1
|
Pereira KE, de Aguiar GB, Villanova B, Rabello NJ, Schelbauer R, Carniel ES, Moresco RM, de Souza MA, Centenaro LA. Evaluation of developmental milestones and of brain measurements in rats exposed to the pesticide pyriproxyfen in prenatal period. Int J Dev Neurosci 2024. [PMID: 39245789 DOI: 10.1002/jdn.10370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/17/2024] [Accepted: 08/12/2024] [Indexed: 09/10/2024] Open
Abstract
Pyriproxyfen is a pesticide used in Brazil to control the Aedes aegypti mosquito, vector of arboviruses like Zika and dengue. However, this pesticide is structurally similar to retinoic acid, a metabolite of vitamin A that regulates neuronal differentiation and hindbrain development during the embryonic period. Due to the similarity between pyriproxyfen and retinoic acid, studies indicate that this pesticide may have cross-reactivity with retinoid receptors. Thus, pregnant exposure to pyriproxyfen could interfere in the nervous system development of the fetal. In this context, the present study evaluated whether prenatal exposure to pyriproxyfen affects neonatal development and brain structure in rats. Wistar rat pups were divided in three experimental groups: (1) negative control (CT-)-offspring of rats that drink potable water during pregnancy; (2) pyriproxyfen (PIR)-offspring of rats exposed to Sumilarv® prenatally, a pesticide that has pyriproxyfen as active ingredient; and (3) positive control (CT+)-offspring of rats exposed to an excess of vitamin A prenatally. Only vitamin A treated-pregnant showed lower weight gain, but gestation length was similar among pregnant that received potable water, water containing vitamin A and water containing Sumilarv. In relation to the offspring, PIR group exhibits a delayed front-limb suspension response but performed early the negative geotaxis reflex. On the other hand, CT+ group exhibited lower body weight in the 1st postnatal day, delayed audio startle response, but performed early the eyelids opening and hindlimb placing response. A reduction in the maximum brain width was observed both in PIR and CT+ groups, but a reduction in the number of neurons in the M1 cortex was showed only in CT+ group. The number of glial cells in this brain area was similar between the three experimental groups studied. Although prenatal exposure to pyriproxyfen did not alter neonatal milestones in the same way as vitamin A in excess, both substances caused a reduction in the maximum width of the brain, suggesting that this pesticide can produce neurotoxic effects during the embryonic period.
Collapse
Affiliation(s)
- Katriane Endiel Pereira
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Gabrielle Batista de Aguiar
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Bianca Villanova
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Nicole Jansen Rabello
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Schelbauer
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Estela Soares Carniel
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | - Rafaela Maria Moresco
- Centro de Ciências Biológicas e da Saúde, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| | | | - Lígia Aline Centenaro
- Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Cascavel, Paraná, Brazil
| |
Collapse
|
2
|
Adibi JJ, Zhao Y, Koistinen H, Mitchell RT, Barrett ES, Miller R, O'Connor TG, Xun X, Liang HW, Birru R, Smith M, Moog NK. Molecular pathways in placental-fetal development and disruption. Mol Cell Endocrinol 2024; 581:112075. [PMID: 37852527 PMCID: PMC10958409 DOI: 10.1016/j.mce.2023.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/24/2023] [Indexed: 10/20/2023]
Abstract
The first trimester of pregnancy ranks high in priority when minimizing harmful exposures, given the wide-ranging types of organogenesis occurring between 4- and 12-weeks' gestation. One way to quantify potential harm to the fetus in the first trimester is to measure a corollary effect on the placenta. Placental biomarkers are widely present in maternal circulation, cord blood, and placental tissue biopsied at birth or at the time of pregnancy termination. Here we evaluate ten diverse pathways involving molecules expressed in the first trimester human placenta based on their relevance to normal fetal development and to the hypothesis of placental-fetal endocrine disruption (perturbation in development that results in abnormal endocrine function in the offspring), namely: human chorionic gonadotropin (hCG), thyroid hormone regulation, peroxisome proliferator activated receptor protein gamma (PPARγ), leptin, transforming growth factor beta, epiregulin, growth differentiation factor 15, small nucleolar RNAs, serotonin, and vitamin D. Some of these are well-established as biomarkers of placental-fetal endocrine disruption, while others are not well studied and were selected based on discovery analyses of the placental transcriptome. A literature search on these biomarkers summarizes evidence of placenta-specific production and regulation of each biomarker, and their role in fetal reproductive tract, brain, and other specific domains of fetal development. In this review, we extend the theory of fetal programming to placental-fetal programming.
Collapse
Affiliation(s)
- Jennifer J Adibi
- Department of Epidemiology, University of Pittsburgh School of Public Health, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Yaqi Zhao
- St. Jude's Research Hospital, Memphis, TN, USA
| | - Hannu Koistinen
- Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
| | - Rod T Mitchell
- Department of Paediatric Endocrinology, Royal Hospital for Children and Young People, Edinburgh BioQuarter, Edinburgh, UK
| | - Emily S Barrett
- Environmental and Population Health Bio-Sciences, Rutgers University School of Public Health, Piscataway, NJ, USA
| | - Richard Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Xiaoshuang Xun
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Hai-Wei Liang
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Rahel Birru
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, USA
| | - Megan Smith
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora K Moog
- Department of Medical Psychology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Hota J, Mahapatra PK. FGF2 and FGF10 expression patterns in the epidermis and mesenchyme during homeotic transformation of tail into hindlimbs in frog tadpoles. Acta Histochem 2022; 124:151836. [PMID: 34968793 DOI: 10.1016/j.acthis.2021.151836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/21/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022]
Abstract
Limbs are trunk quintessential in tetrapods. Their development relies on the Retinoic acid (RA) gradient in association with the Fibroblast Growth Factors (FGFs). The role of various FGFs have been probed extensively and confirmed during the induction of ectopic limbs in vertebrates. On such factual backdrops, we studied the expression patterns of FGF2 and FGF10 in the epidermis and mesenchyme by immunohistochemical localization in the regenerating tails of tadpoles of the Indian tree frog, Polypedates maculatus. These tadpoles are known to exhibit a kind of homeotic transformation of tail to limbs during regeneration, whose exact mechanism is still to be established by scientific investigations. Here in this study, we provide the first evidence of the putative involvement of FGF2 and FGF10 during such ectopic appendage development.
Collapse
Affiliation(s)
- Jutshina Hota
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Pravati Kumari Mahapatra
- Cell and Developmental Biology Laboratory, P.G. Department of Zoology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India.
| |
Collapse
|
4
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
5
|
All-Trans Retinoic Acid Induces TGF-β2 in Intestinal Epithelial Cells via RhoA- and p38α MAPK-Mediated Activation of the Transcription Factor ATF2. PLoS One 2015. [PMID: 26225425 PMCID: PMC4520553 DOI: 10.1371/journal.pone.0134003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Objective We have shown previously that preterm infants are at risk of necrotizing enterocolitis (NEC), an inflammatory bowel necrosis typically seen in infants born prior to 32 weeks’ gestation, because of the developmental deficiency of transforming growth factor (TGF)-β2 in the intestine. The present study was designed to investigate all-trans retinoic acid (atRA) as an inducer of TGF-β2 in intestinal epithelial cells (IECs) and to elucidate the involved signaling mechanisms. Methods AtRA effects on intestinal epithelium were investigated using IEC6 cells. TGF-β2 expression was measured using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Western blots. Signaling pathways were investigated using Western blots, transiently-transfected/transduced cells, kinase arrays, chromatin immunoprecipitation, and selective small molecule inhibitors. Results AtRA-treatment of IEC6 cells selectively increased TGF-β2 mRNA and protein expression in a time- and dose-dependent fashion, and increased the activity of the TGF-β2 promoter. AtRA effects were mediated via RhoA GTPase, Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), p38α MAPK, and activating transcription factor (ATF)-2. AtRA increased phospho-ATF2 binding to the TGF-β2 promoter and increased histone H2B acetylation in the TGF-β2 nucleosome, which is typically associated with transcriptional activation. Conclusions AtRA induces TGF-β2 expression in IECs via RhoA- and p38α MAPK-mediated activation of the transcription factor ATF2. Further studies are needed to investigate the role of atRA as a protective/therapeutic agent in gut mucosal inflammation.
Collapse
|
6
|
Xu Q, Kopp JB. Retinoid and TGF-β families: crosstalk in development, neoplasia, immunity, and tissue repair. Semin Nephrol 2012; 32:287-94. [PMID: 22835460 DOI: 10.1016/j.semnephrol.2012.04.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transforming growth factor-β (TGF-β) isoforms are profibrotic cytokines, par excellence, and have complex multifunctional effects on many systems, depending on the biologic setting. Retinoids are vitamin A derivatives that also have diverse effects in development, physiology, and disease. The interactions between these classes of molecules are, not surprisingly, highly complex and are dependent on the tissue, cellular, and molecular settings.
Collapse
Affiliation(s)
- Qihe Xu
- Department of Renal Medicine, King's College London, London, UK
| | | |
Collapse
|
7
|
de Jong E, Barenys M, Hermsen SAB, Verhoef A, Ossendorp BC, Bessems JGM, Piersma AH. Comparison of the mouse Embryonic Stem cell Test, the rat Whole Embryo Culture and the Zebrafish Embryotoxicity Test as alternative methods for developmental toxicity testing of six 1,2,4-triazoles. Toxicol Appl Pharmacol 2011; 253:103-11. [PMID: 21443896 DOI: 10.1016/j.taap.2011.03.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 02/01/2023]
Abstract
The relatively high experimental animal use in developmental toxicity testing has stimulated the search for alternatives that are less animal intensive. Three widely studied alternative assays are the mouse Embryonic Stem cell Test (EST), the Zebrafish Embryotoxicity Test (ZET) and the rat postimplantation Whole Embryo Culture (WEC). The goal of this study was to determine their efficacy in assessing the relative developmental toxicity of six 1,2,4-triazole compounds,(1) flusilazole, hexaconazole, cyproconazole, triadimefon, myclobutanil and triticonazole. For this purpose, we analyzed effects and relative potencies of the compounds in and among the alternative assays and compared the findings to their known in vivo developmental toxicity. Triazoles are antifungal agents used in agriculture and medicine, some of which are known to induce craniofacial and limb abnormalities in rodents. The WEC showed a general pattern of teratogenic effects, typical of exposure to triazoles, mainly consisting of reduction and fusion of the first and second branchial arches, which are in accordance with the craniofacial malformations reported after in vivo exposure. In the EST all triazole compounds inhibited cardiomyocyte differentiation concentration-dependently. Overall, the ZET gave the best correlation with the relative in vivo developmental toxicities of the tested compounds, closely followed by the EST. The relative potencies observed in the WEC showed the lowest correlation with the in vivo developmental toxicity data. These differences in the efficacy between the test systems might be due to differences in compound kinetics, in developmental stages represented and in the relative complexity of the alternative assays.
Collapse
Affiliation(s)
- Esther de Jong
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
8
|
Shimoda H, Tanaka J, Shan SJ, Maoka T. Anti-pigmentary activity of fucoxanthin and its influence on skin mRNA expression of melanogenic molecules. J Pharm Pharmacol 2010; 62:1137-45. [PMID: 20796192 DOI: 10.1111/j.2042-7158.2010.01139.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Carotenoids and retinoic acid derivatives are topically applied for sun-protective and whitening purposes. Fucoxanthin is a carotenoid derived from edible sea algae, but its effect on melanogenesis has not been established. Therefore, we examined the effect of fucoxanthin on melanogenesis. METHODS Inhibitory effects on tyrosinase activity, melanin formation in B16 melanoma and skin pigmentation in UVB-irradiated guinea-pigs were evaluated. To elucidate the action of fucoxanthin on melanogenesis, its effect on skin melanogenic mRNA expression was evaluated in UVB-irradiated mice. Fucoxanthin was given topically or orally to mice once a day and UVB irradiation was applied for 14 days. The effect of fucoxanthin on skin melanogenic mRNA expression was evaluated by real time reverse transcription polymerase chain reaction. KEY FINDINGS Fucoxanthin inhibited tyrosinase activity, melanogenesis in melanoma and UVB-induced skin pigmentation. Topical application of fucoxanthin (1%) significantly suppressed mRNA expression of cyclooxygenase (COX)-2, endothelin receptor A, p75 neurotrophin receptor (NTR), prostaglandin E receptor 1 (EP1), melanocortin 1 receptor (MC1R) and tyrosinase-related protein 1. The suppression of p75NTR, EP1 and MC1R expressions was observed at 0.01% application. Also, oral application of fucoxanthin (10 mg/kg) significantly suppressed expression of COX-2, p75NTR, EP1 and MC1R. CONCLUSIONS These results suggest that fucoxanthin exhibits anti-pigmentary activity by topical or oral application in UVB-induced melanogenesis. This effect of fucoxanthin may be due to suppression of prostaglandin (PG) E(2) synthesis and melanogenic stimulant receptors (neurotrophin, PGE(2) and melanocyte stimulating hormone expression).
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Cyclooxygenase 2/genetics
- Cyclooxygenase 2/metabolism
- Gene Expression/drug effects
- Guinea Pigs
- Male
- Melanins/antagonists & inhibitors
- Melanins/genetics
- Melanoma/prevention & control
- Mice
- Mice, Hairless
- Monophenol Monooxygenase/genetics
- Monophenol Monooxygenase/metabolism
- Phaeophyceae/chemistry
- Phytotherapy
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- RNA, Messenger/metabolism
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 1/metabolism
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- Receptors, Endothelin/genetics
- Receptors, Endothelin/metabolism
- Receptors, Prostaglandin E, EP1 Subtype/genetics
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/drug effects
- Skin/metabolism
- Skin/radiation effects
- Skin Pigmentation/drug effects
- Skin Pigmentation/radiation effects
- Ultraviolet Rays
- Xanthophylls/pharmacology
- Xanthophylls/therapeutic use
Collapse
Affiliation(s)
- Hiroshi Shimoda
- Research & Development Division, Oryza Oil & Fat Chemical Co. Ltd, Ichinomiya, Aichi 493-8001, Japan.
| | | | | | | |
Collapse
|
9
|
Di Renzo F, Corsini E, Broccia M, Marinovich M, Galli C, Giavini E, Menegola E. Molecular mechanism of teratogenic effects induced by the fungicide triadimefon: Study of the expression of TGF-β mRNA and TGF-β and CRABPI proteins during rat in vitro development. Toxicol Appl Pharmacol 2009; 234:107-16. [DOI: 10.1016/j.taap.2008.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 09/29/2008] [Accepted: 09/29/2008] [Indexed: 10/21/2022]
|
10
|
Wu LH, Xu SJ, Teng JY, Wu W, Ye DY, Wu XZ. Differential response of human fetal smooth muscle cells from arterial duct to retinoid acid. Acta Pharmacol Sin 2008; 29:413-20. [PMID: 18358086 DOI: 10.1111/j.1745-7254.2008.00766.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM The aim of the present study was to understand the role of retinoic acid (RA) in the development of isolated patent ductus arteriosus and the features of arterial duct-derived vascular smooth muscle cells (VSMC). METHODS The VSMC were isolated, and the biological characteristics and the response to RA were investigated in the arterial duct, aorta, and pulmonary artery VSMC from 6 human embryonic samples. Western blotting, immunostaining, and cell-based ELISA were employed to analyze the proliferation regulation of VSMC. RESULTS The VSMC from the arterial duct expressed proliferating cell nuclear antigen (PCNA) at a significantly lower rate than those from the aorta and pulmonary artery, but expressed a higher level of Bax and Bcl-2. The expression level of PCNA or Bcl-2 was associated with the embryonic age. The effects of RA on the VSMC from the arterial duct were quite different from those from the aorta and pulmonary artery. In arterial duct VSMC, RA stimulated PCNA expression, but such stimulation could be suppressed by CD2366, an antagonist of nuclear retinoid receptor activation. In aorta or pulmonary artery VSMC, the expression response of PCNA to RA was insignificant. The ratio of Bax/Bcl-2 decreased in arterial duct VSMC after RA treatment due to the significant inhibition of Bax expression. CONCLUSION The VSMC from the arterial duct possessed distinct biological behaviors. RA might be important in the development of ductus arteriosus VSMC.
Collapse
Affiliation(s)
- Li-hui Wu
- Department of Pathophysiology, Tongji Medical College of Huazhong, University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | |
Collapse
|
11
|
Colakoglu N, Kukner A, Oner J, Sonmez MF, Oner H, Ozan E. Effects of high dose retinoic acid on TGF-β2 expression during pancreatic organogenesis. J Mol Histol 2006; 36:413-8. [PMID: 16479313 DOI: 10.1007/s10735-005-9013-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Accepted: 12/13/2005] [Indexed: 10/25/2022]
Abstract
The aim of this study was to investigate the effects of excess all-trans retinoic acid, a vitamin A metabolite, on pancreatic organogenesis and TGF-beta2 expression during prenatal development in rats. First group of animals used as control while a single dose of 60 mg/kg all-trans retinoic acid was ingested by the mothers, at day 8 of gestation (before the neurulation period) in group II and at day 12 of gestation (after the neurulation period) in group III, and all embryos were sacrificed at day 18 of gestation. TGF-beta2 expression was detected in the capsule, acini and Langerhans islets in the control group. In the pancreas of group II, dilatation and congestion of interlobular vessels were observed. Langerhans islet structures were completely absent. Moreover acinar TGF-beta2 immune reactivity was not determined. In group III, acinar expression of TGF-beta2 in acid was similar to that in the controls but their Langerhans islets TGF-beta2 immune reactivity was significantly less than the controls. In view of the present findings we suggest that TGF-beta2 plays important role in pancreatic morphogenesis and administration of excess all-trans retinoic acid before neurulation inhibit TGF-beta2 expression disrupted pancreatic morphogenesis particularly Langerhans islets. However, its administration after neurulation had less adverse affect on pancreatic organogenesis and TGF-beta2 immune reactivity.
Collapse
Affiliation(s)
- Neriman Colakoglu
- Histology and Embryology Department, Medical Faculty, Firat University, Elazig, Turkey.
| | | | | | | | | | | |
Collapse
|
12
|
Nobakht M, Zirak A, Mehdizadeh M, Tabatabaeei P. Teratogenic effects of retinoic acid on neurulation in mice embryos. PATHOPHYSIOLOGY 2006; 13:57-61. [PMID: 16102951 DOI: 10.1016/j.pathophys.2005.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2004] [Revised: 03/03/2005] [Accepted: 07/05/2005] [Indexed: 10/25/2022] Open
Abstract
Retinoic acids (RA) are natural chemicals that exert a hormone-like activity and a variety of biological effects on early development of mouse. In this study, the probable teratogenic effects of RA on CNS have been investigated in pregnant mice (n = 20) divided into four groups: (1) untreated controls, (2) controls which received a single dose of DMSO, (3) a group that received 40 mg/kg, and (4) a group that received 60 mg/kg of all-trans RA in DMSO, respectively on the eighth day of gestation. Embryos whose dams had received 40 and 60 mg/kg doses of RA, showed malformations and decreased size. At 40 mg/kg dosage level, 50% of the embryos had closed neural tubes while at 60 mg/kg dosage level the neural tube failed to close. The neuroblast mantle layers were disorganized in the 40 mg/kg and even more in the 60 mg/kg exposed group compared to the controls. In mitosis, the density of chromatin was increased in the 60 mg/kg dose group. Compared to controls the 40 and 60 mg/kg dose groups of RA treated dams decreases in the luminal longitudinal and internal measures were observed. Also the thickness of ventricular, mantle and marginal layers was smaller. Wide intercellular spaces due to the degenerated cells at high doses of RA as well as an accumulation of intercellular fluid were observed. Therefore, the wedge shape of neuroepithelium was abolished, preventing the elevation of the neural wall.
Collapse
Affiliation(s)
- M Nobakht
- Department of Anatomy and Histology, Iran University Of Medical Sciences, P.O. Box 14155-6183, Tehran, Iran.
| | | | | | | |
Collapse
|