1
|
Zayman E, Gül M, Erdemli ME, Gül S, Bağ HG, Taşlıdere E. Biochemical and histopathological investigation of the protective effects of melatonin and vitamin E against the damage caused by acetamiprid in Balb-c mouse testicles at light and electron microscopic level. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47571-47584. [PMID: 35182334 DOI: 10.1007/s11356-022-19143-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The protective effects of melatonin (Mel) and vitamin E (Vit E) against the negative effects of acetamiprid (Acmp) on testicles, reproductive hormones, and oxidative stress parameters were investigated in the present study. A total of 50 Balb-c male mice were used in 7 groups; 6 mice in the control groups (distilled water, corn oil, ethanol), and 8 in other groups (Acmp, Acmp + Mel, Acmp + Vit E, Acmp + Vit E + Mel). After the experiment, which lasted 21 days, hematoxylin eosin (H&E), periodic acid Schiff (PAS), and caspase-3 immunohistochemical (IHC) staining was performed on the testicular tissues. Also, the tissues were examined ultrastructurally with the transmission electron microscopy (TEM). In the Acmp group, there were decreased seminiferous tubule diameter and epithelial thickness, epithelial degeneration, decreased spermatozoa in the lumen, decreased PAS-positive staining in the seminiferous epithelial basement membrane, edema in the interstitial area, and hydropic degeneration in Leydig cells. Caspase-3 immunoreactivity was higher than in the other groups. TEM examination showed degeneration in tubule cells, lysosomal accumulation in cells of the spermatogenic line, vacuolizations with myelin figures, and necrosis. Hydropic degeneration, electron-dense lipid vacuoles, and chromatolysis were evident in the Leydig cell cytoplasm. In Sertoli cells, electron-dense lysosomal deposits were noted. In biochemical terms, there were decreased tissue glutathione (GSH) and total antioxidant status (TAS), and increased malondialdehyde (MDA) and total oxidant status (TOS). Plasma luteinizing hormone (LH), follicular stimulating hormone (FSH), and testosterone levels were decreased. In the groups with melatonin, vitamin E, and both were applied together, tissue damage, and apoptotic cell death were reduced at both light microscopic and ultrastructural levels. In biochemical terms, there were decreased oxidative parameters and increased hormonal parameters. It was found that vitamin E was more effective in decreasing oxidative parameters and increasing antioxidative parameters when compared to melatonin, and hormonal parameters increased at a higher level in the Acmp + Vit E group than in all groups. As a result, it was found that exposure to Acmp caused damage to testicular tissue, induced oxidative stress in testicles, and decreased plasma LH, FSH, and testosterone levels, and although vitamin E is more effective than melatonin in preventing this damage, both are effective.
Collapse
Affiliation(s)
- Emrah Zayman
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Ozal University, Malatya, Turkey.
| | - Mehmet Gül
- Department of Histology and Embryology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Mehmet Erman Erdemli
- Department of Medical Biochemistry, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Semir Gül
- Department of Histology and Embryology, Medical Faculty, Malatya Turgut Ozal University, Malatya, Turkey
| | - Harika Gözükara Bağ
- Department of Biostatistics, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| | - Elif Taşlıdere
- Department of Histology and Embryology, Medical Faculty, Inonu University, 44280, Malatya, Turkey
| |
Collapse
|
2
|
Gao D, Yu P, Jing S, Yan C, Ding D, Qiao Y, Wu G. miR-193a as a potential mediator of WT-1/synaptopodin in the renoprotective effect of losartan on diabetic kidney. Can J Physiol Pharmacol 2021; 100:26-34. [PMID: 34411489 DOI: 10.1139/cjpp-2021-0150] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is the most common complication of diabetic patients, and has become a global healthcare problem. In this study, we used diabetic mice to evaluate the effect of Losartan on diabetic nephropathy, in which the experimental animals were divided into three groups: non-diabetic mice (db/m group), untreated-diabetic mice (db/db group), and Losartan-treated diabetic mice (db/db-losartan). Next, immunohistochemistry and immunofluorescence were used to detect WT-1 and synaptopodin expression, respectively. Protein levels of WT-1, synaptopodin, claudin1, and Pax-2 were assessed by Western blotting and real-time PCR. The miR-193a mRNA levels were quantitated by real-time PCR. The results showed that albuminuria was increased in diabetic mice compared with control animals and was significantly ameliorated by treatment with Losartan. In addition, Losartan significantly upregulated the immunopositive cell numbers of WT-1, the expression of WT-1 and synaptopodin in renal tissue. By contrast, expression of claudin1 and Pax-2 in renal tissue were decreased in db/db-losartan group. Besides, expression of miR-193a was decreased significantly in db/db-losartan group compared to the untreated diabetic group. Thus, Losartan has renoprotective effects on the control of tissue damage possibly by inhibiting the expression of miR-193a, thereby promoting the repair of podocyte injury in mice with diabetic nephropathy.
Collapse
Affiliation(s)
- Dan Gao
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China;
| | - Pei Yu
- The First Affiliated Hospital of Zhengzhou University, Department of Nephrology, Zhengzhou, China;
| | - Sanhui Jing
- The First Affiliated Hospital of Zhengzhou University, Department of Nephrology, Zhengzhou, China.,Heze Hospital of Traditional Chinese Medicine, Department of Nephrology, Heze, China;
| | - Chengcheng Yan
- The First Affiliated Hospital of Zhengzhou University, Department of Nephrology, Zhengzhou, China;
| | - Dandan Ding
- The First Affiliated Hospital of Zhengzhou University, Department of Nephrology, Zhengzhou, China;
| | - Yingjin Qiao
- The First Affiliated Hospital of Zhengzhou University, Blood Purification Center, Zhengzhou, China;
| | - Ge Wu
- The First Affiliated Hospital of Zhengzhou University, Department of Nephrology, Zhengzhou, China;
| |
Collapse
|
3
|
Glomerular clusterin expression is increased in diabetic nephropathy and protects against oxidative stress-induced apoptosis in podocytes. Sci Rep 2020; 10:14888. [PMID: 32913257 PMCID: PMC7484791 DOI: 10.1038/s41598-020-71629-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
Clusterin, a glycoprotein encoded by the CLU gene, is expressed in many tissues, including the kidney, and clusterin expression is upregulated in the glomeruli of patients with various forms of kidney disease. Here, we investigated the role of clusterin in diabetic nephropathy (DN). In this study, we found that glomerular clusterin expression was increased in both patients with DN and streptozotocin-induced diabetic mice and that it co-localised with the podocyte marker WT1, indicating clusterin is expressed in podocytes. In our in vitro analysis, we found no significant change in CLU mRNA expression in podocytes following stimulation with high glucose and angiotensin II; in contrast, CLU mRNA expression was significantly upregulated following methylglyoxal stimulation. Methylglyoxal treatment also significantly decreased the mRNA expression of the slit diaphragm markers ZO-1 and NEPH1 and significantly increased the mRNA expression of the oxidative stress marker HO-1. Lastly, we showed that pre-incubating podocytes with recombinant human clusterin protein increased podocyte survival, prevented slit diaphragm damage, and reduced oxidative stress‒induced apoptosis following methylglyoxal stimulation. Taken together, our results indicate that glomerular clusterin is upregulated in DN, and this increase in clusterin expression may protect against oxidative stress-induced apoptosis in podocytes, providing a possible new therapeutic target for DN and other kidney diseases.
Collapse
|
4
|
Deng B, Feng J, Wang L, Chen X. Silencing of CRT relieves Ang II-Induced injury of HUVECs with insulin resistance. J Recept Signal Transduct Res 2020; 41:321-330. [PMID: 32873146 DOI: 10.1080/10799893.2020.1808677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, we investigated the effects of Angiotensin II (Ang II) on insulin-resistant endothelial cells. High glucose and insulin at series of concentrations were used to induce IR in Human Umbilical Vein Endothelial Cells (HUVECs). Successful IR induction was confirmed according to glucose consumption and glycogen content levels. Cell morphology was observed under a microscope. Expression levels of Ang II and Calreticulin (CRT) were measured by ELISA, qRT-PCR and Western blot as appropriate. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry, respectively. HUVECs with IR were exposed to Ang II at series of concentrations, and then the cell viability, apoptosis and CRT were detected. Rescue assays were performed by transfection of siCRT or overexpression of CRT with or without Ang II stimulation into the HUVECs with IR. Expressions of cell apoptosis-related proteins Bcl-2 and Bax were measured by qRT-PCR and Western blot. Glucose (33.3 mmol/L) and insulin (4 µmol/L) induced significantly strong IR to the HUVECs, with a pathological appearance. Levels of Agn II and CRT were both up-regulated by IR. Cell viability of HUVECs was slightly reduced after IR induction for 2 h, and cell apoptosis rate was increased. In addition, Ang II (10-7 mol/l) suppressed cell viability and glucose uptake, promoted cell apoptosis and increased CRT, and these effects could be weakened by silencing CRT. Thus, we preliminarily proved that Ang II up-regulates CRT, and CRT knockdown can relieve Ang II-induced injury of HUVECs with IR.
Collapse
Affiliation(s)
- Biyong Deng
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jing Feng
- Department of Cardiology, Jing'an District Centre Hospital of Shanghai, Fudan University, Shanghai, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai, Jiaotong University School of Medicine, Shanghai, China
| | - Xin Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Bilgi A, Abalı R, Bilgi PT, Şahin M, Tunçdemir M, Boran AB. The apoptotic effects of bisphenol A exposure on the rat ovary: an experimental study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10198-10203. [PMID: 30758795 DOI: 10.1007/s11356-019-04487-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 02/05/2019] [Indexed: 05/21/2023]
Abstract
Bisphenol A (BPA) is a key endocrine-disrupting chemical (EDC) in the manufacturing industry. It is found in the structure of compounds such as polycarbonate and epoxy in combination with other chemicals. Our objective was to investigate the effect of BPA on rat ovaries. A total of 32 female rats were divided into four equal groups: In group 1 (control), vehicle was administered; in group 2, BPA 50 μg/day was administered intraperitoneally; in group 3, BPA 100 mg/kg/day was administered intraperitoneally; and in group 4, BPA 100 mg/kg/day and vitamin C (50 mg/kg) were administered intraperitoneally, while vitamin E (50 mg/kg) was administered intramuscularly. Thirty days after the treatment, the effects of BPA on the ovaries were evaluated by terminal deoxynucleotidyltransferase [TdT]-mediated dUTP-biotin nick end labeling (TUNEL) assay. There was no difference in the number of apoptotic cells between group 2 and group 4. In addition, there was no significant difference between control group and group 2, 4. However, the number of apoptotic cells per unit area was significantly increased in group 3 compared with all groups (p < 0.01, p < 0.05). In conclusion, this study showed that high doses of BPA (100 mg/kg/day) have a toxic effect on the ovaries. The fact that the number of apoptotic cells in the group administered with high dose of BPA + 50 mg/kg/day vitamin C + 50 mg/kg/day vitamin E was lower than that of the high-dose BPA-administered group shows that these vitamins may have a protective effect.
Collapse
Affiliation(s)
- Ahmet Bilgi
- Department of Gynecology and Obstetrics, Division of Gynecologic Oncology, Mersin City Education and Research Hospital, Mersin, Turkey
| | - Remzi Abalı
- Clinic of Obstetrics and Gynecology, Bahçeci Fulya In Vitro Fertilization Center, Istanbul, Turkey
| | - Pınar Tonbaklar Bilgi
- Department of Medical Biochemistry, Mersin City Education and Research Hospital, Mersin, Turkey
| | - Mustafa Şahin
- Department of Medical Biochemistry, Erol Olçok Education and Research Hospital, Hitit University, 19040, Çorum, Turkey.
| | - Matem Tunçdemir
- Department of Medical Biology, Cerrahpaşa Faculty of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Ahmet Birtan Boran
- Department of Gynecology and Obstetrics, Istanbul Education and Research Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Habibi J, Aroor AR, Das NA, Manrique-Acevedo CM, Johnson MS, Hayden MR, Nistala R, Wiedmeyer C, Chandrasekar B, DeMarco VG. The combination of a neprilysin inhibitor (sacubitril) and angiotensin-II receptor blocker (valsartan) attenuates glomerular and tubular injury in the Zucker Obese rat. Cardiovasc Diabetol 2019; 18:40. [PMID: 30909895 PMCID: PMC6432760 DOI: 10.1186/s12933-019-0847-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 03/18/2019] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Diabetic nephropathy (DN) is characterized by glomerular and tubulointerstitial injury, proteinuria and remodeling. Here we examined whether the combination of an inhibitor of neprilysin (sacubitril), a natriuretic peptide-degrading enzyme, and an angiotensin II type 1 receptor blocker (valsartan), suppresses renal injury in a pre-clinical model of early DN more effectively than valsartan monotherapy. METHODS Sixty-four male Zucker Obese rats (ZO) at 16 weeks of age were distributed into 4 different groups: Group 1: saline control (ZOC); Group 2: sacubitril/valsartan (sac/val) (68 mg kg-1 day-1; ZOSV); and Group 3: valsartan (val) (31 mg kg-1 day-1; ZOV). Group 4 received hydralazine, an anti-hypertensive drug (30 mg kg-1 day-1, ZOH). Six Zucker Lean (ZL) rats received saline (Group 5) and served as lean controls (ZLC). Drugs were administered daily for 10 weeks by oral gavage. RESULTS Mean arterial pressure (MAP) increased in ZOC (+ 28%), but not in ZOSV (- 4.2%), ZOV (- 3.9%) or ZOH (- 3.7%), during the 10 week-study period. ZOC were mildly hyperglycemic, hyperinsulinemic and hypercholesterolemic. ZOC exhibited proteinuria, hyperfiltration, elevated renal resistivity index (RRI), glomerular mesangial expansion and podocyte foot process flattening and effacement, reduced nephrin and podocin expression, tubulointerstitial and periarterial fibrosis, increased NOX2, NOX4 and AT1R expression, glomerular and tubular nitroso-oxidative stress, with associated increases in urinary markers of tubular injury. None of the drugs reduced fasting glucose or HbA1c. Hypercholesterolemia was reduced in ZOSV (- 43%) and ZOV (- 34%) (p < 0.05), but not in ZOH (- 13%) (ZOSV > ZOV > ZOH). Proteinuria was ameliorated in ZOSV (- 47%; p < 0.05) and ZOV (- 30%; p > 0.05), but was exacerbated in ZOH (+ 28%; p > 0.05) (ZOSV > ZOV > ZOH). Compared to ZOC, hyperfiltration was improved in ZOSV (p < 0.05 vs ZOC), but not in ZOV or ZOH. None of the drugs improved RRI. Mesangial expansion was reduced by all 3 treatments (ZOV > ZOSV > ZOH). Importantly, sac/val was more effective in improving podocyte and tubular mitochondrial ultrastructure than val or hydralazine (ZOSV > ZOV > ZOH) and this was associated with increases in nephrin and podocin gene expression in ZOSV (p < 0.05), but not ZOV or ZOH. Periarterial and tubulointerstitial fibrosis and nitroso-oxidative stress were reduced in all 3 treatment groups to a similar extent. Of the eight urinary proximal tubule cell injury markers examined, five were elevated in ZOC (p < 0.05). Clusterin and KIM-1 were reduced in ZOSV (p < 0.05), clusterin alone was reduced in ZOV and no markers were reduced in ZOH (ZOSV > ZOV > ZOH). CONCLUSIONS Compared to val monotherapy, sac/val was more effective in reducing proteinuria, renal ultrastructure and tubular injury in a clinically relevant animal model of early DN. More importantly, these renoprotective effects were independent of improvements in blood pressure, glycemia and nitroso-oxidative stress. These novel findings warrant future clinical investigations designed to test whether sac/val may offer renoprotection in the setting of DN.
Collapse
Affiliation(s)
- Javad Habibi
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Annayya R Aroor
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Nitin A Das
- Cardiothoracic Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Camila M Manrique-Acevedo
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA.,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA
| | - Megan S Johnson
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Melvin R Hayden
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA.,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA
| | - Ravi Nistala
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Nephrology, Department of Medicine, University of Missouri, Columbia, MO, USA
| | - Charles Wiedmeyer
- College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Bysani Chandrasekar
- Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA.,Division of Cardiology, Department of Medicine, University of Missour, Columbia, MO, USA.,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Vincent G DeMarco
- Diabetes and Cardiovascular Center, University of Missouri School of Medicine, Columbia, MO, USA. .,Division of Endocrinology and Metabolism, Department of Medicine, University of Missouri-Columbia School of Medicine, D110, DC043.0, One Hospital Dr, Columbia, MO, 65212, USA. .,Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, MO, USA. .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
7
|
Tunçdemir M, Büyükçolpan Mirzataş E, Uzun H. Renoprotective potential of quercetin in experimental diabetic nephropathy: assesing antiapoptotic and antioxidant effects. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2018. [DOI: 10.25000/acem.452530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Tunçdemir M, Yenmiş G, Tombultürk K, Arkan H, Soydaş T, Burak Tek R, Altıntaş Ö, Özkara H, Kanıgür-Sultuybek G. NFKB1 rs28362491 and pre-miRNA-146a rs2910164 SNPs on E-Cadherin expression in case of idiopathic oligospermia: A case-control study. Int J Reprod Biomed 2018. [DOI: 10.29252/ijrm.16.4.247] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
9
|
Performance of urinary neutrophil gelatinase-associated lipocalin, clusterin, and cystatin C in predicting diabetic kidney disease and diabetic microalbuminuria: a consecutive cohort study. BMC Nephrol 2017; 18:233. [PMID: 28701152 PMCID: PMC5508763 DOI: 10.1186/s12882-017-0620-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/16/2017] [Indexed: 12/14/2022] Open
Abstract
Background Tubular biomarkers have been regarded as emerging and promising markers for early diagnosis of diabetic kidney disease (DKD). The study was to determine the diagnostic capabilities of tubular biomarkers (urinary neutrophil gelatinase-associated lipocalin [NGAL], clusterin, and cystatin C) for DKD and diabetic microalbuminuria, and whether or not the tubular biomarkers appear earlier than microalbuminuria. Methods In this consecutive cohort study, 146 type 2 diabetes mellitus (T2DM) patients with a disease duration of ≥6 years were enrolled. Thirty age- and gender-matched subjects without any systemic diseases were recruited as the control group. Urinary samples collected before treatment were tested for NGAL, clusterin, and cystatin C. Results The levels of biomarkers were higher in patients with DKD (p < 0.001); and positively correlated with the urinary albumin creatinine ratio (UACR; p < 0.001). With respect to the diagnosis of DKD, the areas under the receiver operating characteristic curve (AUCs) for urinary NGAL, clusterin, and cystatin C were 0.816 (95% confidence interval [CI], 0.741–0.891), 0.775 (95% CI: 0.694–0.857), and 0.803 (95% CI: 0.722–0.884), respectively. The levels of urinary NGAL and cystatin C in the normoalbuminuria group (UACR <30 mg /g•Cr) were elevated compared with the control group, unlike urinary clusterin. There was no statistical difference in the levels of the three biomarkers between groups with different levels of haemoglobin A1C (HbA1c). The diagnostic AUCs for urinary NGAL, clusterin, and cystatin C in patients with diabetic microalbuminuria were 0.841 (95% CI: 0.775–0.907), 0.783(95% CI: 0.710–0.856), and 0.805 (95% CI: 0.733–0.877), respectively. Conclusions Urinary NGAL, clusterin, and cystatin C may be promising biomarkers for diagnosing DKD and diabetic microalbuminuria. It is possible that urinary NGAL and cystatin C increase before the onset of microalbuminuria in T2DM patients.
Collapse
|
10
|
Cengiz M, Alansal NO, Tuncdemir M, Tanriverdi G, Bayoglu B. Evaluation of effects of melatonin and caffeic acid phenethyl ester on acute potassium dichromate toxicity and genotoxicity in rats. Indian J Pharmacol 2017; 48:407-411. [PMID: 27756952 PMCID: PMC4980929 DOI: 10.4103/0253-7613.186213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: The aim of this study is to investigate the possible protective effects of melatonin and caffeic acid phenethyl ester (CAPE) on potassium dichromate (K2 Cr2O7)-induced nephrotoxicity and genotoxicity. Methods: A total of 40 Wistar albino rats were divided into five groups: control, K2Cr2O7(K2Cr2O715 mg/kg, one dose, i.p.), K2Cr2O7 + melatonin, K2Cr2O7 + CAPE, and K2Cr2O7 + melatonin + CAPE. Urine and blood samples were collected from rats before scarification. One kidney was collected for histopathological studies, and the other was stored at −80°C for further determination of catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), glutathione S-transferase (GST), and glutathione reductase (GR) levels with spectrophotometric method. Comet assay was used to evaluate the genotoxicity. Results: We observed a significant amelioration in genotoxicity by melatonin and simultaneous melatonin + CAPE treatment compared to K2Cr2O7 group (p1, p2< 0.05). SOD, CAT, GSH, GST, and MDA levels did not change when compared with controls. When K2Cr2O7 applied group was treated with melatonin and CAPE, neither melatonin nor CAPE made any changes in kidney GSH, GST, SOD, and MDA levels (P > 0.05). We noted that treatment with CAPE and melatonin + CAPE together caused a significant decrease in renal tissue damage, an upregulation in the kidney CAT levels (P < 0.05) and a slight healing at GR levels when compared with the K2Cr2O7 group. Conclusion: Our results revealed, CAPE and melatonin may have protective effects on K2Cr2O7 induced nephrotoxicity and cellular damage in rats.
Collapse
Affiliation(s)
- Mujgan Cengiz
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Nurnisa Oya Alansal
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Matem Tuncdemir
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Gamze Tanriverdi
- Department of Histology and Embryology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Burcu Bayoglu
- Department of Medical Biology, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| |
Collapse
|
11
|
Tunçdemir M, Öztürk M. Regulation of the Ku70 and apoptosis-related proteins in experimental diabetic nephropathy. Metabolism 2016; 65:1466-77. [PMID: 27621182 DOI: 10.1016/j.metabol.2016.06.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/17/2016] [Accepted: 06/29/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Apoptosis contributes nephropathy pathogenesis in diabetes. However, its mechanisms still remain unclear. We examined the extent to which the angiotensin-II type 1 receptor blocker (AT1RB) irbesartan and the angiotensin converting enzyme inhibitor (ACEI) perindopril affected the apoptosis-related proteins Bcl-2, Bax, caspase-3, cytochrome-c and Ku70 in streptozotocin (STZ)-diabetic rats. MATERIALS AND METHODS Animals were divided into five groups of eight each, four of which received STZ (60mg/kg in a single dose, i.p.) to induce diabetes. The groups were performed as untreated diabetic; non-diabetic control; daily irbesartan (15mg/kg/day) or perindopril (6mg/kg/day) and also combined irbesartan and perindopril (respectively, 5mg/kg/day, 3mg/kg/day) were applied by gavage for 30days to STZ-diabetic rats. The kidney tissue analysis was performed by using immunohistochemical staining with Bcl-2, Bax, caspase-3, cytochrome-c and Ku70 antibodies and by using Western blot analysis with caspase-3 and cytochrome-c antibodies. RESULTS Immunoreactivity of Bax, caspase-3, cytochrome-c and Ku70 was increased in the tubuli and glomeruli of the untreated diabetic group, but decreased in all treated diabetic groups. In the irbesartan and perindopril treated diabetic groups Bcl-2 immunoreactivity was higher than that of the untreated diabetic group. Caspase-3 and cytoplasmic cytochrome-c protein levels increased in the untreated diabetic group. CONCLUSIONS We conclude that the increased expression of Bax and caspase-3, and the increased level of cytoplasmic cytochrome-c relate to renal tissue injury. This case is also seen in the early stages of diabetes as a result of the damage caused by local increased expression of renin angiotensin system (RAS) in the renal tissue, which is induced by hyperglycemia. The increase of the cytosolic cytochrome-c, caspase-3 and Ku70 expression in the tubuli is suggestive of apoptosis. Overall, our results show that treatments of irbesartan and perindopril are effective and efficient in preventing renal tissue injury and apoptosis by blocking the RAS in experimental diabetic nephropathy and reducing the expression of proteins associated with apoptosis.
Collapse
Affiliation(s)
- Matem Tunçdemir
- Istanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey.
| | - Melek Öztürk
- Istanbul University, Cerrahpaşa Faculty of Medicine, Department of Medical Biology, Istanbul, Turkey.
| |
Collapse
|
12
|
Erdoğan H, Tunçdemir M, Kelten B, Akdemir O, Karaoğlan A, Taşdemiroğlu E. The Effects of Difumarate Salt S-15176 after Spinal Cord Injury in Rats. J Korean Neurosurg Soc 2015; 57:445-54. [PMID: 26180614 PMCID: PMC4502243 DOI: 10.3340/jkns.2015.57.6.445] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 03/22/2015] [Accepted: 04/09/2015] [Indexed: 01/07/2023] Open
Abstract
Objective In the present study we analyzed neuroprotective and antiapoptotic effect of the difumarate salt S-15176, as an anti-ischemic, an antioxidant and a stabilizer of mitochondrial membrane in secondary damage following spinal cord injury (SCI) in a rat model. Methods Three groups were performed with 30 Wistar rats; control (1), trauma (2), and a trauma+S-15176 (10 mg/kg i.p., dimethyl sulfoxide) treatment (3). SCI was performed at the thoracic level using the weight-drop technique. Spinal cord tissues were collected following intracardiac perfusion in 3rd and 7th days of posttrauma. Hematoxylin and eosin staining for histopatology, terminal deoxynucleotidyl transferase dUTP nick end labeling assay for apoptotic cells and immunohistochemistry for proapoptotic cytochrome-c, Bax and caspase 9 were performed to all groups. Functional recovery test were applied to each group in 3rd and 7th days following SCI. Results In trauma group, edematous regions, diffuse hemorrhage, necrosis, leukocyte infiltration and severe degeneration in motor neurons were observed prominently in gray matter. The number of apoptotic cells was significantly higher (p<0.05) than control group. In the S-15176-treated groups, apoptotic cell number in 3rd and 7th days (p<0.001), also cytochrome-c (p<0.001), Bax (p<0.001) and caspase 9 immunoreactive cells (p<0.001) were significantly decreased in number compared to trauma groups. Hemorrhage and edema in the focal areas were also noticed in gray matter of treatment groups. Results of the locomotor test were significantly increased in treatment group (p<0.05) when compared to trauma groups. Conclusion We suggest that difumarate salt S-15176 prevents mitochondrial pathways of apoptosis and protects spinal cord from secondary injury and helps to preserve motor function following SCI in rats.
Collapse
Affiliation(s)
- Hakan Erdoğan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Matem Tunçdemir
- Medical Biology Department, Cerrahpasa Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Bilal Kelten
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | - Osman Akdemir
- Department of Neurosurgery Taksim Education and Research Hospital, Istanbul, Turkey
| | - Alper Karaoğlan
- Department of Neurosurgery, Faculty of Medicine, Maltepe University, Istanbul, Turkey
| | | |
Collapse
|
13
|
Han Y, Jung HW, Park YK. Selective therapeutic effect of cornus officinalis fruits on the damage of different organs in STZ-induced diabetic rats. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1169-82. [PMID: 25169907 DOI: 10.1142/s0192415x14500736] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to identify the selective therapeutic effects of Corni Fructus (Cornus officinalis Sieb. et Zucc.) on different organs in streptozotocin (STZ)-induced diabetic rats. Diabetes in rats was induced by intraperitonal injection with STZ at a dose of 30 mg/kg body weight (bw) for 3 days (once per a day). STZ-induced diabetic rats were orally administrated Corni Fructus (CF) extract at 300 mg/kg or metformin at 250 mg/kg daily for 4 weeks. Blood glucose and triglyceride (TG) in sera and urine total volume were measured. Histopathological changes of different organs, pancreas, liver, kidney, and lung tissues were observed by H&E staining. The expression of insulin and α-smooth muscle actin (α-SMA) was investigated in pancreas, and kidney by immunohistochemistry, respectively. The results revealed that CF extract significantly decreased the serum levels of blood glucose, and TG, and also urine total volume in STZ-induced diabetic rats. The histological examinations revealed amelioration of diabetes-induced pancreas injury including pathological changes of the Langerhans's islet and glomerular with their loss after the administration of CF extraction. Moreover, the administration of CF extract increased the numbers of insulin releasing beta cells in pancreas and also inhibited the expression of α-SMA in kidney of STZ-induced diabetic rats. On the other hand, CF extract showed no effect on the pathological damages of liver and lung in STZ-induced diabetic rats. These results demonstrated that CF extract may have a selective therapeutic potential through the control of hyperglycemia, and the protection of pancreas and kidney against diabetic damage.
Collapse
Affiliation(s)
- Yunkyung Han
- Korean Medicine R&D Center, Dongguk University, Gyeongju 780-714, Republic of Korea
| | | | | |
Collapse
|
14
|
Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum Exp Toxicol 2014; 34:100-13. [DOI: 10.1177/0960327114531995] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of oxygen radicals are known for the pathogenesis of kidney damage. The aim of the present study was to investigate the antioxidative effects of melatonin, quercetin, and resveratrol on streptozotocin (STZ)-induced diabetic nephropathy in rats. A total of 35 male Wistar rats were divided into 5 groups as follows: control, diabetes mellitus (DM), DM + melatonin, DM + quercetin, and DM + resveratrol. All the injections started on the same day of single-dose STZ injection and continued for 30 days. At the end of this period, kidneys were removed and processed for routine histological procedures. Biochemical parameters and morphological changes were examined. In DM group, blood glucose levels were significantly increased, whereas body weights were decreased compared with the control group. Significant increases in blood urea nitrogen and tissue malondialdehyde (MDA) levels and decreases in superoxide dismutase and catalase activities were detected in DM group. Administration of melatonin, quercetin, and resveratrol significantly reduced these values. Melatonin was more efficient in reducing MDA levels than other antioxidants ( p < 0.05). STZ-induced histopathological alterations including epithelial desquamation, swelling, intracytoplasmic vacuolization, brush border loss and peritubular infiltration. Additionally, basement membrane thickening and sclerotic changes were observed in glomerulus. Transforming growth factor-β1 positive cells were also increased. Melatonin, quercetin, and resveratrol significantly reduced these histopathological changes. Our results indicate that melatonin, quercetin, and resveratrol might be helpful in reducing diabetes-induced renal damage
Collapse
Affiliation(s)
- H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - N Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - M Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - B Ates
- Department of Chemistry, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - S Yologlu
- Department of Biostatistics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - C Taskapan
- Department of Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
15
|
The comparative effects of perindopril and catechin on mesangial matrix and podocytes in the streptozotocin induced diabetic rats. Pharmacol Rep 2014; 66:279-87. [PMID: 24911082 DOI: 10.1016/j.pharep.2013.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 08/14/2013] [Accepted: 09/06/2013] [Indexed: 11/22/2022]
Abstract
BACKGROUND Hyperglycemia and advanced glucose end substance (AGE) are responsible for excessive reactive oxygen species (ROS) production, which causes oxidative stress in diabetes mellitus. Oxidative stress and high blood pressure may cause injury and glomerulosclerosis in the kidney. End-stage kidney failure induced by glomerulosclerosis leads to microalbuminuria (Ma) in diabetic nephropathy. We investigated the effects of an angiotensin converting enzyme inhibitor (ACEI), perindopril, and an antioxidant, catechin, on podocytes and the glomerular mesangial matrix in experimental diabetic nephropathy using ultrastructural visualization and immunohistochemical staining. METHODS We compared 5 groups of male adult Wistar albino rats: a control group, an untreated diabetic group, and diabetic groups treated with perindopril, catechin, or catechin+perindopril. RESULTS Blood glucose values in all diabetic groups were significantly higher than in the control group (p < 0.001). The body weight in all diabetic groups was significantly lower than in the control group (p < 0.001, p < 0.05). The kidney weight in the catechin+perindopril-treated diabetic group was significantly lower than in the untreated diabetic group (p < 0.001). In all treated diabetic groups, Ma levels decreased significantly (p < 0.001). Mesangial matrix and podocyte damage increased in the untreated diabetic group, but the group treated with catechin+perindopril showed less damage. TGF-beta 1 immunostaining was significantly lower in the catechin-treated and perindopril-treated groups than in the untreated diabetic group (p < 0.001). Catechin was more effective than ACEI in preventing podocyte structure. Podocytes appeared to be the first cells affected in diabetes mellitus. When exposed to hyperglycemia, podocytes caused the mesangial matrix to expand. CONCLUSIONS Catechin and perindopril were more effective in preventing renal corpuscle damage when administered together.
Collapse
|
16
|
Park S, Mathis KW, Lee IK. The physiological roles of apolipoprotein J/clusterin in metabolic and cardiovascular diseases. Rev Endocr Metab Disord 2014; 15:45-53. [PMID: 24097125 DOI: 10.1007/s11154-013-9275-3] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Several isoforms of apolipoprotein J/clusterin (CLU) are encoded from a single gene located on chromosome 8 in humans. These isoforms are ubiquitously expressed in the tissues, and have been implicated in aging, neurodegenerative disorders, cancer progression, and metabolic/cardiovascular diseases including dyslipidemia, diabetes, atherosclerosis and myocardial infarction. The conventional secreted form of CLU (sCLU) is thought to be a component of high density lipoprotein-cholesterol. sCLU functions as a chaperone for misfolded proteins and it is thought to promote survival by reducing oxidative stress. Nuclear CLU, a truncated CLU formed by alternative splicing, is responsible for promoting apoptosis via a Bax-dependent pathway. There are putative regulatory sites in the promoter regions of CLU, which are occupied by transcription factors such as transforming growth factor (TGF)-β inhibitory element, activator protein-1, CLU-specific elements, and carbohydrate response element. However, the molecular mechanisms underlying the distinct roles of CLU in a variety of conditions remain unclear. Although the function of CLU in cancer or neurological disease has been studied intensively for three decades, physiological roles of CLU seem unexplored in the cardiovascular system and metabolic diseases. In this review, we will discuss general characteristics and regulations of CLU based on previous literature and assess the recent findings associated with its physiological roles in different tissues including the vasculature, heart, liver, kidney, adipose tissue, and brain.
Collapse
Affiliation(s)
- S Park
- Leading-edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu, Republic of Korea
| | | | | |
Collapse
|
17
|
Özcelik D, Nazıroglu M, Tunçdemir M, Çelik Ö, Öztürk M, Flores-Arce MF. Zinc supplementation attenuates metallothionein and oxidative stress changes in kidney of streptozotocin-induced diabetic rats. Biol Trace Elem Res 2012; 150:342-9. [PMID: 23054862 DOI: 10.1007/s12011-012-9508-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 09/18/2012] [Indexed: 12/21/2022]
Abstract
Zinc is an element that under physiological conditions preferentially binds to and is a potent inducer of metallothionein under physiological conditions. The present study was conducted to explore whether zinc supplementation morphologically and biochemically protects against diabetic nephropathy through modulation of kidney metallothionein induction and oxidative stress in streptozotocin-induced diabetic rats. Thirty-two Wistar albino male rats were equally divided into four groups. The first group was used as untreated controls and the second group was supplemented with 30 mg/kg/day zinc as zinc sulfate. The third group was treated with streptozotocin to induce diabetes and the fourth group was treated with streptozotocin and supplemented with zinc as described for group 2. The blood glucose and micro-albuminuria levels, body and kidney weights were measured during the 42-day experimental period. At the end of the experiment, the kidneys were removed from all animals from the four groups. Diabetes resulted in degenerative kidney morphological changes. The metallothionein immunoreactivity level was lower and the kidney lipid peroxidation levels were higher in the diabetes group than in the controls. The metallothionein immunoreactivity levels were higher in the tubules of the zinc-supplemented diabetic rats as compared to the non-supplemented diabetic group. The zinc and metallothionein concentrations in kidney tissue were higher in the supplemented diabetic group compared to the non-supplemented diabetes group. The activity of glutathione peroxidase did not change in any of the four groups. In conclusion, the present study shows that zinc has a protective effect against diabetic damage of kidney tissue through stimulation of metallothionein synthesis and regulation of the oxidative stress.
Collapse
Affiliation(s)
- Dervis Özcelik
- Departments of Biophysics, Cerrahpasa Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
18
|
Tunçdemir M, Öztürk M. The effects of angiotensin-II receptor blockers on podocyte damage and glomerular apoptosis in a rat model of experimental streptozotocin-induced diabetic nephropathy. Acta Histochem 2011; 113:826-32. [PMID: 21269661 DOI: 10.1016/j.acthis.2010.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 12/28/2010] [Accepted: 12/29/2010] [Indexed: 01/13/2023]
Abstract
The aim of the study was to determine in a rat model of streptozotocin-induced diabetic nephropathy the expression of: WT-1 (for podocyte loss in the glomerulus), TGF-beta 1 (for tissue damage), caspase-3 and bax (for glomerular apoptosis) and the possible protective effects of an angiotensin II type 1 receptor blocker. Three groups of male Wistar albino rats were used. The first group consisted of non-diabetic control rats. The second group was the untreated diabetic rats. The third group consisted of diabetic rats treated with Irbesartan, which is an angiotensin II receptor antagonist, widely used in treatment for hypertension. Immunohistochemical stainings for TGF-beta 1, bax, caspase-3 and WT-1 were performed. The microalbuminuria levels of the Irbesartan-treated diabetic group were lower than those of the untreated diabetic group (P<0.01). The immunostaining of TGF-beta 1, bax and caspase-3 was decreased in glomeruli of the Irbesartan-treated diabetic group compared to the untreated diabetic group. WT-1 immunopositive podocyte numbers were found to be significantly lower in the untreated diabetic group than in the other groups (P<0.01). In the Irbesartan-treated diabetic group, the WT-1 immunopositive cell numbers were higher compared to the untreated diabetic group (P<0.01). We conclude that the decrease in the number of podocytes is an early marker of diabetic nephropathy, AT1 receptor blocker has renoprotective effects on the regulation of renal hemodynamics and on the control of tissue damage by preventing podocyte loss, which leads to decrease of bax and caspase-3 expressions of apoptosis related proteins, and may prevent glomerular cell apoptosis via angiotensin II.
Collapse
|
19
|
Liu DX, Liu XM, Su Y, Zhang XJ. Renal expression of proto-oncogene Ets-1 on matrix remodeling in experimental diabetic nephropathy. Acta Histochem 2011; 113:527-33. [PMID: 20598359 DOI: 10.1016/j.acthis.2010.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 05/12/2010] [Accepted: 05/13/2010] [Indexed: 10/19/2022]
Abstract
The molecular mechanisms of glomerulosclerosis and tubulointerstitial fibrosis in diabetic nephropathy (DN) have received scant attention. Ets-1 proto-oncogene plays a role in matrix remodeling by regulating matrix-degrading enzymes. We investigated the possible role of Ets-1 in the pathogenesis of DN. 6-week-old male Sprague-Dawley rats were divided into two experimental groups as follows: control group (n=30) and a Diabetes mellitus group (n=40) induced by injection of streptozotozin (STZ). The rats were investigated at 1, 4, 8, 12 and 16 weeks after STZ-treatment. By means of immunohistochemistry, the expression of Ets-1 in glomeruli was significantly increased in STZ-treated rat kidneys from week 1 (P<0.05) and reached the peak at week 4 (P<0.05), followed by a downward trend at subsequent time points. Similarly, the expression of Ets-1 in the tubulointerstitium was also markedly increased from week 1 (P<0.05) and reached a maximum at week 8 (P<0.05). By double immunostaining, Ets-1-positive cells were frequently found to co-express matrix metalloproteinase-2 (MMP-2) in STZ-treated rat kidneys. Increased expression of tissue inhibitor of metalloproteinase-2 (TIMP-2) coincided with increased expression of α-smooth muscle actin (α-SMA) in STZ-induced DN. A positive relationship was observed between the expression of Ets-1 in glomeruli or tubulointerstitium and the expression of MMP-2 (P<0.01; P<0.01, respectively) in STZ-treated rat kidneys. The ratio of MMP-2 and TIMP-2 in glomeruli or tubulointerstitium was negatively correlated with deposition of type IV collagen (P<0.01; P<0.01, respectively). These findings suggest that Ets-1 may play a critical role in fine-tuning matrix remodeling of STZ-induced DN.
Collapse
|
20
|
Daimon M, Oizumi T, Karasawa S, Kaino W, Takase K, Tada K, Jimbu Y, Wada K, Kameda W, Susa S, Muramatsu M, Kubota I, Kawata S, Kato T. Association of the clusterin gene polymorphisms with type 2 diabetes mellitus. Metabolism 2011; 60:815-22. [PMID: 20850846 DOI: 10.1016/j.metabol.2010.07.033] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 12/21/2022]
Abstract
The association of the clusterin (CLU) gene polymorphism (single nucleotide polymorphisms [SNPs] 1-4: rs1532278, rs1532277, rs2279590, and rs2279591, respectively) with type 2 diabetes mellitus was examined using a population of the Funagata study (n [male-female] = 1631 [741:884]; age, 62.0 ± 12.1 years), a Japanese community-based study. Single nucleotide polymorphisms 1 to 3 were significantly associated with hemoglobin A(1c) levels (P = .0154, .0021, and .0006, respectively) and diabetes (.0310, .0170, and .0021, respectively). A case-control association study of SNP 3 with diabetes by multiple logistic regression analysis showed a significant association of genotype AA (the at-risk genotype) with an odds ratio (OR) of 2.33 (P = .0039) independently of age and sex. The association was marginally validated by a study with another Japanese community-based sample, the Takahata Study (n [male-female] = 2.948 [1333:1615]; age, 63.0 ± 10.2 years) (OR, 1.59; P = .0595; χ(2)P = .0264). When the 2 samples were combined, the association became more significant (OR, 1.75; P = .0025). In subjects with the non-at-risk genotypes, the insulin resistance index--homeostasis model assessment of insulin resistance (HOMA-R)--increased significantly (P < .0001) and the insulin secretion index--HOMA-β--appeared to decrease (P = .1803 and .0097, respectively, for the genotypes AG and GG) as the glucose tolerance progressed toward diabetes (normal glucose tolerance to glucose intolerance to diabetes). However, in subjects with the at-risk genotype, HOMA-R and HOMA-β showed a significant increase already in the subjects with normal glucose tolerance (P = .0239 and .0305, respectively); and as the glucose tolerance progressed toward diabetes, HOMA-R stayed approximately the same, whereas HOMA-β decreased significantly (P = .0332). The CLU gene was associated with diabetes, probably through an increase in insulin resistance primarily and through an impairment of insulin secretion secondarily.
Collapse
Affiliation(s)
- Makoto Daimon
- Department of Neurology, Hematology, Metabolism, Endocrinology and Diabetology, Yamagata 990-9585, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sato Y, Feng GG, Huang L, Fan JH, Li C, An J, Tsunekawa K, Kurokawa S, Fujiwara Y, Komatsu T, Kondo F, Ishikawa N. Enhanced expression of naofen in kidney of streptozotocin-induced diabetic rats: possible correlation to apoptosis of tubular epithelial cells. Clin Exp Nephrol 2010; 14:205-12. [PMID: 20224876 DOI: 10.1007/s10157-010-0276-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Accepted: 02/18/2010] [Indexed: 01/24/2023]
Abstract
BACKGROUND Hyperglycemia/high glucose may induce apoptosis in diabetic kidney, but the mechanism is not fully understood. Naofen was found as a Shiga toxin (Stx)-2-related protein. Based on renal dysfunction in infection with Stx-producing Escherichia coli and on participation of naofen in apoptosis of human embryonic kidney cells, the present study was undertaken to investigate the mechanism of renal dysfunction in diabetes mellitus with particular reference to naofen. METHODS In in vivo studies utilizing streptozotocin (STZ)-induced diabetic rats, and also in in vitro cultured rat kidney epithelial (NRK52E) cells, naofen messenger RNA (mRNA) and protein expressions were analyzed. Naofen mRNA location in diabetic kidney was studied by in situ hybridization. Apoptosis was assessed by caspase-3 activity assay. RESULTS Rat diabetic kidney showed significant increases in caspase-3 activities and naofen mRNA. Naofen was mainly observed at both proximal and distal urinary tubules. Incubation of NRK52E cells in high glucose medium resulted in elevated naofen mRNA expression, whereas neither interleukin-1, interleukin-6, nor tumor necrosis factor-alpha elicited such action. Moreover, treatment of NRK52E cells with naofen small interfering RNA (siRNA) inhibited naofen mRNA expression induced by high glucose and blocked the increase in caspase-3 activity. CONCLUSIONS These data suggest that naofen expression may be upregulated by hyperglycemia, with possible correlation to apoptosis of tubular epithelial cells and thereby to diabetic nephropathy.
Collapse
Affiliation(s)
- Yuko Sato
- Department of Anesthesiology, Aichi Medical University School of Medicine, Nagakute, Aichi-gun, Aichi, 480-1195, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Antiapoptotic effect of angiotensin-II type-1 receptor blockade in renal tubular cells of hyperoxaluric rats. ACTA ACUST UNITED AC 2010; 38:71-80. [DOI: 10.1007/s00240-010-0255-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/15/2010] [Indexed: 11/26/2022]
|
23
|
Chapter 8: Clusterin: A multifacet protein at the crossroad of inflammation and autoimmunity. Adv Cancer Res 2010; 104:139-70. [PMID: 19878776 DOI: 10.1016/s0065-230x(09)04008-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
For years, clusterin has been recognized as a secreted protein and a large number of works demonstrated that this ubiquitously expressed protein has multiple activities. Among the described activities several were related to inflammation and immunity such as its regulatory activity on complement. Then it became clear that a nuclear form of the protein with proapoptotic property existed and more recently that a cytoplasmic form could regulate NF-kappaB pathway. Again, these activities have a strong repercussion in inflammation and immunity. On the other hand, data available on the exact role of CLU in these processes and autoimmunity were quite scarce until recently. Indeed, in the last few years, a differential CLU expression in subtype of T cells, the regulation of CLU expression by proinflammatory cytokines and molecules, the regulation of expression and function of CLU depending on its subcellular localization, the interaction of CLU with nuclear and intracellular proteins were all reported. Adding these new roles of CLU to the already reported functions of this protein allows a better understanding of its role and potential involvement in several inflammatory and immunological processes and, in particular, autoimmunity. In this sense, rheumatoid arthritis appears to be a very attractive disease to build a new paradigm of the role and function of CLU because it makes the link between proliferation, inflammation, and autoimmunity. We will try to see in this review how to bring altogether the old and new knowledge on CLU with inflammation and autoimmunity. Nevertheless, it is clear that CLU has not yet revealed all its secrets in inflammation and autoimmunity.
Collapse
|