1
|
Bian J, Luo M, Tian Y, Zhang X, Zhang B, Yin L, Zhang Y. BMP10 accelerated spinal astrocytic activation in neuropathic pain via ALK2/smad1/5/8 signaling. Front Pharmacol 2024; 15:1426121. [PMID: 39188955 PMCID: PMC11345179 DOI: 10.3389/fphar.2024.1426121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/03/2024] [Accepted: 07/31/2024] [Indexed: 08/28/2024] Open
Abstract
Background Astrocytic activation in the spinal dorsal horn contributes to the central sensitization of neuropathic pain. Bone morphogenetic protein (BMP) 10, one of the BMPs highly expressed in the central nervous system, has been demonstrated to have an accelerated effect on astrocytic activation. This study aimed to investigate the functional effects of BMP10 on the activation of astrocytes in the spinal dorsal horn of animal model of neuropathic pain and to explore potential mechanisms involved in this process. Methods A neuropathic pain mice model was established using the spared nerve injury (SNI). Western blot analysis was performed to detect the expressional levels of BMP10, activin receptor-like receptor 2 (ALK2), Smad1/5/8, phosphorylated Smad1/5/8, and glial fibrillary acidic protein (GFAP). Immunofluorescence staining was used to detect BMP10, ALK2, and GFAP distribution and expression. The behavioral changes in mice were evaluated using paw withdrawal threshold (PWT), thermal withdrawal latency (TWL), and open field test (OFT). The BMP10 siRNA, Smad1 siRNA, BMP10 peptide, and ALK2-IN-2 (ALK2 inhibitor) were intrathecally administrated to mice. A model of lipopolysaccharide (LPS)-stimulated astrocytes was established to investigate the effect of Smad1. The transfection efficiency of siRNAs was detected by western blot and qRT-PCR analysis. Results BMP10 levels were increased in the L4-6 ipsilateral spinal dorsal horn of SNI mice and particularly elevated in astrocytes. Consistently, GFAP and phosphorylated Smad1/5/8 were upregulated in the L4-6 ipsilateral spinal dorsal horn after SNI, indicating the activation of astrocytes and Smad1/5/8 signaling. An intrathecal injection of BMP10 siRNA abrogated pain hypersensitivity and astrocytic activation in SNI mice. In addition, intrathecal administration of BMP10 peptide evoked pain hypersensitivity and astrocytic activation in normal mice, and this action was reversed by inhibiting the ALK2. Furthermore, targeting Smad1 in vitro with the help of siRNA inhibited the activation of astrocytes induced by LPS. Finally, targeting Smad1 abrogated BMP10-induced hypersensitivity and activation of astrocytes. Conclusion These findings indicate that the BMP10/ALK2/Smad1/5/8 axis plays a key role in pain hypersensitivity after peripheral nerve injury, which indicates its stimulative ability toward astrocytes.
Collapse
Affiliation(s)
- Jiang Bian
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
- School of Clinical Medicine, Dali University, Dali, Yunnan, China
| | - Min Luo
- The Third Affiliated Hospital of Zunyi Medical University, The First People’s Hospital of Zunyi, Zunyi, Guizhou, China
| | - Yunyun Tian
- Scientific Research and Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Xuejuan Zhang
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Bangjian Zhang
- Department of Anesthesiology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Li Yin
- Scientific Research and Discipline Construction Office, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| | - Yuehui Zhang
- Department of Neurology, Panzhihua Central Hospital, Panzhihua, Sichuan, China
| |
Collapse
|
2
|
Palà E, Escudero-Martínez I, Penalba A, Bustamante A, Lamana-Vallverdú M, Mancha F, Ocete RF, Piñero P, Galvao-Carmona A, Gómez-Herranz M, Pérez-Sánchez S, Moniche F, González A, Montaner J. Association of blood-based biomarkers with radiologic markers and cognitive decline in atrial fibrillation patients. J Stroke Cerebrovasc Dis 2022; 31:106833. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/16/2022] [Revised: 09/28/2022] [Accepted: 10/11/2022] [Indexed: 11/21/2022] Open
|
3
|
Manzari-Tavakoli A, Babajani A, Farjoo MH, Hajinasrollah M, Bahrami S, Niknejad H. The Cross-Talks Among Bone Morphogenetic Protein (BMP) Signaling and Other Prominent Pathways Involved in Neural Differentiation. Front Mol Neurosci 2022; 15:827275. [PMID: 35370542 PMCID: PMC8965007 DOI: 10.3389/fnmol.2022.827275] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/01/2021] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
The bone morphogenetic proteins (BMPs) are a group of potent morphogens which are critical for the patterning, development, and function of the central nervous system. The appropriate function of the BMP pathway depends on its interaction with other signaling pathways involved in neural differentiation, leading to synergistic or antagonistic effects and ultimately favorable biological outcomes. These opposite or cooperative effects are observed when BMP interacts with fibroblast growth factor (FGF), cytokines, Notch, Sonic Hedgehog (Shh), and Wnt pathways to regulate the impact of BMP-induced signaling in neural differentiation. Herein, we review the cross-talk between BMP signaling and the prominent signaling pathways involved in neural differentiation, emphasizing the underlying basic molecular mechanisms regarding the process of neural differentiation. Knowing these cross-talks can help us to develop new approaches in regenerative medicine and stem cell based therapy. Recently, cell therapy has received significant attention as a promising treatment for traumatic or neurodegenerative diseases. Therefore, it is important to know the signaling pathways involved in stem cell differentiation toward neural cells. Our better insight into the cross-talk of signaling pathways during neural development would improve neural differentiation within in vitro tissue engineering approaches and pre-clinical practices and develop futuristic therapeutic strategies for patients with neurological disease.
Collapse
Affiliation(s)
- Asma Manzari-Tavakoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Rayan Center for Neuroscience & Behavior, Department of Biology, Faculty of Science, Ferdowsi University, Mashhad, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Farjoo
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hajinasrollah
- Department of Stem Cells and Developmental Biology, Cell Sciences Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- *Correspondence: Hassan Niknejad
| |
Collapse
|
4
|
Ogawa C, Mikawa S, Li S, Hayashi Y, Masumoto K, Sato K. BMP10 expression in the adult rat central nervous system. J Chem Neuroanat 2022; 121:102084. [PMID: 35182716 DOI: 10.1016/j.jchemneu.2022.102084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/02/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/19/2022]
Abstract
Bone morphogenetic protein 10 (BMP10), is a member of the transforming growth factor β (TGFβ) superfamily. Although BMP10 plays pivotal roles during development, including vascular development and cardiogenesis, little information is available for BMP10 expression in the central nervous system (CNS). We, thus, investigated BMP10 expression in the adult rat CNS using immunohistochemistry. BMP10 was intensely expressed in most neurons and their axons. Furthermore, we found that astrocytes and ependymal cells also express BMP10 protein. These data indicate that BMP10 is widely expressed throughout the adult CNS, and this abundant expression strongly supports the idea that BMP10 also plays important roles in the adult CNS.
Collapse
Affiliation(s)
- Chikara Ogawa
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Sumiko Mikawa
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Shuo Li
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan; Department of Orthopedic Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka 431-3192, Japan
| | - Yutaro Hayashi
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kazuma Masumoto
- Department of Dentistry and Oral and Maxillofacial Surgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan
| | - Kohji Sato
- Department of Organ & Tissue Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashiku, Hamamatsu, Shizuoka, 431-3192, Japan.
| |
Collapse
|
5
|
Jensen GS, Leon-Palmer NE, Townsend KL. Bone morphogenetic proteins (BMPs) in the central regulation of energy balance and adult neural plasticity. Metabolism 2021; 123:154837. [PMID: 34331962 DOI: 10.1016/j.metabol.2021.154837] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 01/29/2021] [Revised: 06/28/2021] [Accepted: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The current worldwide obesity pandemic highlights a need to better understand the regulation of energy balance and metabolism, including the role of the nervous system in controlling energy intake and energy expenditure. Neural plasticity in the hypothalamus of the adult brain has been implicated in full-body metabolic health, however, the mechanisms surrounding hypothalamic plasticity are incompletely understood. Bone morphogenetic proteins (BMPs) control metabolic health through actions in the brain as well as in peripheral tissues such as adipose, together regulating both energy intake and energy expenditure. BMP ligands, receptors, and inhibitors are found throughout plastic adult brain regions and have been demonstrated to modulate neurogenesis and gliogenesis, as well as synaptic and dendritic plasticity. This role for BMPs in adult neural plasticity is distinct from their roles in brain development. Existing evidence suggests that BMPs induce weight loss through hypothalamic pathways, and part of the mechanism of action may be through inducing neural plasticity. In this review, we summarize the data regarding how BMPs affect neural plasticity in the adult mammalian brain, as well as the relationship between central BMP signaling and metabolic health.
Collapse
Affiliation(s)
- Gabriel S Jensen
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Noelle E Leon-Palmer
- School of Biology and Ecology, University of Maine, Orono, ME, United States of America
| | - Kristy L Townsend
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, United States of America; Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America; School of Biology and Ecology, University of Maine, Orono, ME, United States of America.
| |
Collapse
|
6
|
Hart CG, Karimi-Abdolrezaee S. Bone morphogenetic proteins: New insights into their roles and mechanisms in CNS development, pathology and repair. Exp Neurol 2020; 334:113455. [PMID: 32877654 DOI: 10.1016/j.expneurol.2020.113455] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/14/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are a highly conserved and diverse family of proteins that play essential roles in various stages of development including the formation and patterning of the central nervous system (CNS). Bioavailability and function of BMPs are regulated by input from a plethora of transcription factors and signaling pathways. Intriguingly, recent literature has uncovered novel roles for BMPs in regulating homeostatic and pathological responses in the adult CNS. Basal levels of BMP ligands and receptors are widely expressed in the adult brain and spinal cord with differential expression patterns across CNS regions, cell types and subcellular locations. Recent evidence indicates that several BMP isoforms are transiently or chronically upregulated in the aged or pathological CNS. Genetic knockout and pharmacological studies have elucidated that BMPs regulate several aspects of CNS injury and repair including cell survival and differentiation, reactive astrogliosis and glial scar formation, axon regeneration, and myelin preservation and repair. Several BMP isoforms can be upregulated in the injured or diseased CNS simultaneously yet exert complementary or opposing effects on the endogenous cell responses after injury. Emerging studies also show that dysregulation of BMPs is associated with various CNS pathologies. Interestingly, modulation of BMPs can lead to beneficial or detrimental effects on CNS injury and repair mechanisms in a ligand, temporally or spatially specific manner, which reflect the complexity of BMP signaling. Given the significance of BMPs in neurodevelopment, a better understanding of their role in the context of injury may provide new therapeutic targets for the pathologic CNS. This review will provide a timely overview on the foundation and recent advancements in knowledge regarding the role and mechanisms of BMP signaling in the developing and adult CNS, and their implications in pathological responses and repair processes after injury or diseases.
Collapse
Affiliation(s)
- Christopher G Hart
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Soheila Karimi-Abdolrezaee
- Department of Physiology and Pathophysiology, Regenerative Medicine Program, Spinal Cord Research Centre, Children's Hospital Research Institute of Manitoba, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
7
|
Fedchenko N, Reifenrath J. Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol 2014; 9:221. [PMID: 25432701 PMCID: PMC4260254 DOI: 10.1186/s13000-014-0221-9] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/17/2014] [Accepted: 11/10/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Immunohistochemistry (IHC) is a well-established, widely accepted method in both clinical and experimental parts of medical science. It allows receiving valuable information about any process in any tissue, and especially in bone. Each year the amount of data, received by IHC, grows in geometric progression. But the lack of standardization, especially on the post-analytical stage (interpreting and reporting of results), makes the comparison of the results of different studies impossible. METHODS Comprehensive PubMED literature search with a combination of search words "immunohistochemistry" and "scoring system" was performed and 773 articles describing IHC results were identified. After further manual analysis 120 articles were selected for detailed evaluation of used approaches. RESULTS Six major approaches to the interpretation and presentation of IHC analysis results were identified, analyzed and described. CONCLUSIONS The overview of the existing approaches in evaluation and interpretation of IHC data, which are provided in the article, can be used in bone tissue research and for either better understanding of existing scoring systems or developing a new one. Standard multiparametric, semiquantitative IHC scoring systems should simplify and clarify the process of interpretation and reporting of received data. VIRTUAL SLIDES The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_221.
Collapse
Affiliation(s)
- Nickolay Fedchenko
- Small Animal Clinic, University of Veterinary Medicine, Foundation, Bünteweg 9, 30559, Hannover, Germany.
- Department of Pathological Anatomy and Forensic Medicine, SE "Dnipropetrovsk Medical Academy of Health Ministry of Ukraine", Dzerginskogo st. 9, 49044, Dnipropetrovsk, Ukraine.
| | - Janin Reifenrath
- Small Animal Clinic, University of Veterinary Medicine, Foundation, Bünteweg 9, 30559, Hannover, Germany.
| |
Collapse
|
8
|
Liu W, Liu X, Yang H, Zhu X, Yi H, Zhu X, Zhang J. Phosphorylated retinoblastoma protein (p-Rb) is involved in neuronal apoptosis after traumatic brain injury in adult rats. J Mol Histol 2013; 44:147-58. [PMID: 23371354 DOI: 10.1007/s10735-013-9481-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/16/2012] [Accepted: 01/02/2013] [Indexed: 10/27/2022]
Abstract
Phosphorylated retinoblastoma protein (p-Rb), a well identified cell cycle related protein, is involved in regulating the biological functions of various cell types including neurons. One attractive biological function of p-Rb is releasing E2F transcription factor to induce S-phase entry and cellular proliferation of mitotic cells. However, some studies point out that the role of p-Rb in post-mitotic cells such as mature neurons is unique; it may induce cellular apoptosis rather than proliferation via regulating cell cycle reactivation. Up to now, the knowledge of p-Rb function in CNS is still limited. To investigate whether p-Rb is involved in CNS injury and repair, we performed a traumatic brain injury model in adult rats. Up-regulation of p-Rb was observed in the injured brain cortex by western blot analysis and immunohistochemistry staining. Terminal deoxynucleotidyl transferase deoxy-UTP-nick end labeling (TUNEL) and 4',6-diamidino-2-phenylindole (DAPI) staining suggested that p-Rb was relevant to neuronal apoptosis after brain injury. In addition, glutamate excitotoxic model of primary cortex neurons was introduced to further investigate the role of p-Rb in neuronal apoptosis; the result implied p-Rb was associated with cell cycle activation in the apoptotic neurons. Based on our data, we suggested that p-Rb might play an important role in neuronal apoptosis after traumatic brain injury in rat; which might also provide a basis for the further study on its role in regulating cell cycle re-entry in apoptotic neurons, and might gain a novel strategy for the clinical therapy for traumatic brain injury.
Collapse
Affiliation(s)
- Wei Liu
- Department of Orthopaedics, Second Affiliated Hospital of Nantong University, Nantong 226002, Jiangsu, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
9
|
Wu X, Fu H, Zou F, Jin W, Xu T, Gong P, Xu J, Yan Y, Cui G, Ke K, Gao Y, Liu C, Pan Y. Increased expression of actin filament-stabilizing protein tropomyosin after rat traumatic brain injury. J Mol Histol 2012. [DOI: 10.1007/s10735-012-9461-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
|
10
|
Chen J, Mao H, Zou H, Jin W, Ni L, Ke K, Cao M, Shi W. Up-regulation of ski-interacting protein in rat brain cortex after traumatic brain injury. J Mol Histol 2012; 44:1-10. [PMID: 22965216 DOI: 10.1007/s10735-012-9444-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/29/2012] [Accepted: 08/14/2012] [Indexed: 01/22/2023]
Abstract
SKIP (Ski-interacting protein), is part of nuclear regulatory complexes and interacts with factors involved in preinitiation, splicing and polyadenylation, potentiates the activity of important transcription factors, involved in an increasing number of signaling cascades. However, its distribution and function in the central nervous system remains poorly understood. In this study, western blot analysis, RT-PCR and immunohistochemistry showed a significant up-regulation of SKIP in ipsilateral peritrauma cortex compared with the sham group. Immunofluorescent labeling indicated that SKIP was localized striking in the neurons, but not astrocytes and oligodendrocytes; co-localization of SKIP and active caspase-3 and PCNA in the ipsilateral cortex. In addition, the expression patterns of active caspase-3 and PCNA were parallel with that of SKIP. Based on our data, we speculated that SKIP might play an important role in neuronal apoptosis following TBI; and might provide a basis for the further study on its role in cell cycle re-entry in traumatic brain injury.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurosurgery, Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|