1
|
Mantry S, Behera A, Pradhan S, Mohanty L, Kumari R, Singh A, Yadav MK. Polysaccharide-based chondroitin sulfate macromolecule loaded hydrogel/scaffolds in wound healing- A comprehensive review on possibilities, research gaps, and safety assessment. Int J Biol Macromol 2024; 279:135410. [PMID: 39245102 DOI: 10.1016/j.ijbiomac.2024.135410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Wound healing is an intricate multifactorial process that may alter the extent of scarring left by the wound. A substantial portion of the global population is impacted by non-healing wounds, imposing significant financial burdens on the healthcare system. The conventional dosage forms fail to improve the condition, especially in the presence of other morbidities. Thus, there is a pressing requirement for a type of wound dressing that can safeguard the wound site and facilitate skin regeneration, ultimately expediting the healing process. In this context, Chondroitin sulfate (CS), a sulfated glycosaminoglycan material, is capable of hydrating tissues and further promoting the healing. Thus, this comprehensive review article delves into the recent advancement of CS-based hydrogel/scaffolds for wound healing management. The article initially summarizes the various physicochemical characteristics and sources of CS, followed by a brief understanding of the importance of hydrogel and CS in tissue regeneration processes. This is the first instance of such a comprehensive summarization of CS-based hydrogel/scaffolds in wound healing, focusing more on the mechanistic wound healing process, furnishing the recent innovations and toxicity profile. This contemporary review provides a profound acquaintance of strategies for contemporary challenges and future direction in CS-based hydrogel/scaffolds for wound healing.
Collapse
Affiliation(s)
- Shubhrajit Mantry
- Department of Pharmaceutics, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India.
| | - Ashutosh Behera
- Department of Pharmaceutical Quality Assurance, Department of Pharmacy, Sarala Birla University, Birla Knowledge City, Ranchi 835103, Jharkhand, India; Department of Pharmaceutical Quality Assurance, Florence College of Pharmacy, IRBA, Ranchi, 835103, Jharkhand, India
| | - Shaktiprasad Pradhan
- Department of Pharmaceutical Chemistry, Koustuv Research Institute of Medical Science (KRIMS), Koustuv Technical Campus, Patia, Bhubaneswar, Odisha 751024, India
| | - Lalatendu Mohanty
- Department of Pharmacology, Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Tehri Garhwal, Uttarakhand 24916, India
| | - Ragni Kumari
- School of Pharmacy, LNCT University, Bhopal 462022, Madhya Pradesh, India
| | - Ankita Singh
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| | - Mahesh Kumar Yadav
- Department of Pharmacy, Faculty of Medical Science & Research (FMSR), Sai Nath University, Ranchi, Jharkhand 835219, India
| |
Collapse
|
2
|
Faheem S, Hameed H, Paiva-Santos AC, Khan MA, Ghumman SA, Hameed A. The role of chondroitin sulphate as a potential biomaterial for hepatic tissue regeneration: A comprehensive review. Int J Biol Macromol 2024; 280:136332. [PMID: 39482129 DOI: 10.1016/j.ijbiomac.2024.136332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/26/2024] [Accepted: 10/03/2024] [Indexed: 11/03/2024]
Abstract
Chondroitin sulphate is an anionic hetero-polysaccharide, having numerous structural affinities for building the bio-active components. In addition to biodegradable/biocompatible activities, chondroitin sulphate also possesses anti-coagulant/anti-thrombogenic, anti-inflammatory, anti-oxidant as well as anti-tumor activities. Chondroitin sulphate has an inherited affinity for glycosylation enzymes and receptors, which are overexpressed over degenerated cells and organelles. Because of this affinity, chondroitin sulphate is nominated as an active cellular/subcellular targeted biological macromolecule to assist in site-specific delivery. Chondroitin sulphate is mainly considered a promising biomaterial for drug targeting and tissue engineering due to its specific physicochemical, mechanical, bio-degradation, and biological characteristics. In this review, the fundamental applications of chondroitin sulphate in hepatic tissue engineering are discussed. Chondroitin sulphate along with mesenchymal stem cells (MSCs) based scaffold and hydrogels for biopharmaceuticals' delivery in hepatic tissue engineering are critically discussed. In addition, the manuscript also describes leading features and markers involved in hepatic damage, and the potential role of chondroitin sulphate-based delivery systems in hepatic tissue engineering.
Collapse
Affiliation(s)
- Saleha Faheem
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Mahtab Ahmad Khan
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan.
| | | | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore 54000, Pakistan.
| |
Collapse
|
3
|
Domínguez Vera PA, Carrasco Páez L. Controversy about the use and financing of SYSADOA for osteoarthritis in Spain: An analysis of the scientific-social debate in the media. REUMATOLOGIA CLINICA 2024; 20:416-422. [PMID: 39332993 DOI: 10.1016/j.reumae.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/02/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND AND OBJECTIVE The use of SYmptomatic Slow-Acting Drugs for Osteoarthritis (SYSADOA) in the treatment of osteoarthritis (OA) has been a topic of debate in the scientific community and public entities regarding their public financing in Spain. The objective of this study was to describe and analyse the main positions of media outlets, public entities, regarding the use and financing of SYSADOA in Spain. METHODS A qualitative and quantitative analysis of the content regarding the use and financing of SYSADOA was conducted in general media outlets (El País, El Mundo, La Vanguardia, ABC, and 20minutos), public statements, and Twitter publications. RESULTS A total of 15 articles in general media outlets, 872 tweets, and 7 public entity statements were identified. Mostly, media outlets (91%) and social media platforms (78%) exhibited a favorable trend towards funding. DISCUSSION AND CONCLUSIONS The use of SYSADOA in OA patients continues to be controversial in the scientific community. However, there is consensus among patient associations in favour of public funding and use as a treatment for OA patients.
Collapse
Affiliation(s)
- Pedro Alfonso Domínguez Vera
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, Sevilla, Spain; Servicio de Medicina Física Rehabilitación y Reumatología, Hospital Universitario Punta de Europa, Cádiz, Spain; Departamento de Educación Física y Educación, Facultad de Educación, Universidad de Sevilla, Sevilla, Spain.
| | - Luis Carrasco Páez
- Departamento de Educación Física y Educación, Facultad de Educación, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
4
|
Mariné-Casadó R, Domenech-Coca C, Fernández S, Costa A, Segarra S, López-Andreo MJ, Puiggròs F, Cerón JJ, Martínez-Puig D, Soler C, Sifre V, Serra CI, Caimari A. Effects of the oral administration of glycosaminoglycans with or without native type II collagen on the articular cartilage transcriptome in an osteoarthritic-induced rabbit model. GENES & NUTRITION 2024; 19:19. [PMID: 39232650 PMCID: PMC11375882 DOI: 10.1186/s12263-024-00749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND In a previous study, the 84-day administration of glycosaminoglycans (GAGs), with or without native collagen type II (NC), in an osteoarthritis (OA)-induced rabbit model slowed down OA progression, improved several micro- and macroscopic parameters and magnetic resonance imaging (MRI) biomarkers in cartilage, and increased hyaluronic acid levels in synovial fluid. To elucidate the potential underlying mechanisms, a transcriptomics approach was conducted using medial femoral condyle and trochlea samples. RESULTS The administration of chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), and hyaluronic acid (HA), with (CGH-NC) or without (CGH) NC, strongly modulated several genes involved in chondrocyte extracellular matrix (ECM) remodeling and homeostasis when compared to non-treated rabbits (CTR group). Notably, both treatments shared the main mechanism of action, which was related to ECM modulation through the down-regulation of genes encoding proteolytic enzymes, such as ADAM metallopeptidase with thrombospondin type 1 motif, 9 (Adamts9), and the overexpression of genes with a relevant role in the synthesis of ECM components, such as aggrecan (Acan) in both CGH-NC and CGH groups, and fibronectin 1 (Fn1) and collagen type II, alpha 1 (Col2A1) in the CGH group. Furthermore, there was a significant modulation at the gene expression level of the mTOR signaling pathway, which is associated with the regulation of the synthesis of ECM proteolytic enzymes, only in CGH-NC-supplemented rabbits. This modulation could account for the better outcomes concerning the microscopic and macroscopic evaluations reported in these animals. CONCLUSIONS In conclusion, the expression of key genes involved in chondrocyte ECM remodeling and homeostasis was significantly modulated in rabbits in response to both CGH and CGH-NC treatments, which would partly explain the mechanisms by which these therapies exert beneficial effects against OA.
Collapse
Affiliation(s)
- Roger Mariné-Casadó
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, 43204, Spain
| | - Cristina Domenech-Coca
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, 43204, Spain
| | - Salvador Fernández
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit, Universitat Rovira i Virgili-EURECAT, Reus, 43204, Spain
| | - Andrea Costa
- Eurecat, Centre Tecnològic de Catalunya, Technological Unit of Nutrition and Health, Reus, 43204, Spain
| | - Sergi Segarra
- R&D Bioiberica S.A.U., Esplugues de Llobregat, 08950, Spain
| | - Maria José López-Andreo
- Servicio de Investigación Biosanitaria, Área Científica y Técnica de Investigación (ACTI), Universidad de Murcia, Murcia, 30100, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus, 43204, Spain
| | - José Joaquín Cerón
- Interlab-UMU, Campus de Excelencia "Mare Nostrum", University of Murcia, Campus Espinardo, Murcia, 30071, Spain
| | | | - Carme Soler
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46002, Spain
| | - Vicente Sifre
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46002, Spain
| | - Claudio Iván Serra
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, 46002, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, Reus, 43204, Spain.
| |
Collapse
|
5
|
Tithi AD, Song Y, Paskaleva E, Koffas M. Biosynthesis of animal-free recombinant chondroitin sulfate E using a functional chondroitin sulfotransferase in E. coli. Appl Microbiol Biotechnol 2024; 108:440. [PMID: 39145804 PMCID: PMC11327189 DOI: 10.1007/s00253-024-13275-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/22/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Chondroitin sulfate E (CS-E) is a vital sulfated glycosaminoglycan with diverse biological functions and therapeutic potential. This study marks a significant milestone by achieving the first successful microbial production of chondroitin 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) in Escherichia coli, enabling recombinant CS-E biosynthesis. Initially, we identified sulfotransferases capable of converting chondroitin sulfate A (CS-A) to CS-E, but these enzymes were non-functional when expressed in E. coli. Moreover, there is no experimentally derived three-dimensional structure available for this specific sulfotransferase in the protein databases. To overcome this challenge, we developed a 3D model of GalNAc4S-6ST using AlphaFold2 and employed PROSS stability design to identify mutations that enhance enzyme solubility and stability with different N-terminal truncations. Experimental validation of these mutations led to the identification of several functional enzymes. Among various E. coli strains tested for enzyme expression, Origami B (DE3) emerged as the most effective host. This facilitated the enzymatic conversion of CS-A to CS-E, achieving a conversion rate of over 50%, and marking the first successful biosynthesis of animal-free CS-E. These findings represent a significant advancement towards the large-scale synthesis of CS-E using cost-effective carbon sources, offering a sustainable alternative to traditional sourcing from endangered animals like sharks. KEY POINTS: • Functional expression of GalNAc4S-6ST in a simple prokaryote was accomplished. • First-time biosynthesis of animal-free chondroitin sulfate E was accomplished.
Collapse
Affiliation(s)
- Aditi Dey Tithi
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- Department of Chemical and Biological Engineering, Troy, NY, USA
| | - Yuefan Song
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Elena Paskaleva
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos Koffas
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
- Department of Chemical and Biological Engineering, Troy, NY, USA.
| |
Collapse
|
6
|
Li X, Zhou Y, Chen X, Wang H, Yang S, Yang J, Song Y, Zhao Z, Zhang H, Wu L. Semi-synthetic chondroitin sulfate CS-semi5 upregulates miR-122-5p, conferring a therapeutic effect on osteoarthritis via the p38/MMP13 pathway. Acta Pharm Sin B 2024; 14:3528-3542. [PMID: 39220883 PMCID: PMC11365380 DOI: 10.1016/j.apsb.2024.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/21/2024] [Accepted: 04/18/2024] [Indexed: 09/04/2024] Open
Abstract
Osteoarthritis (OA) is an aging-associated disease characterized by joint stiffness pain and destroyed articular cartilage. Traditional treatments for OA are limited to alleviating various OA symptoms. There is a lack of drugs available in clinical practice that can truly repair cartilage damage. Here, we developed the chondroitin sulfate analog CS-semi5, semi-synthesized from chondroitin sulfate A. In vivo, CS-semi5 alleviated inflammation, provided analgesic effects, and protected cartilage in the modified Hulth OA rat model and papain-induced OA rat model. A bioinformatics analysis was performed on samples from OA patients and an exosome analysis on papain-induced OA rats, revealing miR-122-5p as the key regulator associated with CS-semi5 in OA treatment. Binding prediction revealed that miR-122-5p acted on the 3'-untranslated region of p38 mitogen-activated protein kinase, which was related to MMP13 regulation. Subsequent in vitro experiments revealed that CS-semi5 effectively reduced cartilage degeneration and maintained matrix homeostasis by inhibiting matrix breakdown through the miR-122-5p/p38/MMP13 axis, which was further validated in the articular cartilage of OA rats. This is the first study to investigate the semi-synthesized chondroitin sulfate CS-semi5, revealing its cartilage-protecting, anti-inflammatory, and analgesic properties that show promising therapeutic effects in OA via the miR-122-5p/p38/MMP13 pathway.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ya Zhou
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xuefeng Chen
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hongjun Wang
- Tide Pharmaceutical Co., Ltd., Beijing 100176, China
| | - Shuang Yang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jun Yang
- Tide Pharmaceutical Co., Ltd., Beijing 100176, China
| | | | - Zhehui Zhao
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Haijing Zhang
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Lianqiu Wu
- State Key Laboratory of Digestive Health, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
7
|
Tarantino D, Forte AM, Picone A, Sirico F, Ruosi C. The Effectiveness of a Single Hyaluronic Acid Injection in Improving Symptoms and Muscular Strength in Patients with Knee Osteoarthritis: A Multicenter, Retrospective Study. J Pers Med 2024; 14:784. [PMID: 39201976 PMCID: PMC11355087 DOI: 10.3390/jpm14080784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 09/03/2024] Open
Abstract
Knee osteoarthritis (KOA) is a progressive and multifactorial disease that leads to joint pain, muscle weakness, physical disability, and decreased quality of life. In KOA, the quantity of hyaluronic acid (HA) and the molecular weight (MW) are decreased, leading to joint pain due to increased wear of the knee articular cartilage. Arthrogenic muscle inhibition, which is usually found in patients with KOA, is associated with joint inflammation, pain, and swelling, also causing muscle atrophy, primarily of the anterior thigh muscles, and hindering the rehabilitation process. The aim of our work was to determine if a single HA infiltration could minimize the effects of arthrogenic muscle inhibition in patients with KOA in the short term, using isokinetic dynamometry to evaluate the strength of the knee extensor and flexor muscles of the thigh. Thirty patients with KOA who underwent both clinical and isokinetic assessment, and that received a single injection of HA, were retrospectively included. Our results showed that a single intra-articular injection of HA significantly reduces pain and improves joint function at four weeks, while non-statistically significant improvements were observed for the reference isokinetic parameter (maximum torque) at both 90°/s and 180°/s. Further high-quality studies are necessary to confirm the results of our study.
Collapse
Affiliation(s)
- Domiziano Tarantino
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (F.S.); (C.R.)
| | | | - Antonio Picone
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (F.S.); (C.R.)
| | - Felice Sirico
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (F.S.); (C.R.)
| | - Carlo Ruosi
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (A.P.); (F.S.); (C.R.)
| |
Collapse
|
8
|
Pham DA, Wang CS, Séguy L, Zhang H, Benbabaali S, Faivre J, Sim S, Xie G, Olszewski M, Rabanel JM, Moldovan F, Matyjaszewski K, Banquy X. Bioinspired Bottlebrush Polymers Effectively Alleviate Frictional Damage Both In Vitro and In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401689. [PMID: 38552182 DOI: 10.1002/adma.202401689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Indexed: 04/09/2024]
Abstract
Bottlebrush polymers (BB) have emerged as compelling candidates for biosystems to face tribological challenges, including friction and wear. This study provides a comprehensive assessment of an engineered triblock BB polymer's affinity, cell toxicity, lubrication, and wear protection in both in vitro and in vivo settings, focusing on applications for conditions like osteoarthritis and dry eye syndrome. Results show that the designed polymer rapidly adheres to various surfaces (e.g., cartilage, eye, and contact lens), forming a robust, biocompatible layer for surface lubrication and protection. The tribological performance and biocompatibility are further enhanced in the presence of hyaluronic acid (HA) both in vitro and in vivo. The exceptional lubrication performance and favorable interaction with HA position the synthesized triblock polymer as a promising candidate for innovative treatments addressing deficiencies in bio-lubricant systems.
Collapse
Affiliation(s)
- Duy Anh Pham
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Chang-Sheng Wang
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Line Séguy
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
- Research Center of CHU Sainte-Justine, University of Montreal, Montréal, QC, H3T 1C5, Canada
| | - Hu Zhang
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Sabrina Benbabaali
- Faculté des Sciences et Ingénierie, Sorbonne University, Paris, 75005, France
| | - Jimmy Faivre
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Sotcheadt Sim
- Biomomentum Inc, 1980 rue Michelin, Laval, Québec, H7L 5C2, Canada
| | - Guojun Xie
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Mateusz Olszewski
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Jean-Michel Rabanel
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
| | - Florina Moldovan
- Research Center of CHU Sainte-Justine, University of Montreal, Montréal, QC, H3T 1C5, Canada
| | | | - Xavier Banquy
- Faculty of Pharmacy, University of Montreal, Montréal, Québec, H3T 1J4, Canada
- Institute of Biomedical Engineering, Faculty of Medicine, University of Montreal, Montréal, QC, H3C 3J7, Canada
- Department of Chemistry, Faculty of Arts and Science, University of Montreal, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
9
|
Górniewicz M, Wnuk D, Foryś A, Trzebicka B, Michalik M, Kepczynski M. Chondroitin Sulfate-Based Nanocapsules as Nanocarriers for Drugs and Nutraceutical Supplements. Int J Mol Sci 2024; 25:5897. [PMID: 38892083 PMCID: PMC11172538 DOI: 10.3390/ijms25115897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.
Collapse
Affiliation(s)
- Magdalena Górniewicz
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Prof. S. Łojasiewicza 11, 30-348 Krakow, Poland
| | - Dawid Wnuk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (M.M.)
| | - Aleksander Foryś
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (A.F.); (B.T.)
| | - Marta Michalik
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (D.W.); (M.M.)
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
| |
Collapse
|
10
|
Tian Z, Jiang F, Zhu S. Quantitative determination of chondroitin sulfate with various molecular weights in raw materials by pre-column derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Food Chem 2024; 440:138273. [PMID: 38154285 DOI: 10.1016/j.foodchem.2023.138273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 12/30/2023]
Abstract
A simple and reliable HPLC method was developed for quantification of chondroitin sulfate (CS). The procedure is based on precolumn hydrolysis of CS to liberate galactosamine and subsequent derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Hydrolysis and derivatization conditions were optimized. A linear correlation coefficient of 0.9999 was calculated within the range of 10-1500 μg/mL from the standard curve. The method produces good precision and good accuracy (100.75 % recovery). An advantage over other common methods is its ability to quantify CS of all molecular weights and structures, as evidenced by the determination of CS fractions with narrow molecular weight distributions obtained through depolymerization by different methods, while enzymatic HPLC was proven to be infeasible. Extraction recoveries of CS from monosaccharide mixed samples were > 93 %. The reliability was also validated by a small difference (-1.95 % to 4.12 %) relative to enzymatic HPLC results in analysing representative CS samples of different animal origins and suppliers.
Collapse
Affiliation(s)
- Zhiqing Tian
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Fan Jiang
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shuifang Zhu
- Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| |
Collapse
|
11
|
Huang Y, Zhang Z, Tong H, Qin W, Li Q, Ma L, Ren Z, Chen W, Zhang Y, Zhong Y, Yao L, Zhou P. Chondroitin polymerizing factor promotes development and progression of colorectal cancer via facilitating transcription of VEGFB. J Cell Mol Med 2024; 28:e18268. [PMID: 38775031 PMCID: PMC11109815 DOI: 10.1111/jcmm.18268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 05/24/2024] Open
Abstract
Colorectal cancer (CRC) is a highly prevalent malignancy affecting the digestive system on a global scale. This study aimed to explore the previously unexplored role of CHPF in the progression of CRC. Our results revealed a significant upregulation of CHPF expression in CRC tumour tissues compared to normal tissues, with its levels correlating with tumour malignancy. In vitro experiments using CRC cell lines demonstrated that inhibiting CHPF expression suppressed cell proliferation, colony formation and cell migration, while promoting apoptosis. Conversely, overexpressing CHPF had the opposite effect. Additionally, our xenograft models in mice confirmed the inhibitory impact of CHPF knockdown on CRC progression using various cell models. Mechanistic investigations unveiled that CHPF may enhance VEGFB expression through E2F1-mediated transcription. Functionally, suppressing VEGFB expression successfully mitigated the oncogenic effects induced by CHPF overexpression. Collectively, these findings suggest that CHPF may act as a tumour promoter in CRC, operating in a VEGFB-dependent manner and could be a potential target for therapeutic interventions in CRC treatment.
Collapse
Affiliation(s)
- Yuan Huang
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhen Zhang
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Hanxing Tong
- Department of General Surgery, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Wenzheng Qin
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Quanlin Li
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Lili Ma
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Zhong Ren
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Weifeng Chen
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yiqun Zhang
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Yunshi Zhong
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Liqing Yao
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Pinghong Zhou
- Shanghai Collaborative Innovation Center of Endoscopy, Endoscopy Center and Endoscopy Research Institute, Zhongshan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
12
|
Yuan Q, Shi X, Ma H, Yao Y, Zhang B, Zhao L. Recent progress in marine chondroitin sulfate, dermatan sulfate, and chondroitin sulfate/dermatan sulfate hybrid chains as potential functional foods and therapeutic agents. Int J Biol Macromol 2024; 262:129969. [PMID: 38325688 DOI: 10.1016/j.ijbiomac.2024.129969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Chondroitin sulfate (CS), dermatan sulfate (DS), and CS/DS hybrid chains are natural complex glycosaminoglycans with high structural diversity and widely distributed in marine organisms, such as fish, shrimp, starfish, and sea cucumber. Numerous CS, DS, and CS/DS hybrid chains with various structures and activities have been obtained from marine animals and have received extensive attention. However, only a few of these hybrid chains have been well-characterized and commercially developed. This review presents information on the extraction, purification, structural characterization, biological activities, potential action mechanisms, and structure-activity relationships of marine CS, DS, and CS/DS hybrid chains. We also discuss the challenges and perspectives in the research of CS, DS, and CS/DS hybrid chains. This review may provide a useful reference for the further investigation, development, and application of CS, DS, and CS/DS hybrid chains in the fields of functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Qingxia Yuan
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Xiang Shi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Haiqiong Ma
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Yue Yao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Longyan Zhao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China; Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| |
Collapse
|
13
|
Wang Y, Ma M, Dai W, Shang Q, Yu G. Bacteroides salyersiae is a potent chondroitin sulfate-degrading species in the human gut microbiota. MICROBIOME 2024; 12:41. [PMID: 38419055 PMCID: PMC10902947 DOI: 10.1186/s40168-024-01768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/19/2024] [Indexed: 03/02/2024]
Abstract
Chondroitin sulfate (CS) has widely been used as a symptomatic slow-acting drug or a dietary supplement for the treatment and prevention of osteoarthritis. However, CS could not be absorbed after oral intake due to its polyanionic nature and large molecular weight. Gut microbiota has recently been proposed to play a pivotal role in the metabolism of drugs and nutrients. Nonetheless, how CS is degraded by the human gut microbiota has not been fully characterized. In the present study, we demonstrated that each human gut microbiota was characterized with a unique capability for CS degradation. Degradation and fermentation of CS by the human gut microbiota produced significant amounts of unsaturated CS oligosaccharides (CSOSs) and short-chain fatty acids. To uncover which microbes were responsible for CS degradation, we isolated a total of 586 bacterial strains with a potential CS-degrading capability from 23 human fecal samples. Bacteroides salyersiae was a potent species for CS degradation in the human gut microbiota and produced the highest amount of CSOSs as compared to other well-recognized CS-degraders, including Bacteroides finegoldii, Bacteroides thetaiotaomicron, Bacteroides xylanisolvens, and Bacteroides ovatus. Genomic analysis suggested that B. salyersiae was armed with multiple carbohydrate-active enzymes that could potentially degrade CS into CSOSs. By using a spent medium assay, we further demonstrated that the unsaturated tetrasaccharide (udp4) produced by the primary degrader B. salyersiae could serve as a "public goods" molecule for the growth of Bacteroides stercoris, a secondary CS-degrader that was proficient at fermenting CSOSs but not CS. Taken together, our study provides insights into the metabolism of CS by the human gut microbiota, which has promising implications for the development of medical and nutritional therapies for osteoarthritis. Video Abstract.
Collapse
Affiliation(s)
- Yamin Wang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Mingfeng Ma
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Wei Dai
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China
| | - Qingsen Shang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China.
- Qingdao Marine Biomedical Research Institute, Qingdao, 266071, China.
| | - Guangli Yu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Drugs and Bioproducts, Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
14
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
15
|
Ago Y, Rintz E, Musini KS, Ma Z, Tomatsu S. Molecular Mechanisms in Pathophysiology of Mucopolysaccharidosis and Prospects for Innovative Therapy. Int J Mol Sci 2024; 25:1113. [PMID: 38256186 PMCID: PMC10816168 DOI: 10.3390/ijms25021113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Mucopolysaccharidoses (MPSs) are a group of inborn errors of the metabolism caused by a deficiency in the lysosomal enzymes required to break down molecules called glycosaminoglycans (GAGs). These GAGs accumulate over time in various tissues and disrupt multiple biological systems, including catabolism of other substances, autophagy, and mitochondrial function. These pathological changes ultimately increase oxidative stress and activate innate immunity and inflammation. We have described the pathophysiology of MPS and activated inflammation in this paper, starting with accumulating the primary storage materials, GAGs. At the initial stage of GAG accumulation, affected tissues/cells are reversibly affected but progress irreversibly to: (1) disruption of substrate degradation with pathogenic changes in lysosomal function, (2) cellular dysfunction, secondary/tertiary accumulation (toxins such as GM2 or GM3 ganglioside, etc.), and inflammatory process, and (3) progressive tissue/organ damage and cell death (e.g., skeletal dysplasia, CNS impairment, etc.). For current and future treatment, several potential treatments for MPS that can penetrate the blood-brain barrier and bone have been proposed and/or are in clinical trials, including targeting peptides and molecular Trojan horses such as monoclonal antibodies attached to enzymes via receptor-mediated transport. Gene therapy trials with AAV, ex vivo LV, and Sleeping Beauty transposon system for MPS are proposed and/or underway as innovative therapeutic options. In addition, possible immunomodulatory reagents that can suppress MPS symptoms have been summarized in this review.
Collapse
Affiliation(s)
- Yasuhiko Ago
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Estera Rintz
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, 80-308 Gdansk, Poland;
| | - Krishna Sai Musini
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Zhengyu Ma
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
| | - Shunji Tomatsu
- Nemours Children’s Health, 1600 Rockland Rd., Wilmington, DE 19803, USA; (Y.A.); (K.S.M.); (Z.M.)
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Department of Pediatrics, Graduate School of Medicine, Gifu University, Gifu 501-1112, Japan
- Department of Pediatrics, Thomas Jefferson University, Philadelphia, PA 19144, USA
| |
Collapse
|
16
|
Liu Y, Yao J, Deng G, Zhong G, Zhao J, Lan Q, Meng J, Yu Y, Chen F. Microgel Encapsulated Nanoparticles for Intra-articular Disulfiram Delivery to Treat Osteoarthritis. Mol Pharm 2024; 21:87-101. [PMID: 38100656 DOI: 10.1021/acs.molpharmaceut.3c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Osteoarthritis (OA) affects numerous patients worldwide, and there are no approved disease-modifying drugs. Repurposing FDA-approved small molecular drugs could be a promising alternative strategy to treat OA. Disulfiram (DSF), a clinically approved drug for treatment of alcoholism, inhibits inflammasome activation and exhibits a protective role in interleukin-1β-induced cardiac injury. However, its efficacy in treating OA remains to be explored due to its poor water solubility and stability, which limit its use in OA treatment. Here, the anti-inflammatory effect of DSF is evaluated in vitro, and a double-layer encapsulation approach is developed for intra-articular delivery of DSF for OA treatment in vivo. DSF is loaded into poly(lactic-co-glycolic acid)-based nanoparticles and encapsulated in gelatin methacrylate microgels through a microfluidic device. Results show that DSF effectively inhibits the expression of key inflammatory cytokines in OA chondrocytes, and the double-layer encapsulation approach reduces the burst release of DSF and prolongs its retention time in the in vitro study. Sustained release of DSF from microgels mitigates cartilage inflammation and subchondral bone erosion in a monoiodoacetate-induced rat OA model. This work demonstrates the potential of repurposing FDA-approved drugs for OA treatment and provides a promising platform for intra-articular delivery of small molecules for superior therapeutic effect.
Collapse
Affiliation(s)
- Yisi Liu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Jun Yao
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Guotao Deng
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Gang Zhong
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jianping Zhao
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiumei Lan
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinzhi Meng
- Department of Bone and Joint Surgery & Guangxi Key Laboratory of Regenerative Medicine, International Joint Laboratory on Regeneration of Bone and Soft Tissue, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yin Yu
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Fei Chen
- Center for Materials Synthetic Biology, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
17
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
18
|
Shen Q, Guo Y, Wang K, Zhang C, Ma Y. A Review of Chondroitin Sulfate's Preparation, Properties, Functions, and Applications. Molecules 2023; 28:7093. [PMID: 37894574 PMCID: PMC10609508 DOI: 10.3390/molecules28207093] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Chondroitin sulfate (CS) is a natural macromolecule polysaccharide that is extensively distributed in a wide variety of organisms. CS is of great interest to researchers due to its many in vitro and in vivo functions. CS production derives from a diverse number of sources, including but not limited to extraction from various animals or fish, bio-synthesis, and fermentation, and its purity and homogeneity can vary greatly. The structural diversity of CS with respect to sulfation and saccharide content endows this molecule with distinct complexity, allowing for functional modification. These multiple functions contribute to the application of CS in medicines, biomaterials, and functional foods. In this article, we discuss the preparation of CS from different sources, the structure of various forms of CS, and its binding to other relevant molecules. Moreover, for the creation of this article, the functions and applications of CS were reviewed, with an emphasis on drug discovery, hydrogel formation, delivery systems, and food supplements. We conclude that analyzing some perspectives on structural modifications and preparation methods could potentially influence future applications of CS in medical and biomaterial research.
Collapse
Affiliation(s)
- Qingshan Shen
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kangyu Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanli Ma
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Changjiang Road 80, Nanyang 473004, China
| |
Collapse
|
19
|
Tamimi I, García-Meléndez G, Vieitez-Riestra I, Palacios-Penedo S, Garceso DM, Sanchez A, Tamimi F, Guerado E, Milner MSD, de Quevedo DG, Gonzalez-Quevedo D. The Use of β-Blockers and the Risk of Undergoing a Knee Arthroplasty: A Nested Case-Control Study. J Bone Joint Surg Am 2023; 105:1494-1501. [PMID: 37669477 DOI: 10.2106/jbjs.22.01189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
BACKGROUND Research has indicated that β-blockers may downregulate various inflammatory mediators that are involved in osteoarthritis (OA). The objective of this study was to analyze the likelihood of total knee arthroplasty (TKA) among patients with OA who were being treated with β-blockers. METHODS A nested case-control study was conducted with use of clinical records from our institutional database. We included patients who attended our outpatient clinic with a history of new-onset knee pain between 2010 and 2019. The case group included individuals who had undergone primary TKA between 2018 and 2019, whereas the control group included subjects who had not undergone TKA. Controls were matched by date of birth ±2 years, sex, calendar time (first outpatient visit ±1 year), and the grade of arthritis; the control-to-case ratio was 1:1. Adherence to β-blocker use was measured with use of the proportion of days covered (PDC) (i.e.,<0.25, ≥0.25 to <0.75, ≥0.75), and the cumulative effect was measured on the basis of the total number of years of treatment with β-blockers. A binary logistic regression analysis adjusted to potential confounders was carried out to assess the risk of TKA associated with the intake of β-blockers. RESULTS A total of 600 patients were included (300 in the case group and 300 in the control group). Compared with non-users, any use of β-blockers during the follow-up period was associated with a reduction in the likelihood of undergoing TKA (adjusted odds ratio [OR], 0.51; 95% confidence interval [CI], 0.34-0.77). The adjusted ORs for the use of selective β1-blockers and nonselective β1-blockers were 0.69 (95% CI, 0.36 to 1.31) and 0.42 (95% CI, 0.24 to 0.70), respectively. The adjusted ORs for any recent use, PDC of <0.25, PDC of ≥0.25 to <0.75, and PDC of ≥0.75 were 0.65 (95% CI, 0.51 to 0.99), 0.62 (95% CI, 0.21 to 1.85), 0.32 (95% CI, 0.09 to 1.22), and 0.55 (95% CI, 0.34 to 0.88), respectively. Regarding the cumulative effect of β-blockers, the adjusted ORs for the use for <1 year, ≥1 to <5 years, and ≥5 years were 0.41 (95% CI, 0.20 to 0.85), 0.52 (95% CI, 0.21 to 1.33), and 0.36 (95% CI, 0.22 to 0.60), respectively. CONCLUSIONS The use of nonselective β-blockers was associated with a lower likelihood of undergoing TKA. Patients treated for prolonged periods were at a lower likelihood for undergoing TKA. LEVEL OF EVIDENCE Prognostic Level III . See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Iskandar Tamimi
- Hospital Regional Universitario de Málaga, Málaga, Spain
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Hospital HM, Málaga, Spain
| | | | | | | | | | | | - Faleh Tamimi
- College of Dental Medicine, Qatar University, Doha, Qatar
| | - Enrique Guerado
- Faculty of Medicine, University of Málaga, Málaga, Spain
- Hospital Costa del Sol, Marbella, Spain
| | | | | | | |
Collapse
|
20
|
Geng R, Li J, Yu C, Zhang C, Chen F, Chen J, Ni H, Wang J, Kang K, Wei Z, Xu Y, Jin T. Knee osteoarthritis: Current status and research progress in treatment (Review). Exp Ther Med 2023; 26:481. [PMID: 37745043 PMCID: PMC10515111 DOI: 10.3892/etm.2023.12180] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/11/2023] [Indexed: 09/26/2023] Open
Abstract
Knee osteoarthritis (KOA) is a common chronic articular disease worldwide. It is also the most common form of OA and is characterized by high morbidity and disability rates. With the gradual increase in life expectancy and ageing population, KOA not only affects the quality of life of patients, but also poses a burden on global public health. OA is a disease of unknown etiology and complex pathogenesis. It commonly affects joints subjected to greater loads and higher levels of activity. The knee joint, which is the most complex joint of the human body and bears the greatest load among all joints, is therefore most susceptible to development of OA. KOA lesions may involve articular cartilage, synovium, joint capsule and periarticular muscles, causing irreversible articular damage. Factors such as mechanical overload, inflammation, metabolism, hormonal changes and ageing serve key roles in the acceleration of KOA progression. The clinical diagnosis of KOA is primarily based on combined analysis of symptoms, signs, imaging and laboratory examination results. At present, there is no cure for KOA and the currently available therapies primarily focus on symptomatic treatment and delay of disease progression. Knee replacement surgery is typically performed in patients with advanced disease. The current study presents a review of epidemiological characteristics, risk factors, histopathological manifestations, pathogenesis, diagnosis, treatment modalities and progress in KOA research.
Collapse
Affiliation(s)
- Ruizhi Geng
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jiayi Li
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Chen Yu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, Yunnan 650034, P.R. China
| | - Chaoqun Zhang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Fei Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Jie Chen
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- School of Public Health, Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Haonan Ni
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jiaxu Wang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Kaiqiang Kang
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Ziqi Wei
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Department of Anatomy and Histology, and Embryology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yongqing Xu
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| | - Tao Jin
- Graduate School, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
- Institute of Traumatology and Orthopedics, 920th Hospital of Joint Logistics Support Force of The People's Liberation Army, Kunming, Yunnan 650051, P.R. China
| |
Collapse
|
21
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
22
|
Han J, Deng H, Li Y, Qiao L, Jia H, Zhang L, Wang L, Qu C. Nano-elemental selenium particle developed via supramolecular self-assembly of chondroitin sulfate A and Na 2SeO 3 to repair cartilage lesions. Carbohydr Polym 2023; 316:121047. [PMID: 37321739 DOI: 10.1016/j.carbpol.2023.121047] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/17/2023]
Abstract
Cartilage repair is a significant clinical issue due to its restricted ability to regenerate and self-heal after cartilage lesions or degenerative disease. Herein, a nano-elemental selenium particle (chondroitin sulfate A‑selenium nanoparticle, CSA-SeNP) is developed by the supramolecular self-assembly of Na2SeO3 and negatively charged chondroitin sulfate A (CSA) via electrostatic interactions or hydrogen bonds followed by in-situ reducing of l-ascorbic acid for cartilage lesions repair. The constructed micelle exhibits a hydrodynamic particle size of 171.50 ± 2.40 nm and an exceptionally high selenium loading capacity (9.05 ± 0.03 %) and can promote chondrocyte proliferation, increase cartilage thickness, and improve the ultrastructure of chondrocytes and organelles. It mainly enhances the sulfation modification of chondroitin sulfate by up-regulating the expression of chondroitin sulfate 4-O sulfotransferase-1, -2, -3, which in turn promotes the expression of aggrecan to repair articular and epiphyseal-plate cartilage lesions. The micelles combine the bio-activity of CSA with selenium nanoparticles (SeNPs), which are less toxic than Na2SeO3, and low doses of CSA-SeNP are even superior to inorganic selenium in repairing cartilage lesions in rats. Thus, the developed CSA-SeNP is anticipated to be a promising selenium supplementation preparation in clinical application to address the difficulty of healing cartilage lesions with outstanding repair effects.
Collapse
Affiliation(s)
- Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Yang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, China.
| | - Hongrui Jia
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Lan Zhang
- State-key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, China.
| | - Linghang Wang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, China.
| | - Chengjuan Qu
- Department of Odontology, Umeå University, Umeå, Sweden.
| |
Collapse
|
23
|
Zheng QM, Zhou ZR, Hou XY, Lv N, Zhang YQ, Cao H. Transcriptome Analysis of the Mouse Medial Prefrontal Cortex in a Chronic Constriction Injury Model. Neuromolecular Med 2023; 25:375-387. [PMID: 36971954 DOI: 10.1007/s12017-023-08742-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023]
Abstract
The medial prefrontal cortex (mPFC) is critical for both the sensory and emotional/cognitive components of pain. However, the underlying mechanism remains largely unknown. Here, we examined changes in the transcriptomic profiles in the mPFC of mice with chronic pain using RNA sequencing (RNA-seq) technology. A mouse model of peripheral neuropathic pain was established via chronic constriction injury (CCI) of the sciatic nerve. CCI mice developed sustained mechanical allodynia and thermal hyperalgesia, as well as cognitive impairment four weeks after surgery. RNA-seq was conducted 4 weeks after CCI surgery. Compared with contral group, RNA-seq identified a total 309 and 222 differentially expressed genes (DEGs) in the ipsilateral and contralateral mPFC of CCI model mice, respectively. GO analysis indicated that the functions of these genes were mainly enriched in immune- and inflammation-related processes such as interferon-gamma production and cytokine secretion. KEGG analysis further showed the enrichment of genes involved in the neuroactive ligand-receptor interaction signaling pathway and Parkinson disease pathway that have been reported to be importantly involved in chronic neuralgia and cognitive dysfunction. Our study may provide insights into the possible mechanisms underlying neuropathic pain and pain-related comorbidities.
Collapse
Affiliation(s)
- Qi-Min Zheng
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Zi-Rui Zhou
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Xin-Yu Hou
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Ning Lv
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Hong Cao
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
24
|
Nasu T, Hori A, Hotta N, Kihara C, Kubo A, Katanosaka K, Suzuki M, Mizumura K. Vacuolar-ATPase-mediated muscle acidification caused muscular mechanical nociceptive hypersensitivity after chronic stress in rats, which involved extracellular matrix proteoglycan and ASIC3. Sci Rep 2023; 13:13585. [PMID: 37604935 PMCID: PMC10442418 DOI: 10.1038/s41598-023-39633-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/28/2023] [Indexed: 08/23/2023] Open
Abstract
Although widespread pain, such as fibromyalgia, is considered to have a central cause, peripheral input is important. We used a rat repeated cold stress (RCS) model with many characteristics common to fibromyalgia and studied the possible involvement of decreased muscle pH in muscle mechanical hyperalgesia. After a 5-day RCS, the muscle pH and the muscular mechanical withdrawal threshold (MMWT) decreased significantly. Subcutaneously injected specific inhibitor of vacuolar ATPase (V-ATPase), bafilomycin A1, reversed both changes almost completely. It also reversed the increased mechanical response of muscle thin-fibre afferents after RCS. These results show that V-ATPase activation caused muscle pH drop, which led to mechanical hypersensitivity after RCS. Since extracellular matrix proteoglycan and acid sensitive ion channels (TRPV1 and ASIC3) have been considered as possible mechanisms for sensitizing/activating nociceptors by protons, we investigated their involvement. Manipulating the extracellular matrix proteoglycan with chondroitin sulfate and chondroitinase ABC reversed the MMWT decrease after RCS, supporting the involvement of the extracellular mechanism. Inhibiting ASIC3, but not TRPV1, reversed the decreased MMWT after RCS, and ASIC3 mRNA and protein in the dorsal root ganglia were upregulated, indicating ASIC3 involvement. These findings suggest that extracellular mechanism and ASIC3 play essential roles in proton-induced mechanical hyperalgesia after RCS.
Collapse
Affiliation(s)
- Teruaki Nasu
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Matsumoto-Cho, Kasugai, 487-8501, Japan
| | - Amane Hori
- Graduate School of Life and Health Sciences, Chubu University, Matsumoto-Cho, Kasugai, 487-8501, Japan
- Japan Society for the Promotion of Science, Kojimachi, Chiyoda-Ku, Tokyo, 102-8472, Japan
| | - Norio Hotta
- Department of Lifelong Sports and Health Sciences, College of Life and Health Sciences, Chubu University, Matsumoto-Cho, Kasugai, 487-8501, Japan
| | - Chiaki Kihara
- Graduate School of Life and Health Sciences, Chubu University, Matsumoto-Cho, Kasugai, 487-8501, Japan
| | - Asako Kubo
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan
- Department of Acupuncture and Moxibustion, Faculty of Rehabilitation, Niigata University of Health and Welfare, Niigata, 950-3198, Japan
| | - Kimiaki Katanosaka
- Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Matsumoto-Cho, Kasugai, 487-8501, Japan
| | - Masamitsu Suzuki
- Central Research Laboratories, ZERIA Pharmaceutical Co. Ltd., 2512-1 Numagami, Oshikiri, Kumagaya, Saitama, 360-0111, Japan
| | - Kazue Mizumura
- Department of Physiology, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-Ku, Tokyo, 101-8310, Japan.
- Department of Physical Therapy, College of Life and Health Sciences, Chubu University, Matsumoto-Cho, Kasugai, 487-8501, Japan.
| |
Collapse
|
25
|
Silva MB, Pinto LDLDS, Medeiros LH, Souza AA, Chavante SF, Filgueira LGA, Camara RBG, Sassaki GL, Rocha HAO, Andrade GPV. Chondroitin Sulfate from Oreochromis niloticus Waste Reduces Leukocyte Influx in an Acute Peritonitis Model. Molecules 2023; 28:molecules28073082. [PMID: 37049845 PMCID: PMC10096408 DOI: 10.3390/molecules28073082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/26/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Oreochromis niloticus (tilapia) is one of the most cultivated fish species worldwide. Tilapia farming generates organic waste from fish removal processes in nurseries. Visceral waste can damage natural ecosystems. Therefore, the use of this material as a source of biomolecules helps reduce environmental impacts and improve pharmacological studies. Tilapia viscera were subjected to proteolysis and complexation with an ion-exchange resin. The obtained glycosaminoglycans were purified using ion exchange chromatography (DEAE-Sephacel). The electrophoretic profile and analysis of 1H/13C nuclear magnetic resonance (NMR) spectra allowed for the characterization of the compound as chondroitin sulfate and its sulfation position. This chondroitin was named CST. We tested the ability of CST to reduce leukocyte influx in acute peritonitis models induced by sodium thioglycolate and found a significant reduction in leukocyte migration to the peritoneal cavity, similar to the polymorphonuclear population of the three tested doses of CST. This study shows, for the first time, the potential of CST obtained from O. niloticus waste as an anti-inflammatory drug, thereby contributing to the expansion of the study of molecules with pharmacological functions.
Collapse
Affiliation(s)
- Marianna Barros Silva
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Lívia de Lourdes de Sousa Pinto
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luiz Henrique Medeiros
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Airton Araújo Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte, Campus de Parnamirim, Parnamirim 59143-455, RN, Brazil
| | - Suely Ferreira Chavante
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Luciana Guimarães Alves Filgueira
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Rafael Barros Gomes Camara
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Guilherme Lanzi Sassaki
- Departamento de Bioquímica e Biologia Molecular, Setor de Ciências Biológicas, Universidade Federal do Parana (UFPR), Curitiba 81531-980, PR, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratório de Biotecnologia de Polímeros Naturais (BIOPOL), Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| | - Giulianna Paiva Viana Andrade
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59078-970, RN, Brazil
| |
Collapse
|
26
|
Suzuki K, Kaseyama-Takemoto H. Simultaneous production of N-acetylheparosan and recombinant chondroitin using gene-engineered Escherichia coli K5. Heliyon 2023; 9:e14815. [PMID: 37095938 PMCID: PMC10121815 DOI: 10.1016/j.heliyon.2023.e14815] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
N-Acetylheparosan and chondroitin are increasingly needed as alternative sources of animal-derived sulfated glycosaminoglycans (GAGs) and as inert substances in medical devices and pharmaceuticals. The N-acetylheparosan productivity of E. coli K5 has achieved levels of industrial applications, whereas E.coli K4 produces a relatively lower amount of fructosylated chondroitin. In this study, the K5 strain was gene-engineered to co-express K4-derived, chondroitin-synthetic genes, namely kfoA and kfoC. The productivities of total GAG and chondroitin in batch culture were 1.2 g/L and 1.0 g/L respectively, which were comparable to the productivity of N-acetylheparosan in the wild K5 strain (0.6-1.2 g/L). The total GAG of the recombinant K5 was partially purified by DEAE-cellulose chromatography and was subjected to degradation tests with specific GAG-degrading enzymes combined with HPLC and 1H NMR analyses. The results indicated that the recombinant K5 simultaneously produced both 100-kDa chondroitin and 45-kDa N-acetylheparosan at a weight ratio of approximately 4:1. The content of chondroitin in total GAG partially purified was 73.2%. The molecular weight of recombinant chondroitin (100 kDa) was 5-10 times higher than that of commercially available chondroitin sulfate. These results indicated that the recombinant K5 strain acquired the chondroitin-producing ability without altering the total GAG productivity of the host.
Collapse
|
27
|
Díaz-Cornejo S, Otero MC, Banerjee A, Gordillo-Fuenzalida F. Biological properties of exopolysaccharides produced by Bacillus spp. Microbiol Res 2023; 268:127276. [PMID: 36525789 DOI: 10.1016/j.micres.2022.127276] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/23/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
There is currently a constant search for ecofriendly bioproducts, which could contribute to various biomedical applications. Among bioproducts, exopolysaccharides are prominent contemporary extracellular biopolymers that are produced by a great variety of bacterial species. These homo- or heteropolymers are composed of monomeric sugar units linked by glycosidic bonds, which are secreted to the external medium. Bacillus spp. are reported to be present in different ecosystems and produce exopolysaccharides with different biological properties such as antioxidant, antibacterial, antiviral anti-inflammatory, among others. Since a great diversity of bacterial strains are able to produce exopolysaccharides, a great variation in the molecular composition is observed, which is indeed present in some of the chemical structures predicted until date. These molecular characteristics and their relations with different biological functions are discussed in order to visualize future applications in biomedical section.
Collapse
Affiliation(s)
- Sofía Díaz-Cornejo
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andrés Bello, República 252, Santiago, Chile
| | - Aparna Banerjee
- Centro de Investigación de Estudios Avanzados del Maule, Vicerrectoría de Investigación y Posgrado, Universidad Católica del Maule, Talca 3466706, Chile
| | - Felipe Gordillo-Fuenzalida
- Laboratorio de Microbiología Aplicada, Centro de Biotecnología de los Recursos Naturales, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Avda. San Miguel, 3605 Talca, Chile.
| |
Collapse
|
28
|
Liu T, Yu H, Wang S, Li H, Du X, He X. Chondroitin sulfate alleviates osteoporosis caused by calcium deficiency by regulating lipid metabolism. Nutr Metab (Lond) 2023; 20:6. [PMID: 36747190 PMCID: PMC9901125 DOI: 10.1186/s12986-023-00726-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023] Open
Abstract
The use of non-drug intervention for calcium deficiency has attracted attention in recent years. Although calcium carbonate is the preferred raw material for calcium supplementation, there are few reports on the mechanism of the combined action of chondroitin sulfate and calcium to alleviate osteoporosis from the perspective of gut microbiota and metabolomics. In this study, a rat model of osteoporosis was established by feeding a low-calcium diet. The intestinal microbiota abundance, fecal and plasma metabolite expression levels of rats fed a basal diet, a low-calcium diet, a low-calcium diet plus calcium carbonate, and a low-calcium diet plus chondroitin sulfate were compared. The results showed that compared with the low calcium group, the calcium content and bone mineral density of femur were significantly increased in the calcium carbonate and chondroitin sulfate groups. 16 S rRNA sequencing and metabolomics analysis showed that chondroitin sulfate intervention could reduce short-chain fatty acid synthesis of intestinal flora, slow down inflammatory response, inhibit osteoclast differentiation, promote calcium absorption and antioxidant mechanism, and alleviate osteoporosis in low-calcium feeding rats. Correlation analysis showed that the selected intestinal flora was significantly correlated with metabolites enriched in feces and plasma. This study provides scientific evidence of the potential impact of chondroitin sulfate as a dietary supplement for patients with osteoporosis.
Collapse
Affiliation(s)
- Tianshu Liu
- grid.27255.370000 0004 1761 1174Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Hai Yu
- grid.272242.30000 0001 2168 5385Division of Cancer RNA Research, National Cancer Center Research Institute, Tokyo, 104-0045 Japan ,grid.27255.370000 0004 1761 1174Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012 Shandong China
| | - Shuai Wang
- grid.27255.370000 0004 1761 1174Institute of Toxicology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jining, 250012 Shandong China
| | - Huimin Li
- grid.27255.370000 0004 1761 1174Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012 Shandong China ,grid.506261.60000 0001 0706 7839National Human Genetic Resources Center; National Research Institute for Health and Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730 China
| | - Xinyiran Du
- grid.449428.70000 0004 1797 7280College of Stomatology, Jining Medical University, Jining, 272067 Shandong China
| | - Xiaodong He
- Department of Physical and Chemical Inspection, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China. .,Institute for Medical Dataology, Shandong University, National Institute of Health Data Science of China, Jinan, 250012, Shandong, China.
| |
Collapse
|
29
|
Sarvilina IV, Danilov AB. [Comparative analysis of the use of symptomatic slow acting drugs for osteoarthritis containing chondroitin sulfate or affecting its biosynthesis in patients with non-specific low back pain]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:81-96. [PMID: 36719123 DOI: 10.17116/jnevro202312301181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE Retrospective comparative analysis of the use of SYSADOA preparations containing chondroitin sulfate (Chondroguard, 2 ml, 25 amp., glycosaminoglycan-peptide complex, 1 ml 25 amp., bioactive concentrate of small marine fish, 2 ml, 10 amp.) in patients with chronic non-specific low back pain (LBP) of lumbar and sacral localization caused by spondylosis and osteochondrosis of the lumbar spine, at the stage of outpatient care. MATERIAL AND METHODS Data of medical records of patients (n=120; men - 32, women - 88, age - 54.1±7.6 years, duration of disease exacerbation 4.0±1.7 months) with nonspecific LBP were systematized according to the inclusion/exclusion criteria. All patients were divided into 4 groups: Group 1 (n=30) received Chondroguard im., 2 ml every other day, the course of treatment was 25 injections, 25 days; Group 2 (n=30) received glycosaminoglycan-peptide complex on the 1st day - 0.3 ml, on the 2nd day - 0.5 ml, and then 3 times a week for 1 ml, course of treatment - 25 injections, 25 days; Group 3 (n=30) received bioactive concentrate of small marine fish, 2 ml im., every other day, the course of treatment was 10 injections; repeated courses of treatment - after 6 months; Group 4 (n=30) received Amelotex (meloxicam) at a dose of 15 mg once a day for 15 days. All patients of the first 3 groups received Amelotex at a dose of 15 mg with the possibility of reducing the dose to 7.5 mg or completely discontinuing the drug if necessary. Retrospectively, dynamic monitoring was performed in the medical records of outpatients after 50 days and 6 months from the start of therapy according to the following parameters: intensity of pain according to VAS, short form of the McGill pain questionnaire, vital signs of patients (Oswestry Disability Index, version 2.1a [Oswestry Disability Index], and Roland-Morris questionnaire), propensity to chronic pain syndrome according to the STarT Back Screening Tool questionnaire, the presence and severity of comorbid fibromyalgia according to the Fibromyalgia Rapid Screening Tool questionnaire, the level of pain catastrophization according to the Pain Catastrophizing Scale, the severity of comorbid anxiety and depression according to the Hospital Anxiety and Depression Scale, the severity comorbid insomnia (Insomnia Severity Index), quality of life according to the SF-36 scale, the effectiveness of drugs according to the patient on a 5-point scale, the need to take NSAIDs and analgesics, tolerability on a 4-point system. The safety of therapy was monitored using the WHO and Naranjo scales. RESULTS In patients with nonspecific LBP, a greater degree of reduction in the intensity of the pain syndrome, a smaller number of exacerbations of the pain syndrome over 6 months of observation, an improvement in the functional status and life activity, a tendency to a decrease in the severity of anxiety and depression, sleep disturbances and comorbid fibromyalgia, limiting the risk of chronicity and catastrophization of pain, the presence of a structure-modifying effect on IVD and degenerative changes in the facet joints, a significant improvement in the physical and mental components of health, high satisfaction and safety of therapy, which included taking Chondroguard with meloxicam, with a decrease in the need to take the latter by the 50th day observation period compared to other regimens. The effects of Chondroguard and meloxicam turned out to be long-term and were recorded by the 6th month in the absence of Chondroguard, which indicated the preservation of the influence of highly purified cholesterol on the pathogenetic mechanisms of the formation of LBP. CONCLUSION The study allows us to recommend the use of a parenteral form of cholesterol (Chondroguard, CJSC «PharmFirma «Sotex», Russia) for the treatment of nonspecific LBP with moderate or severe pain, chronic relapsing or persistent course, in combination with NSAIDs and their subsequent cancellation or administration on demand.
Collapse
Affiliation(s)
- I V Sarvilina
- LLC «Medical Center «Novomedicina», Rostov-on-Don, Russia
| | - A B Danilov
- First Moscow State Medical University named after I.M. Sechenov, Moscow, Russia
| |
Collapse
|
30
|
Zheng Z, Liu P, Zhang X, Jingguo xin, Yongjie wang, Zou X, Mei X, Zhang S, Zhang S. Strategies to improve bioactive and antibacterial properties of polyetheretherketone (PEEK) for use as orthopedic implants. Mater Today Bio 2022; 16:100402. [PMID: 36105676 PMCID: PMC9466655 DOI: 10.1016/j.mtbio.2022.100402] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 12/26/2022] Open
Abstract
Polyetheretherketone (PEEK) has gradually become the mainstream material for preparing orthopedic implants due to its similar elastic modulus to human bone, high strength, excellent wear resistance, radiolucency, and biocompatibility. Since the 1990s, PEEK has increasingly been used in orthopedics. Yet, the widespread application of PEEK is limited by its bio-inertness, hydrophobicity, and susceptibility to microbial infections. Further enhancing the osteogenic properties of PEEK-based implants remains a difficult task. This article reviews some modification methods of PEEK in the last five years, including surface modification of PEEK or incorporating materials into the PEEK matrix. For surface modification, PEEK can be modified by chemical treatment, physical treatment, or surface coating with bioactive substances. For PEEK composite material, adding bioactive filler into PEEK through the melting blending method or 3D printing technology can increase the biological activity of PEEK. In addition, some modification methods such as sulfonation treatment of PEEK or grafting antibacterial substances on PEEK can enhance the antibacterial performance of PEEK. These strategies aim to improve the bioactive and antibacterial properties of the modified PEEK. The researchers believe that these modifications could provide valuable guidance on the future design of PEEK orthopedic implants.
Collapse
|
31
|
Toropitsyn E, Pravda M, Rebenda D, Ščigalková I, Vrbka M, Velebný V. A composite device for viscosupplementation treatment resistant to degradation by reactive oxygen species and hyaluronidase. J Biomed Mater Res B Appl Biomater 2022; 110:2595-2611. [PMID: 35727166 DOI: 10.1002/jbm.b.35114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/02/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
Osteoarthritis (OA) is one of the most common musculoskeletal disorders in the world. OA is often associated with the loss of viscoelastic and tribological properties of synovial fluid (SF) due to degradation of hyaluronic acid (HA) by reactive oxygen species (ROS) and hyaluronidases. Viscosupplementation is one of the ways how to effectively restore SF functions. However, current viscosupplementation products provide only temporal therapeutic effect because of short biological half-life. In this article we describe a novel device for viscosupplementation (NV) based on the cross-linked tyramine derivative of HA, chondroitin sulfate (CS), and high molecular weight HA by online determination of viscoelastic properties loss during degradation by ROS and hyaluronidase. Rheological and tribological properties of developed viscosupplement were compared with HA solutions with different molecular weights in the range 500-2000 kDa, which are currently commonly used as medical devices for viscosupplementation treatment. Moreover, based on clinical practice and scientific literature all samples were also diluted by model OA SF in the ratio 1:1 (vol/vol) to better predict final properties after injection to the joint. The observed results confirmed that NV exhibits appropriate rheological properties (viscosity, elastic, and viscous moduli) comparable with healthy SF and maintain them during degradation for a significantly longer time than HA solutions with molecular weight in the range 500-2000 kDa and cross-linked material without CS.
Collapse
Affiliation(s)
- Evgeniy Toropitsyn
- Contipro a.s., Dolní Dobrouč, Czech Republic.,Biocev, First Faculty of Medicine Charles University, Vestec, Czech Republic
| | | | - David Rebenda
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | | | - Martin Vrbka
- Faculty of Mechanical Engineering, Brno University of Technology, Brno, Czech Republic
| | | |
Collapse
|
32
|
Wauquier F, Boutin-Wittrant L, Bouvret E, Le Faouder J, Roux V, Macian N, Pickering G, Wittrant Y. Benefits of Circulating Human Metabolites from Fish Cartilage Hydrolysate on Primary Human Dermal Fibroblasts, an Ex Vivo Clinical Investigation for Skin Health Applications. Nutrients 2022; 14:nu14235027. [PMID: 36501057 PMCID: PMC9737122 DOI: 10.3390/nu14235027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Due to its significant exposure to stressful environmental factors, the skin undergoes a high remodeling rate over time, which alters not only its appearance but also its functionality. This alteration of the skin, namely photoaging, is characterized by dryness and a loss of elasticity that mainly originates from the dysregulation of dermal fibroblast activities. In order to overcome such tissue outcome, cosmetic products have evolved toward nutricosmetics, thus promoting beauty from within. Among bio-actives of interest, bio-peptides deriving from plant or animal sources may exert various biological activities beyond their nutritional value. However, studies remain mostly descriptive and the mode of action at the cellular level in clinic remains a concern. In a recent clinical trial, it was showed that supplementation with a fish cartilage hydrolysate (FCH) improved signs of chronological and photoaging-induced skin changes in healthy women. Here, using an original ex vivo clinical approach adapted to nutricosmetic purpose, we further demonstrated that this fish cartilage hydrolysate was absorbed and that the circulating metabolites produced in humans following FCH intake stimulate human dermal fibroblast growth, promote specific hyaluronan production, up-regulate elastin synthesis and inhibit MMP-1 and 3 expression along with the enhancement of TGF-β release. Altogether, these data provide clues on the mechanisms likely contributing to the beneficial impact of FCH on human skin functionality by supporting hydration, elasticity and limiting the expression of catabolic factors involved in photoaging onset.
Collapse
Affiliation(s)
- Fabien Wauquier
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, CEDEX 1, 63001 Clermont-Ferrand, France
| | - Line Boutin-Wittrant
- Clinic’n’Cell SAS, Faculty of Medicine and Pharmacy, TSA 50400, 28 Place Henri Dunant, CEDEX 1, 63001 Clermont-Ferrand, France
| | | | | | - Véronique Roux
- CIC INSERM 1405, Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, 63000 Clermont-Ferrand, France
| | - Nicolas Macian
- CIC INSERM 1405, Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, 63000 Clermont-Ferrand, France
| | - Gisèle Pickering
- CIC INSERM 1405, Plateforme d’Investigation Clinique CHU Gabriel Montpied, 58 Rue Montalembert, 63000 Clermont-Ferrand, France
| | - Yohann Wittrant
- INRAE, UNH, 63009 Clermont-Ferrand, France
- Faculty of Medicine and Pharmacy, Clermont Auvergne University, UMR1019 of Human Nutrition, BP 10448, 63000 Clermont-Ferrand, France
- Correspondence: ; Tel.: +33-(0)682297271
| |
Collapse
|
33
|
Shentu CY, Yan G, Xu DC, Chen Y, Peng LH. Emerging pharmaceutical therapeutics and delivery technologies for osteoarthritis therapy. Front Pharmacol 2022; 13:945876. [PMID: 36467045 PMCID: PMC9712996 DOI: 10.3389/fphar.2022.945876] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/03/2022] [Indexed: 10/03/2023] Open
Abstract
Osteoarthritis (OA) is one of the most common joint degenerative diseases in the world. At present, the management of OA depends on the lifestyle modification and joint replacement surgery, with the lifespan of prosthesis quite limited yet. Effective drug treatment of OA is essential. However, the current drugs, such as the non-steroidal anti-inflammatory drugs and acetaminophen, as well as glucosamine, chondroitin sulfate, hyaluronic acid, are accompanied by obvious side effects, with the therapeutic efficacy to be enhanced. Recently, novel reagents such as IL-1 antagonists and nerve growth factor inhibitors have entered clinical trials. Moreover, increasing evidence demonstrated that active ingredients of natural plants have great potential for treating OA. Meanwhile, the use of novel drug delivery strategies may overcome the shortcomings of conventional preparations and enhance the bioavailability of drugs, as well as decrease the side effects significantly. This review therefore summarizes the pathological mechanisms, management strategies, and research progress in the drug molecules including the newly identified active ingredient derived from medicinal plants for OA therapy, with the drug delivery technologies also summarized, with the expectation to provide the summary and outlook for developing the next generation of drugs and preparations for OA therapy.
Collapse
Affiliation(s)
- Cheng-Yu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Ge Yan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dong-Chen Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Li-Hua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, Macau SAR, China
| |
Collapse
|
34
|
Restaino OF, Schiraldi C. Chondroitin sulfate: are the purity and the structural features well assessed? A review on the analytical challenges. Carbohydr Polym 2022; 292:119690. [PMID: 35725214 DOI: 10.1016/j.carbpol.2022.119690] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 11/02/2022]
Abstract
Animal origin chondroitin sulfate is employed as anti-inflammatory drug and food supplement against anti-osteoarthritis, but also as antioxidant, antitumor, anticoagulant, and immune-regulatory agent or as biomaterial in tissue engineering scaffolds and in drug-delivery systems. As its biological properties depend on the structural characteristics, multi-analytical approaches are necessary to correlate specific features of its heterogenic composition to the different bioactivities. This is of paramount importance to assess the efficacy of pharmaceuticals and food supplements, beyond safety quality control. This review would address the issue of chondroitin sulfate characterization according to the Pharmacopeia testing monograph point of view giving an update of the analytical novelties reported in the last ten years that might be employed for the product testing and releasing on the market. Not-instrumental (e.g. colorimetric assays) and instrumental techniques, most of them coupling diverse chromatographic separation methods with spectroscopic and spectrometry detection techniques, mono and bi-dimensional NMR approaches, are compared as tools to evaluate identity, titer, purity grade, monosaccharide and disaccharide composition, averaged molecular weight and viscosity, charge and sulfate content, impurities and related substances including the presence of other glycosaminoglycans.
Collapse
Affiliation(s)
- Odile Francesca Restaino
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology and Molecular Biology, University of Campania "Luigi Vanvitelli", Via De Crecchio 7, 80138 Naples, Italy.
| |
Collapse
|
35
|
Natural Compounds Affecting Inflammatory Pathways of Osteoarthritis. Antioxidants (Basel) 2022; 11:antiox11091722. [PMID: 36139796 PMCID: PMC9495743 DOI: 10.3390/antiox11091722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/25/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is the most common type of arthritis and chronic joint disease, affecting more than 240 million people worldwide. Although there are numerous advances in using drugs in treating OA, the use of natural compounds has aroused much interest among researchers due to their safety margin. Recent discovery shows that natural compounds play an extensive role in the oxidative stress signaling pathway in treating OA. Thus, this review summarizes the commonly used natural compounds for treating OA focusing on the oxidative stress signaling pathway and its downstream mediators. Selected databases—such as Scopus, Web of Science, Nature, and PubMed—were used to search for potentially relevant articles. The search is limited to the last 15 years and the search was completed using the Boolean operator’s guideline using the keywords of natural product AND oxidative stress AND osteoarthritis OR natural extract AND ROS AND degenerative arthritis OR natural plant AND free radicals AND degenerative joint disease. In total, 37 articles were selected for further review. Different downstream mechanisms of oxidative stress involved in the usage of natural compounds for OA treatment and anabolic and catabolic effects of natural compounds that exhibit chondroprotective effects have been discussed with the evidence of in vitro and in vivo trials in this review.
Collapse
|
36
|
Urbi Z, Azmi NS, Ming LC, Hossain MS. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr Issues Mol Biol 2022; 44:3905-3922. [PMID: 36135180 PMCID: PMC9497668 DOI: 10.3390/cimb44090268] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.
Collapse
Affiliation(s)
- Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| |
Collapse
|
37
|
Wang Z, Wang R, Yao H, Yang J, Chen Y, Zhu Y, Lu C. Clinical Efficacy and Safety of Chondroitin Combined with Glucosamine in the Treatment of Knee Osteoarthritis: A Systematic Review and Meta-Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5285244. [PMID: 35924114 PMCID: PMC9343191 DOI: 10.1155/2022/5285244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
Objective This analysis was aimed at providing evidence-based medicine basis for systematic evaluation of chondroitin combined with glucosamine in the treatment of knee osteoarthritis. Methods The randomized controlled trials (RCTs) of chondroitin combined with glucosamine in the treatment of knee osteoarthritis (KOA) were searched in PubMed, EMBASE, ScienceDirect, Cochrane Library, China Knowledge Network Database (CNKI), China VIP Database, Wanfang Database, and China Biomedical Literature Database (CBM) online database. The retrieval time ranges from the database creation to the present. Two investigators gathered the information individually. The risk of bias was assessed using the criteria of the Cochrane back review group. RevMan5.4 statistical software analyzed the selected data. Results A total of 6 RCT articles were obtained. Overall, 764 samples were evaluated by meta-analysis. The clinical efficacy of chondroitin combined with glucosamine was significantly better than that of routine treatment by meta-analysis. The confidence interval of 95% was (4.86, 17.08) (Z = 6.89, P < 0.00001). The scores of joint pain, tenderness, swelling, and dysfunction in patients with knee osteoarthritis treated with chondroitin combined with glucosamine were significantly lower than those treated with routine treatment. There was no significant difference in the incidence of adverse reactions between chondroitin combined with glucosamine and single treatment of KOA. Due to the small number of documents included in the analysis, it is not suitable to make a funnel chart, but there may be some publication deviation in the analysis. Conclusion Chondroitin combined with glucosamine is more effective than chondroitin or glucosamine alone in the treatment of KOA and deserves clinical promotion. However, this conclusion still needs to be supported by multicenter, high-quality, double-blind, large-sample randomized controlled clinical trials due to the limitations of the six trials included.
Collapse
Affiliation(s)
- Zhiyao Wang
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Rongtian Wang
- Minimal Invasive Joint Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, 100029, China
| | - Hui Yao
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Jianying Yang
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Yuefeng Chen
- Jinshang Department, The Third Affiliated Hospital of Beijing University of Chinese Medicine, China
| | - Yuqi Zhu
- Department of Orthopedics, Eye Hospital, China Academy of Chinese Medical Sciences, Beijing 100040, China
| | - Chao Lu
- Department of Joint Surgery, Xi'an Hong Hui Hospital, Xi'an Jiaotong University Health Science Center, The Red Cross Hospital, China
| |
Collapse
|
38
|
Pizzolitto C, Esposito F, Sacco P, Marsich E, Gargiulo V, Bedini E, Donati I. Sulfated lactose-modified chitosan. A novel synthetic glycosaminoglycan-like polysaccharide inducing chondrocyte aggregation. Carbohydr Polym 2022; 288:119379. [DOI: 10.1016/j.carbpol.2022.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
|
39
|
Wu S, Guo W, Li R, Zhang X, Qu W. Progress of Platelet Derivatives for Cartilage Tissue Engineering. Front Bioeng Biotechnol 2022; 10:907356. [PMID: 35782516 PMCID: PMC9243565 DOI: 10.3389/fbioe.2022.907356] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Articular cartilage has limited self-regeneration ability for lacking of blood vessels, nerves, and lymph that makes it a great challenge to repair defects of the tissue and restore motor functions of the injured or aging population. Platelet derivatives, such as platelet-rich plasma, have been proved effective, safe, and economical in musculoskeletal diseases for their autologous origin and rich in growth factors. The combination of platelet derivatives with biomaterials provides both mechanical support and localized sustained release of bioactive molecules in cartilage tissue engineering and low-cost efficient approaches of potential treatment. In this review, we first provide an overview of platelet derivatives and their application in clinical and experimental therapies, and then we further discuss the techniques of the addition of platelet derivatives and their influences on scaffold properties. Advances in cartilage tissue engineering with platelet derivatives as signal factors and structural components are also introduced before prospects and concerns in this research field. In short, platelet derivatives have broad application prospects as an economical and effective enhancement for tissue engineering–based articular cartilage repair.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Rui Li
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Xi Zhang
- Department of Burn Surgery, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Wenrui Qu,
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Xi Zhang, ; Wenrui Qu,
| |
Collapse
|
40
|
Li X, Jiang F, Liu M, Qu Y, Lan Z, Dai X, Huang C, Yue X, Zhao S, Pan X, Zhang C. Synthesis, Characterization, and Bioactivities of Polysaccharide Metal Complexes: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6922-6942. [PMID: 35639848 DOI: 10.1021/acs.jafc.2c01349] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural polysaccharides are critical to a wide range of fields (e.g., medicine, food production, and cosmetics) for their various remarkable physical properties and biological activities. However, the bioactivities of naturally acquired polysaccharides may be unsatisfactory and limit their further applications. It is generally known that the chemical structure exhibited by polysaccharides lays the material basis for their biological activities. Accordingly, possible structural modifications should be conducted on polysaccharides for their enhancement. Recently, polysaccharides complexed with metal ions (e.g., Fe, Zn, Mg, Cr, and Pt) have been reported to be possibly used to improve their bioactivities. Moreover, since the properties exhibited by metal ions are normally conserved, polysaccharides may be endowed with new applications. In this review, the synthesis methods, characterization methods, and bioactivities of polysaccharide metal complexes are summarized specifically. Then, the application prospects and limitations of these complexes are analyzed and discussed.
Collapse
Affiliation(s)
- Xuebo Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Fuchen Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Meiyan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Yan Qu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Zhiqiong Lan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaolin Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chi Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xuan Yue
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Shiyi Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Xiaoli Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P. R. China
| |
Collapse
|
41
|
Chondroitin Sulfate: Emerging biomaterial for biopharmaceutical purpose and tissue engineering. Carbohydr Polym 2022; 286:119305. [DOI: 10.1016/j.carbpol.2022.119305] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 12/20/2022]
|
42
|
Guan T, Ding LG, Lu BY, Guo JY, Wu MY, Tan ZQ, Hou SZ. Combined Administration of Curcumin and Chondroitin Sulfate Alleviates Cartilage Injury and Inflammation via NF-κB Pathway in Knee Osteoarthritis Rats. Front Pharmacol 2022; 13:882304. [PMID: 35662715 PMCID: PMC9161211 DOI: 10.3389/fphar.2022.882304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/23/2022] Open
Abstract
Objective: Osteoarthritis (OA) is a degenerative chronic disease that most often occurs in the knee joint. Studies have shown that some food supplements, such as curcumin and chondroitin sulfate, are effective in treating knee osteoarthritis (KOA) by exhibiting different protective effects. In this study, we further investigated the combined therapeutic effects of curcumin and chondroitin sulfate on cartilage injury in rats with arthritis. Methods: An experimental KOA model was induced by monosodium iodoacetate (MIA) in rats. All rats were randomly divided into five groups: Ctrl (control), model (saline), Cur (20 mg/kg curcumin in saline), CS (100 mg/kg chondroitin sulfate in saline), and CA (20 mg/kg curcumin and 100 mg/kg chondroitin sulfate in saline); drugs were given 2 weeks after MIA injection. The histomorphological changes of cartilage were observed by safranin fast green staining, H&E staining, and micro-CT scanning. Also, the levels of PGE2, TNF-α and IL-1β in the arthral fluid and serum were determined by the ELISA kits. The activities of SOD, CAT, COMP, MMP-3, and type II collagen were detected by biochemical kits. The expressions of TLR4, p-NF-κB, NF-κB, and COX-2 in cartilage were detected by Western blot. Results: Data show that serum levels of IL-1β (p < 0.05), SOD (p < 0.0001), and MMP-3 (p < 0.001) were downregulated significantly in the CA group when compared to those in the model group. Meanwhile, obvious repair of cartilage with higher contains collagen II (p < 0.0001) could be observed in the CA group than the ones in Cur or CS group. In addition, significant downregulation of the expression of p-p65/p65 (p < 0.05) was found in the CA group. Conclusion: Our findings showed that combined administration of curcumin and chondroitin sulfate could exert better repair for KOA in rat models. This may hold great promise for discovering potential drugs to treat KOA and may improve treatment options for it.
Collapse
Affiliation(s)
- Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liu-Gang Ding
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Infinitus (China) Company Ltd., Guangzhou, China
| | - Bao-Yuan Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jia-Yi Guo
- Guangzhou Hongyun Medical Scientific and Technological Co., Ltd., Guangzhou, China
| | - Mei-Yin Wu
- Guangzhou Hongyun Medical Scientific and Technological Co., Ltd., Guangzhou, China
| | - Zhi-Qun Tan
- Guangzhou Hongyun Medical Scientific and Technological Co., Ltd., Guangzhou, China
- Institute for Memory Impairments and Neurological Disorder, University of California, Irvine, Irvine, CA, United States
| | - Shao-Zhen Hou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
43
|
Lin X, Tsao CT, Kyomoto M, Zhang M. Injectable Natural Polymer Hydrogels for Treatment of Knee Osteoarthritis. Adv Healthc Mater 2022; 11:e2101479. [PMID: 34535978 DOI: 10.1002/adhm.202101479] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA) is a serious chronic and degenerative disease that increasingly occurs in the aged population. Its current clinical treatments are limited to symptom relief and cannot regenerate cartilage. Although a better understanding of OA pathophysiology has been facilitating the development of novel therapeutic regimen, delivery of therapeutics to target sites with minimal invasiveness, high retention, and minimal side effects remains a challenge. Biocompatible hydrogels have been recognized to be highly promising for controlled delivery and release of therapeutics and biologics for tissue repair. In this review, the current approaches and the challenges in OA treatment, and unique properties of injectable natural polymer hydrogels as delivery system to overcome the challenges are presented. The common methods for fabrication of injectable polysaccharide-based hydrogels and the effects of their composition and properties on the OA treatment are detailed. The strategies of the use of hydrogels for loading and release cargos are also covered. Finally, recent efforts on the development of injectable polysaccharide-based hydrogels for OA treatment are highlighted, and their current limitations are discussed.
Collapse
Affiliation(s)
- Xiaojie Lin
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Ching Ting Tsao
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Masayuki Kyomoto
- Medical R&D Center Corporate R&D Group KYOCERA Corporation 800 Ichimiyake, Yasu Shiga 520‐2362 Japan
| | - Miqin Zhang
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
44
|
Zheng Z, Hu L, Ge Y, Qi J, Sun Q, Li Z, Lin L, Tang B. Surface Modification of Poly(ether ether ketone) by Simple Chemical Grafting of Strontium Chondroitin Sulfate to Improve its Anti-Inflammation, Angiogenesis, Osteogenic Properties. Adv Healthc Mater 2022; 11:e2200398. [PMID: 35481900 DOI: 10.1002/adhm.202200398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/31/2022] [Indexed: 12/19/2022]
Abstract
Besides inducing osteogenic differentiation, the surface modification of poly(ether ether ketone) (PEEK) is highly expected to improve its angiogenic activity and reduce the inflammatory response in the surrounding tissue. Herein, strontium chondroitin sulfate is first attempted to be introduced into the surface of sulfonated PEEK (SPEEK-CS@Sr) based on the Schiff base reaction between PEEK and ethylenediamine (EDA) and the amidation reaction between EDA and chondroitin sulfate (CS). The surface characteristics of SPEEK-CS@Sr implant are systematically investigated, and its biological properties in vitro and in vivo are also evaluated. The results show that the surface of SPEEK-CS@Sr implant exhibits a 3D microporous structure and good hydrophilicity, and can steadily release Sr ions. Importantly, the SPEEK-CS@Sr not only displays excellent biocompatibility, but also can remarkably promote cell adhesion and spread, improve osteogenic activity and angiogenic activity, and reduce the inflammatory response compared to the original PEEK. Therefore, this study presents the surface modification of PEEK material by simple chemical grafting of strontium chondroitin sulfate to improve its angiogenesis, anti-inflammation, and osteogenic properties, and the as-fabricated SPEEK-CS@Sr has the potential to serve as a promising orthopedic implant in bone tissue engineering.
Collapse
Affiliation(s)
- Zhe Zheng
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Liqiu Hu
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Yongmei Ge
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Harbin Institute of Technology Harbin Heilongjiang P. R. China
| | - Jianchao Qi
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
- Department of Emergency surgery Shengli Clinical Medical College of Fujian Medical University Fujian Provincial Hospital Fuzhou P. R. China
| | - Qili Sun
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Zhenjian Li
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
| | - Lijun Lin
- Department of Joint and Orthopedics Zhujiang Hospital Southern Medical University Guangzhou Guangdong P. R. China
| | - Bin Tang
- Department of Biomedical Engineering Southern University of Science and Technology Shenzhen Guangdong P. R. China
- Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research Shenzhen Guangdong P. R. China
- Shenzhen Key Laboratory of Cell Microenvironment Shenzhen Guangdong P. R. China
| |
Collapse
|
45
|
Li WW, Liu B, Dong SQ, He SQ, Liu YY, Wei SY, Mou JY, Zhang JX, Liu Z. Bioinformatics and Experimental Analysis of the Prognostic and Predictive Value of the CHPF Gene on Breast Cancer. Front Oncol 2022; 12:856712. [PMID: 35372047 PMCID: PMC8965246 DOI: 10.3389/fonc.2022.856712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/16/2022] [Indexed: 01/08/2023] Open
Abstract
Background Recent studies in the United States have shown that breast cancer accounts for 30% of all new cancer diagnoses in women and has become the leading cause of cancer deaths in women worldwide. Chondroitin Polymerizing Factor (CHPF), is an enzyme involved in chondroitin sulfate (CS) elongation and a novel key molecule in the poor prognosis of many cancers. However, its role in the development and progression of breast cancer remains unclear. Methods The transcript expression of CHPF in the Cancer Genome Atlas-Breast Cancer (TCGA-BRCA), Gene Expression Omnibus (GEO) database was analyzed separately using the limma package of R software, and the relationship between CHPF transcriptional expression and CHPF DNA methylation was investigated in TCGA-BRCA. Kaplan-Meier curves were plotted using the Survival package to further assess the prognostic impact of CHPF DNA methylation/expression. The association between CHPF transcript expression/DNA methylation and cancer immune infiltration and immune markers was investigated using the TIMER and TISIDB databases. We also performed gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis with the clusterProfiler package. Western blotting and RT-PCR were used to verify the protein level and mRNA level of CHPF in breast tissue and cell lines, respectively. Small interfering plasmids and lentiviral plasmids were constructed for transient and stable transfection of breast cancer cell lines MCF-7 and SUM1315, respectively, followed by proliferation-related functional assays, such as CCK8, EDU, clone formation assays; migration and invasion-related functional assays, such as wound healing assay and transwell assays. We also conducted a preliminary study of the mechanism. Results We observed that CHPF was significantly upregulated in breast cancer tissues and correlated with poor prognosis. CHPF gene transcriptional expression and methylation are associated with immune infiltration immune markers. CHPF promotes proliferation, migration, invasion of the breast cancer cell lines MCF-7 and SUM1315, and is significantly enriched in pathways associated with the ECM-receptor interaction and PI3K-AKT pathway. Conclusion CHPF transcriptional expression and DNA methylation correlate with immune infiltration and immune markers. Upregulation of CHPF in breast cancer promotes malignant behavior of cancer cells and is associated with poorer survival in breast cancer, possibly through ECM-receptor interactions and the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Wan-Wan Li
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Bin Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shu-Qing Dong
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shi-Qing He
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yu-Ying Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Si-Yu Wei
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jing-Yi Mou
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Institute of Digestive Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jia-Xin Zhang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhao Liu
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
46
|
Zhang H, Qi L, Shen Q, Wang R, Guo Y, Zhang C, Richel A. Comparative Analysis of the Bioactive Compounds in Chicken Cartilage: Protective Effects of Chondroitin Sulfate and Type II Collagen Peptides Against Osteoarthritis Involve Gut Microbiota. Front Nutr 2022; 9:843360. [PMID: 35433786 PMCID: PMC9005812 DOI: 10.3389/fnut.2022.843360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
This study was designed to explore osteoarthritis (OA) treatment from bioactive compounds of chicken cartilage food supplements. The OA rat model induced by sodium iodoacetate was used to evaluate the treatment effect in vivo. In this study, we used animal experiments to show that oral chondroitin sulfate (CS), cartilage powder, and type II collagen peptides could increase the athletic ability of rats and reduce inflammatory cytokine levels in serum or synovial fluid, including prostaglandin E2, tumor necrosis factor-α, interleukin (IL) 1β, IL-6, and IL-17. CS displayed the best treatment effect against OA. The morphological structure of articular cartilage indicated that CS could significantly improve cartilage tissue morphology and reduce OA score. Oral CS slowed down the development of OA by modulating gut microbiota. These results provided a useful scientific basis for the high-value utilization of chicken cartilage.
Collapse
Affiliation(s)
- Hongru Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Liwei Qi
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingshan Shen
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| | - Ruiqi Wang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yujie Guo
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunhui Zhang
- Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Chunhui Zhang
| | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege-Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
47
|
Potaś J, Winnicka K. The Potential of Polyelectrolyte Multilayer Films as Drug Delivery Materials. Int J Mol Sci 2022; 23:ijms23073496. [PMID: 35408857 PMCID: PMC8998809 DOI: 10.3390/ijms23073496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/18/2022] [Accepted: 03/22/2022] [Indexed: 02/05/2023] Open
Abstract
Polyelectrolyte multilayers (PEMs) represent a group of polyelectrolyte complex (PEC)–based materials widely investigated in the biomedical and pharmaceutical sciences. Despite the unflagging popularity of the aforementioned systems in tissue engineering, only a few updated scientific reports concerning PEM potential in drug administration can be found. In fact, PEM coatings are currently recognized as important tools for functionalizing implantable scaffolds; however, only a small amount of attention has been given to PEMs as drug delivery materials. Scientific reports on PEMs reveal two dominant reasons for the limited usability of multilayers in pharmaceutical technology: complex and expensive preparation techniques as well as high sensitivity of interacting polyelectrolytes to the varieties of internal and external factors. The aim of this work was to analyze the latest approaches, concerning the potential of PEMs in pharmacy, chemical technology, and (primarily) tissue engineering, with special attention given to possible polymer combinations, technological parameters, and physicochemical characteristics, such as hydrophilicity, adhesive and swelling properties, and internal/external structures of the systems formed. Careful recognition of the above factors is crucial in the development of PEM-based drug delivery materials.
Collapse
|
48
|
Vassallo V, Tsianaka A, Alessio N, Grübel J, Cammarota M, Tovar GEM, Southan A, Schiraldi C. Evaluation of novel biomaterials for cartilage regeneration based on gelatin methacryloyl interpenetrated with extractive chondroitin sulfate or unsulfated biotechnological chondroitin. J Biomed Mater Res A 2022; 110:1210-1223. [PMID: 35088923 PMCID: PMC9306773 DOI: 10.1002/jbm.a.37364] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 01/10/2023]
Abstract
Gelatin is widely proposed as scaffold for cartilage tissue regeneration due to its high similarities to the extracellular matrix. However, poor mechanical properties and high sensitivity to enzymatic degradation encouraged the scientific community to develop strategies to obtain better performing hydrogels. Gelatin networks, specifically gelatin‐methacryloyl (GM), have been coupled to hyaluronan or chondroitin sulfate (CS). In this study, we evaluated the biophysical properties of an innovative photocross‐linked hydrogel based on GM with the addition of CS or a new unsulfated biotechnological chondroitin (BC). Biophysical, mechanical, and biochemical characterization have been assessed to compare GM hydrogels to the chondroitin containing networks. Moreover, mesenchymal stem cells (MSCs) were seeded on these biomaterials in order to evaluate the differentiation toward the chondrocyte phenotype in 21 days. Rheological characterization showed that both CS and BC increased the stiffness (G' was about 2‐fold), providing a stronger rigid matrix, with respect to GM alone. The biological tests confirmed the onset of MSCs differentiation process starting from 14 days of in vitro culture. In particular, the combination GM + BC resulted to be more effective than GM + CS in the up‐regulation of key genes such as collagen type 2A1 (COLII), SOX‐9, and aggrecan). In addition, the scanning microscope analyses revealed the cellular adhesion on materials and production of extracellular vesicles. Immunofluorescence staining confirmed an increase of COLII in presence of both chondroitins. Finally, the outcomes suggest that BC entangled within cross‐linked GM matrix may represent a promising new biomaterial with potential applications in cartilage regeneration.
Collapse
Affiliation(s)
- Valentina Vassallo
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| | - Anastasia Tsianaka
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Nicola Alessio
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| | - Jana Grübel
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Marcella Cammarota
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| | - Günter E M Tovar
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany.,Fraunhofer Institute of Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology IGVP, University of Stuttgart, Stuttgart, Germany
| | - Chiara Schiraldi
- Department of Experimental Medicine, Section of Biotechnology, Medical Histology and Molecular Biology, University of Campania "Luigi Vanvitelli", Naples
| |
Collapse
|
49
|
Lafuente-Merchan M, Ruiz-Alonso S, Zabala A, Gálvez-Martín P, Marchal JA, Vázquez-Lasa B, Gallego I, Saenz-Del-Burgo L, Pedraz JL. Chondroitin and Dermatan Sulfate Bioinks for 3D Bioprinting and Cartilage Regeneration. Macromol Biosci 2022; 22:e2100435. [PMID: 35029035 DOI: 10.1002/mabi.202100435] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/28/2021] [Indexed: 11/11/2022]
Abstract
Cartilage is a connective tissue which a limited capacity for healing and repairing. In this context, osteoarthritis disease may be developed with high prevalence in which the use of scaffolds may be a promising treatment. In addition, three-dimensional (3D) bioprinting has become an emerging additive manufacturing technology because of its rapid prototyping capacity and the possibility of creating complex structures. This study was focused on the development of nanocellulose-alginate (NC-Alg) based bioinks for 3D bioprinting for cartilage regeneration to which it was added chondroitin sulfate (CS) and dermatan sulfate (DS). First, rheological properties were evaluated. Then, sterilisation effect, biocompatibility and printability on developed NC-Alg-CS and NC-Alg-DS inks were evaluated. Subsequently, printed scaffolds were characterized. Finally, NC-Alg-CS and NC-Alg-DS inks were loaded with murine D1-MSCs-EPO and cell viability and functionality, as well as the chondrogenic differentiation ability were assessed. Results showed that the addition of both CS and DS to the NC-Alg ink improved its characteristics in terms of rheology and cell viability and functionality. Moreover, differentiation to cartilage was promoted on NC-Alg-CS and NC-Alg-DS scaffolds. Therefore, the utilization of MSCs containing NC-Alg-CS and NC-Alg-DS scaffolds may become a feasible tissue engineering approach for cartilage regeneration. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Markel Lafuente-Merchan
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Sandra Ruiz-Alonso
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Alaitz Zabala
- Mechanical and Industrial Manufacturing Department, Mondragon Unibertsitatea, Loramendi 4, Mondragón, 20500, Spain
| | | | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, Granada, 18100, Spain.,Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Andalusian Health Service (SAS), University of Granada, Granada, Spain.,Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, 18016, Spain.,BioFab i3D Lab - Biofabrication and 3D (bio)printing singular Laboratory, University of Granada, Granada, 18100, Spain
| | - Blanca Vázquez-Lasa
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, Madrid, 28006, Spain
| | - Idoia Gallego
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Laura Saenz-Del-Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.,Bioaraba Health Research Institute, Jose Atxotegi, s/n, Vitoria-Gasteiz, 01009, Spain
| |
Collapse
|
50
|
Xu L, He D, Zhang C, Bai Y, Zhang C. The regulate function of polysaccharides and oligosaccharides that with sulfate group on immune-related disease. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|