterization of glycopeptide glycoforms of a proteolytic-resistant glycoprotein by capillary electrophoresis time-of-flight mass spectrometry. Electrophoresis 2015; 37:987-97. [DOI: 10.1002/elps.201500255] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/21/2015] [Accepted: 08/07/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Albert Barroso
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Estela Giménez
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Fernando Benavente
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - José Barbosa
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| | - Victoria Sanz-Nebot
- Department of Analytical Chemistry; University of Barcelona; Barcelona Spain
| |
Collapse
|
25
|
Simpson DJ, Sacher JC, Szymanski CM. Exploring the interactions between bacteriophage-encoded glycan binding proteins and carbohydrates. Curr Opin Struct Biol 2015; 34:69-77. [DOI: 10.1016/j.sbi.2015.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 07/07/2015] [Accepted: 07/08/2015] [Indexed: 01/25/2023]
|
26
|
Bodnar ED, Perreault H. Synthesis and evaluation of carboxymethyl chitosan for glycopeptide enrichment. Anal Chim Acta 2015; 891:179-89. [DOI: 10.1016/j.aca.2015.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/28/2015] [Accepted: 08/08/2015] [Indexed: 12/27/2022]
|
27
|
Struwe WB, Pagel K, Benesch JLP, Harvey DJ, Campbell MP. GlycoMob: an ion mobility-mass spectrometry collision cross section database for glycomics. Glycoconj J 2015; 33:399-404. [PMID: 26314736 DOI: 10.1007/s10719-015-9613-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/29/2022]
Abstract
Ion mobility mass spectrometry (IM-MS) is a promising analytical technique for glycomics that separates glycan ions based on their collision cross section (CCS) and provides glycan precursor and fragment masses. It has been shown that isomeric oligosaccharide species can be separated by IM and identified on basis of their CCS and fragmentation. These results indicate that adding CCSs information for glycans and glycan fragments to searchable databases and analysis pipelines will increase identification confidence and accuracy. We have developed a freely accessible database, GlycoMob ( http://www.glycomob.org ), containing over 900 CCSs values of glycans, oligosaccharide standards and their fragments that will be continually updated. We have measured the absolute CCSs of calibration standards, biologically derived and synthetic N-glycans ionized with various adducts in positive and negative mode or as protonated (positive ion) and deprotonated (negative ion) ions.
Collapse
Affiliation(s)
- Weston B Struwe
- Department of Chemistry, University of Oxford, Oxford, OX1 3QZ, UK.
| | - Kevin Pagel
- Free University Chemistry, Institute of Chemistry and Biochemistry, Takustrasse 3, 14195, Berlin, Germany.,Department of Molecular Physics, Fritz Haber Institute of the Max Planck Society, 14195, Berlin, Germany
| | | | - David J Harvey
- Oxford Glycobiology Institute, Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Matthew P Campbell
- Biomolecular Frontiers Research Centre, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
28
|
Tkac J, Bertok T, Nahalka J, Gemeiner P. Perspectives in glycomics and lectin engineering. Methods Mol Biol 2015; 1200:421-45. [PMID: 25117256 DOI: 10.1007/978-1-4939-1292-6_37] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This chapter would like to provide a short survey of the most promising concepts applied recently in analysis of glycoproteins based on lectins. The first part describes the most exciting analytical approaches used in the field of glycoprofiling based on integration of nanoparticles, nanowires, nanotubes, or nanochannels or using novel transducing platforms allowing to detect very low levels of glycoproteins in a label-free mode of operation. The second part describes application of recombinant lectins containing several tags applied for oriented and ordered immobilization of lectins. Besides already established concepts of glycoprofiling several novel aspects, which we think will be taken into account for future, more robust glycan analysis, are described including modified lectins, peptide lectin aptamers, and DNA aptamers with lectin-like specificity introduced by modified nucleotides. The last part of the chapter describes a novel concept of a glycocodon, which can lead to a better understanding of glycan-lectin interaction and for design of novel lectins with unknown specificities and/or better affinities toward glycan target or for rational design of peptide lectin aptamers or DNA aptamers.
Collapse
Affiliation(s)
- Jan Tkac
- Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, Dubravska Cesta 9, 845 38, Bratislava, Slovakia
| | | | | | | |
Collapse
|
29
|
Goyallon A, Cholet S, Chapelle M, Junot C, Fenaille F. Evaluation of a combined glycomics and glycoproteomics approach for studying the major glycoproteins present in biofluids: Application to cerebrospinal fluid. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:461-473. [PMID: 26160412 DOI: 10.1002/rcm.7125] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/08/2014] [Accepted: 12/14/2014] [Indexed: 06/04/2023]
Abstract
RATIONALE Glycosylation is one of the most complex types of post-translational modifications of proteins. The alteration of glycans bound to proteins from cerebrospinal fluid (CSF) in relation to disorders of the central nervous system is a highly relevant subject, but only few studies have focused on the glycosylation of CSF proteins. METHODS Reproducible profiles of CSF N-glycans were first obtained by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry after permethylation. Tryptic glycopeptides from CSF proteins were also enriched by hydrophilic interaction, and the resulting extracts divided into two equal aliquots. A first aliquot was enzymatically deglycosylated and analyzed by nano-liquid chromatography/tandem mass spectrometry while the second one, containing intact enriched glycopeptides, was directly analyzed. Site-specific data were obtained by combining the data from these three experiments. RESULTS We describe the development of a versatile approach for obtaining site-specific information on the N-glycosylation of CSF glycoproteins. Under these conditions, 124 N-glycopeptides representing 55 N-glycosites from 36 glycoproteins were tentatively identified. Special emphasis was placed on the analysis of glycoproteins/glycopeptides bearing 'brain-type' N-glycans, representing potential biologically relevant structures in the field of neurodegenerative disorders. Using our workflow, only a few proteins were shown to carry such particular glycan motifs. CONCLUSIONS We developed an approach combining N-glycomics and N-glycoproteomics and underline its usefulness to study the site-specific glycosylation of major human CSF proteins. The final rather long-term objective is to combine these data with those from other omics approaches to delve deeper into the understanding of particular neurological disorders.
Collapse
Affiliation(s)
- Arnaud Goyallon
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - Sophie Cholet
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | | | - Christophe Junot
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- CEA, iBiTec-S, Service de Pharmacologie et d'Immunoanalyse, 91191, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Paleček E, Tkáč J, Bartošík M, Bertók T, Ostatná V, Paleček J. Electrochemistry of nonconjugated proteins and glycoproteins. Toward sensors for biomedicine and glycomics. Chem Rev 2015; 115:2045-108. [PMID: 25659975 PMCID: PMC4360380 DOI: 10.1021/cr500279h] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Emil Paleček
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Tkáč
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Martin Bartošík
- Regional
Centre for Applied Molecular Oncology, Masaryk
Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Tomáš Bertók
- Institute
of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38 Bratislava, Slovakia
| | - Veronika Ostatná
- Institute
of Biophysics Academy of Science of the Czech Republic, v.v.i., Královopolská
135, 612 65 Brno, Czech Republic
| | - Jan Paleček
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, 625 00 Brno, Czech Republic
| |
Collapse
|
31
|
Klepárník K. Recent advances in combination of capillary electrophoresis with mass spectrometry: Methodology and theory. Electrophoresis 2014; 36:159-78. [DOI: 10.1002/elps.201400392] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/11/2014] [Accepted: 09/11/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Karel Klepárník
- Institute of Analytical Chemistry; Academy of Sciences of the Czech Republic; Brno Czech Republic
| |
Collapse
|
32
|
Thaysen-Andersen M, Packer NH. Advances in LC-MS/MS-based glycoproteomics: getting closer to system-wide site-specific mapping of the N- and O-glycoproteome. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1437-52. [PMID: 24830338 DOI: 10.1016/j.bbapap.2014.05.002] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/22/2022]
Abstract
Site-specific structural characterization of glycoproteins is important for understanding the exact functional relevance of protein glycosylation. Resulting partly from the multiple layers of structural complexity of the attached glycans, the system-wide site-specific characterization of protein glycosylation, defined as glycoproteomics, is still far from trivial leaving the N- and O-linked glycoproteomes significantly under-defined. However, recent years have seen significant advances in glycoproteomics driven, in part, by the developments of dedicated workflows and efficient sample preparation, including glycopeptide enrichment and prefractionation. In addition, glycoproteomics has benefitted from the continuous performance enhancement and more intelligent use of liquid chromatography and tandem mass spectrometry (LC-MS/MS) instrumentation and a wider selection of specialized software tackling the unique challenges of glycoproteomics data. Together these advances promise more streamlined N- and O-linked glycoproteome analysis. Tangible examples include system-wide glycoproteomics studies detecting thousands of intact glycopeptides from hundreds of glycoproteins from diverse biological samples. With a strict focus on the system-wide site-specific analysis of protein N- and O-linked glycosylation, we review the recent advances in LC-MS/MS based glycoproteomics. The review opens with a more general discussion of experimental designs in glycoproteomics and sample preparation prior to LC-MS/MS based data acquisition. Although many challenges still remain, it becomes clear that glycoproteomics, one of the last frontiers in proteomics, is gradually maturing enabling a wider spectrum of researchers to access this new emerging research discipline. The next milestone in analytical glycobiology is being reached allowing the glycoscientist to address the functional importance of protein glycosylation in a system-wide yet protein-specific manner.
Collapse
Affiliation(s)
- Morten Thaysen-Andersen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Nicolle H Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
33
|
Sun B, Hood L. Protein-centric N-glycoproteomics analysis of membrane and plasma membrane proteins. J Proteome Res 2014; 13:2705-14. [PMID: 24754784 PMCID: PMC4053080 DOI: 10.1021/pr500187g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The advent of proteomics technology
has transformed our understanding
of biological membranes. The challenges for studying membrane proteins
have inspired the development of many analytical and bioanalytical
tools, and the techniques of glycoproteomics have emerged as an effective
means to enrich and characterize membrane and plasma-membrane proteomes.
This Review summarizes the development of various glycoproteomics
techniques to overcome the hurdles formed by the unique structures
and behaviors of membrane proteins with a focus on N-glycoproteomics.
Example contributions of N-glycoproteomics to the understanding of
membrane biology are provided, and the areas that require future technical
breakthroughs are discussed.
Collapse
Affiliation(s)
- Bingyun Sun
- Department of Chemistry, Simon Fraser University , 8888 University Drive, Burnaby, British Columbia V5A1S6, Canada
| | | |
Collapse
|
34
|
Marco-Ramell A, Miller I, Nöbauer K, Möginger U, Segalés J, Razzazi-Fazeli E, Kolarich D, Bassols A. Proteomics on porcine haptoglobin and IgG/IgA show protein species distribution and glycosylation pattern to remain similar in PCV2-SD infection. J Proteomics 2014; 101:205-16. [PMID: 24576640 DOI: 10.1016/j.jprot.2014.02.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Haptoglobin (Hp) and immunoglobulins are plasma glycoproteins involved in the immune reaction of the organism after infection and/or inflammation. Porcine circovirus type 2-systemic disease (PCV2-SD), formerly known as postweaning multisystemic wasting syndrome (PMWS), is a globally spread pig disease of great economic impact. PCV2-SD affects the immunological system of pigs causing immunosuppression. The aim of this work was to characterize the Hp protein species of healthy and PCV2-SD affected pigs, as well as the protein backbone and the glycan chain composition of porcine Hp. PCV2-SD affected pigs had an increased overall Hp level, but it did not affect the ratio between Hp species. Glycoproteomic analysis of the Hp β subunits confirmed that porcine Hp is N-glycosylated and, unexpectedly, O-glycosylated, a PTM that is not found on Hp from healthy humans. The glyco-profile of porcine IgG and IgA heavy chains was also characterized; decreased levels of both proteins were found in the investigated group of PCV2-SD affected pigs. Obtained results indicate that no significant changes in the N- and O-glycosylation patterns of these major porcine plasma glycoproteins were detectable between healthy and PCV2-SD affected animals. BIOLOGICAL SIGNIFICANCE PCV2-SD is a disease of great economic importance for pig production, characterized by a complex response of the immune system. In the search of a better diagnostic/prognostic marker for porcine PCV2-SD, extensive analyses of the Hp protein backbone and the glycan chains were thoroughly analyzed by various techniques. This resulted in detection and confirmation of Hp O-glycosylation and the glyco-profiling of porcine IgG and IgA. The N- and O-glycosylation of these major porcine plasma glycoproteins appears to be not affected by PCV2-SD infection. Interestingly, these data suggest that this viral infection, which significantly affects the immune responses of the host, leaves the biosynthetic glycosylation processes in the liver and immune cells unaffected. Lack of PTM changes is in contrast to findings in humans where for both proteins pattern changes have been reported in several chronic and inflammatory diseases. This underlines the importance of studying species in detail and not reaching to conclusions by analogy. Furthermore, since Hp is usually quantified by immunoassays in clinical routine analyses, our findings indicate that no bias in Hp determination capabilities due to an altered carbohydrate pattern is to be expected.
Collapse
Affiliation(s)
- Anna Marco-Ramell
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ingrid Miller
- Institute of Medical Biochemistry, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | | | - Uwe Möginger
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Cerdanyola del Vallès, Spain; Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | | | - Daniel Kolarich
- Max Planck Institute of Colloids and Interfaces, Department of Biomolecular Systems, Potsdam, Germany
| | - Anna Bassols
- Departament de Bioquímica i Biologia Molecular, Facultat de Veterinària, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
35
|
Gabius HJ, Kayser K. Introduction to glycopathology: the concept, the tools and the perspectives. Diagn Pathol 2014; 9:4. [PMID: 24443956 PMCID: PMC4029355 DOI: 10.1186/1746-1596-9-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/06/2013] [Indexed: 01/13/2023] Open
Abstract
Virtual slides The virtual slides for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1670639891114983. Analyzing the flow of biological information is a fundamental challenge for basic sciences. The emerging results will then lend themselves to the development of new approaches for medical applications. Toward this end, the products of protein/lipid glycosylation deserve special attention. The covalent attachment of sugars to these carriers means much more than just a change of the carriers’ physicochemical properties. In principle, the ubiquitous presence of glycoconjugates and the close inspection of the particular structural ‘talents’ of carbohydrates provide suggestive evidence for information coding by sugars. In fact, the theoretical number of ‘words’ (oligomers) formed by ‘letters’ (monosaccharides) is by far higher than by using nucleotides or amino acids. In other words, glycans harbor an unsurpassed coding capacity. The cyto- and histochemical detection of dynamic changes in the profile of cellular glycans (glycome, the equivalent of the proteome) by sugar receptors such as antibodies used as tools underscores the suitability of carbohydrates for such a task. The resulting staining patterns can be likened to a molecular fingerprint. By acting as ligand (counterreceptor) for endogenous receptors (tissue lectins), glycan epitopes become partners in a specific recognition pair, and the sugar-encoded information can then be translated into effects, e.g. in growth regulation. Of note, expression of both sides of such a pair, i.e. lectin and cognate glycan, can physiologically be orchestrated for optimal efficiency. Indeed, examples how to prevent autoimmune diseases by regulatory T cells and restrict carcinoma growth by a tumor suppressor attest occurrence of co-regulation. In consequence, these glycans have potential to establish a new class of functional biomarkers, and mapping presence of their receptors is warranted. In this review, the cyto- and histochemical methods, which contribute to explore information storage and transfer within the sugar code, are described. This introduction to the toolbox is flanked by illustrating the application of each type of tool in histopathology, with focus on adhesion/growth-regulating galectins. Together with an introduction to fundamental principles of the sugar code, the review is designed to guide into this field and to inspire respective research efforts.
Collapse
Affiliation(s)
- Hans-Joachim Gabius
- Chair of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Veterinärstr 13, D-80539, Munich, Germany.
| | | |
Collapse
|
36
|
Barroso A, Giménez E, Benavente F, Barbosa J, Sanz-Nebot V. Analysis of human transferrin glycopeptides by capillary electrophoresis and capillary liquid chromatography-mass spectrometry. Application to diagnosis of alcohol dependence. Anal Chim Acta 2013; 804:167-75. [DOI: 10.1016/j.aca.2013.09.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/17/2022]
|
37
|
Ma YC, Lin CY, Her GR. Comparative study of sialyl glycoprotein with multiple glycosylation sites using isotope labeling and capillary liquid chromatography/mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2013; 27:2530-2538. [PMID: 24123641 DOI: 10.1002/rcm.6712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 06/02/2023]
Abstract
RATIONALE A comparative strategy has been demonstrated using RNase B, a single-site N-linked high-mannose glycoprotein. Glycoproteins are more common with multiple glycosylation sites and with complex glycans. A strategy capable of differentiating the changes caused by glycoprotein concentration, glycosylation site occupancy, and a glycoform profile of complex glycoproteins would be beneficial. METHODS Tryptic-digested glycoproteins were labeled using 12 C,H-formaldehyde and 13 C, D-formaldehyde, purified, and then analyzed using capillary reversed-phase liquid chromatography/mass spectrometry (RPLC/MS). The relative intensity of non-glycosylated peptides provided information on glycoprotein concentration variation. A site-specific glycoform profile variation was obtained by comparing the glycoform profile of CH2 and 13 CD2 glycopeptides. Determining the protein concentration and glycoform profile variations allows the glycosylation site occupancy variation to be calculated. RESULTS A strong correlation between the observed and prepared ratios for fetuin glycopeptides from 0.2 to 5 was obtained. Two fetuin samples with different glycoprotein concentrations (4-fold change), glycoform profiles (normal and modified), and glycosylation site occupancies (100% and 50%) were prepared, labeled, mixed, purified, and analyzed using RPLC/MS. The results of the comparative study had a strong correlation with the prepared values. CONCLUSIONS In this report, we demonstrated a comparative analysis of fetuin, a glycoprotein with multiple glycosylation sites and complex sialyl glycans. Compared to our previous approach, we made several modifications including the use of RPLC, a larger mass difference isotope tag, and isotope overlapping correction. The modified approach is expected to be applicable to most glycoproteins. Copyright © 2013 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi-Chun Ma
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | | | | |
Collapse
|
38
|
Alley WR, Mann BF, Hruska V, Novotny MV. Isolation and purification of glycoconjugates from complex biological sources by recycling high-performance liquid chromatography. Anal Chem 2013; 85:10408-16. [PMID: 24070405 DOI: 10.1021/ac4023814] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Among of the most urgent needs of the glycobiology community is to generate libraries of pure carbohydrate standards. While many oligosaccharides have recently been synthesized, some glycans of biomedical importance are still missing in existing collections or are available in only limited amounts. To address this need, we demonstrate the use of the relatively unexplored technique of recycling high-performance liquid chromatography (R-HPLC) to isolate and purify glycoconjugates from several natural sources. We were able to routinely achieve purities greater than 98%. In several cases, we were able to obtain isomerically pure substances, particularly for glycans with different positional isomerism. These purified substances can then be used in different analytical applications, for example, as standards for mass spectrometry (MS) and capillary-based separations. Moreover, using a bifunctional aromatic amine, the same derivatization agent can be used to enable UV detection of oligosaccharides during their purification and link the isolated molecules to functionalized surfaces and potentially create glycan arrays.
Collapse
Affiliation(s)
- William R Alley
- Department of Chemistry Indiana University Bloomington, Indiana 47405, United States
| | | | | | | |
Collapse
|
39
|
Drabik A, Ciołczyk-Wierzbicka D, Dulińska-Litewka J, Bodzoń-Kułakowska A, Suder P, Silberring J, Laidler P. A comparative study of glycoproteomes in androgen-sensitive and -independent prostate cancer cell lines. Mol Cell Biochem 2013; 386:189-98. [PMID: 24104455 PMCID: PMC3867656 DOI: 10.1007/s11010-013-1857-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 09/27/2013] [Indexed: 01/09/2023]
Abstract
Prostate cancer is one of the most common malignancies in men and is predicted to be the second leading cause of cancer-related deaths. After 6–18 months, hormone ablation treatment results in androgen-independent growth of cancer cells, metastasis and progression. The mechanism of androgen-independent growth of prostatic carcinoma cells is still unknown. Identification of factors that facilitate the transition from androgen-dependent to independent states is crucial in designing future diagnostics and medication strategies. To understand the biochemical meaning of hormone dependency deprivation, glycoproteins enriched profiles were compared between DU145 (hormone non-responding) and LNCaP (hormone responding) prostate cancer cells. These results allow for anticipation on the important role of glycosylation in malignant transformation. Both Tn antigen and complex antennary N-oligosaccharides were recognized. Their occurrence might be involved in the development and progression of tumor, and failure of hormone ablation therapy. Among identified proteins in androgen-sensitive cells nucleolin (P19338) was found that is widely described as apoptosis inhibitor, and also transporter of molecules from the membrane to the cytoplasm or nucleus. In addition, 14-3-3 protein family (P27348, P31946, P61981, P63104, P62258, Q04917, and P31947) was investigated across available databases as it forms stable complexes with glycoproteins. Our studies indicate that isoforms: sigma and eta were found in androgen-dependent prostate cancer cells, while other isoforms were present in androgen non-responding cells. 14-3-3 binding partners are involved in cancer pathogenesis. These findings may contribute to a better understanding of prostate cancer tumorigenesis and to a more efficient prognosis and individual therapy in a future. However, it still remains to be revealed how important those changes are for androgen dependency loss in prostate cancer patients carried out on clinically relevant populations.
Collapse
Affiliation(s)
- Anna Drabik
- Department of Biochemistry and Neurobiology, AGH University of Science and Technology, Mickiewicza 30 Ave, 30-059, Krakow, Poland,
| | | | | | | | | | | | | |
Collapse
|
40
|
Leymarie N, Griffin PJ, Jonscher K, Kolarich D, Orlando R, McComb M, Zaia J, Aguilan J, Alley WR, Altmann F, Ball LE, Basumallick L, Bazemore-Walker CR, Behnken H, Blank MA, Brown KJ, Bunz SC, Cairo CW, Cipollo JF, Daneshfar R, Desaire H, Drake RR, Go EP, Goldman R, Gruber C, Halim A, Hathout Y, Hensbergen PJ, Horn DM, Hurum D, Jabs W, Larson G, Ly M, Mann BF, Marx K, Mechref Y, Meyer B, Möginger U, Neusüβ C, Nilsson J, Novotny MV, Nyalwidhe JO, Packer NH, Pompach P, Reiz B, Resemann A, Rohrer JS, Ruthenbeck A, Sanda M, Schulz JM, Schweiger-Hufnagel U, Sihlbom C, Song E, Staples GO, Suckau D, Tang H, Thaysen-Andersen M, Viner RI, An Y, Valmu L, Wada Y, Watson M, Windwarder M, Whittal R, Wuhrer M, Zhu Y, Zou C. Interlaboratory study on differential analysis of protein glycosylation by mass spectrometry: the ABRF glycoprotein research multi-institutional study 2012. Mol Cell Proteomics 2013; 12:2935-51. [PMID: 23764502 PMCID: PMC3790302 DOI: 10.1074/mcp.m113.030643] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 06/11/2013] [Indexed: 11/06/2022] Open
Abstract
One of the principal goals of glycoprotein research is to correlate glycan structure and function. Such correlation is necessary in order for one to understand the mechanisms whereby glycoprotein structure elaborates the functions of myriad proteins. The accurate comparison of glycoforms and quantification of glycosites are essential steps in this direction. Mass spectrometry has emerged as a powerful analytical technique in the field of glycoprotein characterization. Its sensitivity, high dynamic range, and mass accuracy provide both quantitative and sequence/structural information. As part of the 2012 ABRF Glycoprotein Research Group study, we explored the use of mass spectrometry and ancillary methodologies to characterize the glycoforms of two sources of human prostate specific antigen (PSA). PSA is used as a tumor marker for prostate cancer, with increasing blood levels used to distinguish between normal and cancer states. The glycans on PSA are believed to be biantennary N-linked, and it has been observed that prostate cancer tissues and cell lines contain more antennae than their benign counterparts. Thus, the ability to quantify differences in glycosylation associated with cancer has the potential to positively impact the use of PSA as a biomarker. We studied standard peptide-based proteomics/glycomics methodologies, including LC-MS/MS for peptide/glycopeptide sequencing and label-free approaches for differential quantification. We performed an interlaboratory study to determine the ability of different laboratories to correctly characterize the differences between glycoforms from two different sources using mass spectrometry methods. We used clustering analysis and ancillary statistical data treatment on the data sets submitted by participating laboratories to obtain a consensus of the glycoforms and abundances. The results demonstrate the relative strengths and weaknesses of top-down glycoproteomics, bottom-up glycoproteomics, and glycomics methods.
Collapse
Affiliation(s)
- Nancy Leymarie
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Paula J. Griffin
- §Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts 02118
| | - Karen Jonscher
- ¶Department of Anesthesiology University of Colorado, Aurora, Colorado 80045
| | - Daniel Kolarich
- ‖Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, 14476, Germany
| | - Ron Orlando
- **Complex Carbohydrates Research Center, University of Georgia, Athens, Georgia, 30602
| | - Mark McComb
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Joseph Zaia
- From the ‡Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jennifer Aguilan
- §§Laboratory for Macromolecular Analysis and Proteomics Facility, Albert Einstein College of Medicine, Bronx, New York 10461
| | - William R. Alley
- ¶¶Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Friederich Altmann
- ‖‖Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1180, Austria
| | - Lauren E. Ball
- MUSC Proteomic Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Lipika Basumallick
- Applications Development, Dionex Products, Thermo Fisher Scientific, Sunnyvale, California 94085
| | | | - Henning Behnken
- Organic Chemistry, University of Hamburg, Hamburg, 20146, Germany
| | | | - Kristy J. Brown
- Center for Genetic Medicine, Children's National Medical Center, Washington, D.C. 20310
| | | | - Christopher W. Cairo
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Alberta Glycomics Centre, University of Alberta, Edmonton, T6G 2G2, Canada
| | - John F. Cipollo
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20993
| | - Rambod Daneshfar
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Alberta Glycomics Centre, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Richard R. Drake
- MUSC Proteomic Center, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Eden P. Go
- University of Kansas, Lawrence, Kansas 66045
| | - Radoslav Goldman
- Department of Oncology, Georgetown University, Washington, D.C. 20007
| | - Clemens Gruber
- ‖‖Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1180, Austria
| | - Adnan Halim
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 41345, Sweden
| | - Yetrib Hathout
- Center for Genetic Medicine, Children's National Medical Center, Washington, D.C. 20310
| | - Paul J. Hensbergen
- Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, Leiden, 233ZA, The Netherlands
| | - David M. Horn
- Thermo Fisher Scientific, San Jose, California 95134
| | - Deanna Hurum
- Applications Development, Dionex Products, Thermo Fisher Scientific, Sunnyvale, California 94085
| | | | - Göran Larson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 41345, Sweden
| | - Mellisa Ly
- Agilent Laboratories, Agilent Technologies, Santa Clara, California 95051
| | - Benjamin F. Mann
- ¶¶Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Bernd Meyer
- Organic Chemistry, University of Hamburg, Hamburg, 20146, Germany
| | - Uwe Möginger
- ‖Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, 14476, Germany
| | | | - Jonas Nilsson
- Department of Clinical Chemistry and Transfusion Medicine, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, 41345, Sweden
| | - Milos V. Novotny
- ¶¶Department of Chemistry, Indiana University, Bloomington, Indiana 47405
| | - Julius O. Nyalwidhe
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Nicolle H. Packer
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Petr Pompach
- Department of Oncology, Georgetown University, Washington, D.C. 20007
| | - Bela Reiz
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | | | - Jeffrey S. Rohrer
- Applications Development, Dionex Products, Thermo Fisher Scientific, Sunnyvale, California 94085
| | | | - Miloslav Sanda
- Department of Oncology, Georgetown University, Washington, D.C. 20007
| | - Jan Mirco Schulz
- Organic Chemistry, University of Hamburg, Hamburg, 20146, Germany
| | | | - Carina Sihlbom
- Proteomics Core Facility, Gothenburg University, Gothenburg, 413 90, Sweden
| | - Ehwang Song
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409
| | - Gregory O. Staples
- Agilent Laboratories, Agilent Technologies, Santa Clara, California 95051
| | | | - Haixu Tang
- School of informatics, Indiana University, Bloomington, Indiana 47405
| | - Morten Thaysen-Andersen
- Biomolecular Frontiers Research Centre, Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Rosa I. Viner
- Thermo Fisher Scientific, San Jose, California 95134
| | - Yanming An
- Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20993
| | - Leena Valmu
- Finnish Red Cross Blood Service, Helsinki, 00310, Finland
| | - Yoshinao Wada
- Research Institute, Osaka Medical Center for Maternal and Child Health, Izumi, Osaka, 594–1101, Japan
| | - Megan Watson
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr Cancer Research Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Markus Windwarder
- ‖‖Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, A-1180, Austria
| | - Randy Whittal
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
| | - Manfred Wuhrer
- Biomolecular Mass Spectrometry Unit, Leiden University Medical Center, Leiden, 233ZA, The Netherlands
| | - Yiying Zhu
- Department of Chemistry, Brown University, Providence, Rhode Island 02912
| | - Chunxia Zou
- Department of Chemistry, University of Alberta, Edmonton, T6G 2G2, Canada
- Alberta Glycomics Centre, University of Alberta, Edmonton, T6G 2G2, Canada
| |
Collapse
|
41
|
Giménez E, Sanz-Nebot V, Rizzi A. Relative quantitation of glycosylation variants by stable isotope labeling of enzymatically released N-glycans using [12C]/[13C] aniline and ZIC-HILIC-ESI-TOF-MS. Anal Bioanal Chem 2013; 405:7307-19. [DOI: 10.1007/s00216-013-7178-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 06/20/2013] [Accepted: 06/25/2013] [Indexed: 10/26/2022]
|
42
|
Novotny MV, Alley WR. Recent trends in analytical and structural glycobiology. Curr Opin Chem Biol 2013; 17:832-40. [PMID: 23790311 DOI: 10.1016/j.cbpa.2013.05.029] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/22/2022]
Abstract
The great complexity of glycosylated biomolecules necessitates a set of powerful analytical methodologies to reveal functionally important structural features. Mass spectrometry (MS), with its different ionization techniques, mass analyzers, and detection strategies, has become the most important analytical method in glycomic and glycoproteomic investigations. In combination with MS, microscale separations (based on capillary chromatography and electrophoresis) and carbohydrate microchemistry, we feature here conceptually important applications of the recent years. This review focuses on methodological advances pertaining to disease biomarker research, immunology, developmental biology, and measurements of importance to biopharmaceuticals. High-sensitivity determinations and sample enrichment/preconcentration are particularly emphasized in glycomic and glycoproteomic profiling.
Collapse
Affiliation(s)
- Milos V Novotny
- Department of Chemistry, Indiana University, Bloomington, IN 47405, United States.
| | | |
Collapse
|
43
|
Smith DF, Cummings RD. Application of microarrays for deciphering the structure and function of the human glycome. Mol Cell Proteomics 2013; 12:902-12. [PMID: 23412570 DOI: 10.1074/mcp.r112.027110] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glycan structures were defined historically using multiple methods to determine composition, sequence, linkage, and anomericity of component monosaccharides. Such approaches have been replaced by more sensitive MS methods to profile or predict glycan structures, but these methods are limited in their ability to completely define glycan structures. Glycan-binding proteins, including lectins and antibodies, have been found to have exquisite binding specificities that can provide information about glycan structures. Here, we show glycan-binding proteins can be used along with MS to help define glycan linkages and other determinants in unknown glycans printed as shotgun glycan microarrays.
Collapse
Affiliation(s)
- David F Smith
- Department of Biochemistry and Glycomics Center, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | |
Collapse
|
44
|
Shetty V, Philip R. Mass Spectrometry Investigation of Glycosylation Aberration via De-N-Glycopeptide Analysis. Aust J Chem 2013. [DOI: 10.1071/ch13159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteomics research on glycan alterations has received great attention owing to their implications in disease initiation and progression. Determination of the glycoprotein expression remains one of the most challenging tasks as the glycan residues in a given glycoprotein exist in complex branched structures and differ in linkage. In view of the vital role of glycan changes in cellular processes and disease progression, there has been an increased interest in developing methodologies for the detection of these changes. A subset of proteomics methods are discussed here that demonstrate the utility of the glycan-free de-N-glycopeptide analysis for the screening of complex glycoproteome as well as discovery of glycopeptide/glycoprotein biomarkers.
Collapse
|
45
|
Vasseur JA, Goetz JA, Alley WR, Novotny MV. Smoking and lung cancer-induced changes in N-glycosylation of blood serum proteins. Glycobiology 2012; 22:1684-708. [PMID: 22781126 DOI: 10.1093/glycob/cws108] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Glycosylation is a key post-translational protein modification which appears important in malignant transformation and tumor metastasis. Abnormal glycosylation of different proteins can often be measured in the blood serum. In this study, we extend our serum-based structural investigations to samples provided by patients diagnosed with lung cancer, paying particular attention to the effects of smoking on the serum glycomic traces. Following a battery of glycomic tests, we find that several fucosylated tetra-antennary structures with varying degrees of sialylation are increased in their abundances in control samples provided by the former smokers, with further elevations in the lung cancer patients who were former smokers. Further detailed investigations demonstrated that the level of outer-arm fucosylation was elevated in the control samples of the former smokers and again in the lung cancer samples provided by the former smokers. This trend was particularly noticeable for the tri- and tetra-antennary structures. Different ratios of sialylation linkages were also observed that could be correlated with the different states of health and smoking status. Decreases in the abundance levels of isomers with two and three α2,3-linked sialic acids and an increased abundance of an isomer with two α2,6-linked sialic acids were noted for a fucosylated tri-sialylated tri-antennary glycan. These results demonstrate the long-term effects of smoking on glycomic profiles and that this factor needs to be considered in these and other serum-based analyses.
Collapse
|