1
|
Campbell A, Lai T, Wahba AE, Boison D, Gebril HM. Enhancing neurogenesis after traumatic brain injury: The role of adenosine kinase inhibition in promoting neuronal survival and differentiation. Exp Neurol 2024; 381:114930. [PMID: 39173898 DOI: 10.1016/j.expneurol.2024.114930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/24/2024]
Abstract
Traumatic brain injury (TBI) presents a significant public health challenge, necessitating innovative interventions for effective treatment. Recent studies have challenged conventional perspectives on neurogenesis, unveiling endogenous repair mechanisms within the adult brain following injury. However, the intricate mechanisms governing post-TBI neurogenesis remain unclear. The microenvironment of an injured brain, characterized by astrogliosis, neuroinflammation, and excessive cell death, significantly influences the fate of newly generated neurons. Adenosine kinase (ADK), the key metabolic regulator of adenosine, emerges as a crucial factor in brain development and cell proliferation after TBI. This study investigates the hypothesis that targeting ADK could enhance brain repair, promote neuronal survival, and facilitate differentiation. In a TBI model induced by controlled cortical impact, C57BL/6 male mice received intraperitoneal injections of the small molecule ADK inhibitor 5-iodotubercidin (ITU) for three days following TBI. To trace the fate of TBI-associated proliferative cells, animals received intraperitoneal injections of BrdU for seven days, beginning immediately after TBI. Our results show that ADK inhibition by ITU improved brain repair 14 days after injury as evidenced by a diminished injury size. Additionally, the number of mature neurons generated after TBI was increased in ITU-treated mice. Remarkably, the TBI-associated pathological events including astrogliosis, neuroinflammation, and cell death were arrested in ITU-treated mice. Finally, ADK inhibition modulated cell death by regulating the PERK signaling pathway. Together, these findings demonstrate a novel therapeutic approach to target multiple pathological mechanisms involved in TBI. This research contributes valuable insights into the intricate molecular mechanisms underlying neurogenesis and gliosis after TBT.
Collapse
Affiliation(s)
- Andrea Campbell
- Departement of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14620, USA; Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Tho Lai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Amir E Wahba
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Chemistry Department, Faculty of Science, Damietta University, New Damietta City 34518, Egypt
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Hoda M Gebril
- Departement of Biomedical Engineering, School of Engineering, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
2
|
Li T, Li Y, Chen J, Nan M, Zhou X, Yang L, Xu W, Zhang C, Kong L. Hyperibone J exerts antidepressant effects by targeting ADK to inhibit microglial P2X7R/TLR4-mediated neuroinflammation. J Adv Res 2024:S2090-1232(24)00298-4. [PMID: 39019111 DOI: 10.1016/j.jare.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024] Open
Abstract
INTRODUCTION The antidepressant properties of Hypericum species are known. Hyperibone J, a principal component found in the flowers of Hypericum bellum, exhibited in vitro anti-inflammatory effects. However, the antidepressant effects and mechanisms of Hyperibone J remain to be elucidated. Adenosine kinase (ADK) is upregulated in epilepsy and depression and has been implicated in promoting neuroinflammation. OBJECTIVES This study aimed to explore the impact of Hyperibone J on neuroinflammation-mediated depression and the mechanism underlying this impact. METHODS This study employed acute and chronic in vivo depression models and an in vitro LPS-induced depression model using BV-2 microglia. The in vivo antidepressant efficacy of Hyperibone J was assessed through behavioral assays. Techniques such as RNA-seq, western blot, qPCR and ELISA were utilized to elucidate the direct target and mechanism of action of Hyperibone J. RESULTS Compared with the model group, depression-like behaviors were significantly alleviated in the Hyperibone J group. Furthermore, Hyperibone J mitigated hippocampal neuroinflammation and neuronal damage. RNA-seq suggested that Hyperibone J predominantly influenced inflammation-related pathways. In vitro experiments revealed that Hyperibone J reversed the LPS-induced overexpression and release of inflammatory factors. Network pharmacology and various molecular biology experiments revealed that the potential binding of Hyperibone J at the ASN-312 site of ADK diminished the stability and protein expression of ADK. Mechanistic studies revealed that Hyperibone J attenuated the ADK/ATP/P2X7R/Caspase-1-mediated maturation and release of IL-1β. The study also revealed a significant correlation between Tlr4 expression and depression-like behaviors in mice. Hyperibone J downregulated ADK, inhibiting Tlr4 transcription, which in turn reduced the phosphorylation of NF-κB and the subsequent transcription of Nlrp3, Il-1b, Tnf, and Il-6. CONCLUSION Hyperibone J exerted antineuroinflammatory and antidepressant effects by binding to ADK in microglia, reducing its expression and thereby inhibiting the ATP/P2X7R/Caspase-1 and TLR4/NF-κB pathways. This study provides experimental evidence for the therapeutic potential of Hypericum bellum.
Collapse
Affiliation(s)
- Ting Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yawei Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jinhu Chen
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Miaomiao Nan
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xin Zhou
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Lifang Yang
- School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China
| | - Wenjun Xu
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Chao Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Shenzhen Research Institute, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|
4
|
Farr SA, Cuzzocrea S, Esposito E, Campolo M, Niehoff ML, Doyle TM, Salvemini D. Adenosine A 3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 2020; 17:339. [PMID: 33183330 PMCID: PMC7659122 DOI: 10.1186/s12974-020-02009-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A3 adenosine receptor (A3AR) can provide antiinflammatory and neuroprotective effects. However, the role of A3AR in TBI has not been investigated. Methods Using the selective A3AR agonist, MRS5980, we evaluated the effects of A3AR activation on the pathological outcomes and cognitive function in CD1 male mouse models of TBI. Results When measured 24 h after controlled cortical impact (CCI) TBI, male mice treated with intraperitoneal injections of MRS5980 (1 mg/kg) had reduced secondary tissue injury and brain infarction than vehicle-treated mice with TBI. These effects were associated with attenuated neuroinflammation marked by reduced activation of nuclear factor of kappa light polypeptide gene enhancer in B cells (NFκB) and MAPK (p38 and extracellular signal-regulated kinase (ERK)) pathways and downstream NOD-like receptor pyrin domain-containing 3 inflammasome activation. MRS5980 also attenuated TBI-induced CD4+ and CD8+ T cell influx. Moreover, when measured 4–5 weeks after closed head weight-drop TBI, male mice treated with MRS5980 (1 mg/kg) performed significantly better in novel object-placement retention tests (NOPRT) and T maze trials than untreated mice with TBI without altered locomotor activity or increased anxiety. Conclusion Our results provide support for the beneficial effects of small molecule A3AR agonists to mitigate secondary tissue injury and cognitive impairment following TBI.
Collapse
Affiliation(s)
- Susan A Farr
- Veterans Affairs Medical Center, 915 N Grand Blvd, St. Louis, MO, 63106, USA.,Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michela Campolo
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michael L Niehoff
- Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
5
|
Matsuyama Y, Satake M, Kamei R, Yoshida T. [A case of Alexander disease with repeated loss of consciousness and with rapid aggravation of dysbasia by falling]. Rinsho Shinkeigaku 2020; 60:137-141. [PMID: 31956193 DOI: 10.5692/clinicalneurol.cn-001341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A 41-year-old woman presented with short-stepped gait from 20 years old and with repeated loss of consciousness from 21 years old. She had a deep cerebral white matter lesion on brain MRI at 34 years of age, but she did not reach a definitive diagnosis. At the age of 41, the gait disorder rapidly worsened after fall and fall-related head trauma. She had fixation nystagmus, dysphonia, speech disorder and exaggerated tendon reflexes. Her bilateral plantar reflex was positive, and she was not able to walk by herself. The brain and cervical MRI showed atrophy of the medulla and upper spinal cord and a deep cerebral white matter lesion. As these imaging features were suggestive of Alexander disease (AxD), we sequenced the GFAP gene. As a result, we identified a heterozygous p.R79H (c.250 G>A) missense mutation of the GFAP gene in the patient. This case suggests that loss of consciousness may be caused by autonomic disorder due to orthostatic hypotension and reflex syncope (vasovagal syncope), psychogenic non-epileptic seizures (PNES) by mental and physical stress. It is important to consider the pathophysiology and management of Alexander disease, in which the progression of gait disorder caused by pyramidal tract disorder is rapidly exacerbated by fall and head injury.
Collapse
|
6
|
Liu H, Zhao M, Wang Z, Han Q, Wu H, Mao X, Wang Y. Involvement of d-amino acid oxidase in cerebral ischaemia induced by transient occlusion of the middle cerebral artery in mice. Br J Pharmacol 2019; 176:3336-3349. [PMID: 31309542 PMCID: PMC6692583 DOI: 10.1111/bph.14764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 05/03/2019] [Accepted: 05/16/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE d-Amino acid oxidase (DAAO) is a flavine adenine dinucleotide-containing flavoenzyme and specifically catalyses oxidative deamination of d-amino acids. This study aimed to explore the association between increased cerebral DAAO expression or enzymic activity and the development of cerebral ischaemia. EXPERIMENTAL APPROACH A mouse model of transient (90 min) middle cerebral artery occlusion (MCAO) was established, and western blotting, enzymic activity assay, and fluorescent immunostaining techniques were used. KEY RESULTS The expression and enzymic activity of DAAO increased over time in the cortical peri-infarct area of the mice subjected to transient MCAO. The DAAO was specifically expressed in astrocytes, and its double immunostaining with the astrocytic intracellular marker, glial fibrillary acidic protein, in the cortical peri-infarct area was up-regulated following ischaemic insult, with peak increase on Day 5 after MCAO. Single intravenous injection of the specific and potent DAAO inhibitor Compound SUN reduced the cerebral DAAO enzymic activity and attenuated neuronal infarction and neurobehavioural deficits with optimal improvement apparent immediately after the MCAO procedure. The neuroprotective effect was dose dependent, with ED50 values of 3.9-4.5 mg·kg-1 . Intracerebroventricular injection of the DAAO gene silencer siRNA/DAAO significantly reduced cerebral DAAO expression and attenuated MCAO-induced neuronal infarction and behavioural deficits. CONCLUSIONS AND IMPLICATIONS Our results, for the first time, demonstrated that increased cerebral astrocytic DAAO expression and enzymic activity were causally associated with the development of neuronal destruction following ischaemic insults, suggesting that targeting cerebral DAAO could be a potential approach for treatment of neurological conditions following cerebral ischaemia.
Collapse
Affiliation(s)
- Hao Liu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Meng‐Jing Zhao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Zi‐Ying Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Qiao‐Qiao Han
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Hai‐Yun Wu
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Xiao‐fang Mao
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| | - Yong‐Xiang Wang
- King's LabShanghai Jiao Tong University School of PharmacyShanghaiChina
| |
Collapse
|
7
|
Cao W, Yuan Y, Liu X, Li Q, An X, Huang Z, Wu L, Zhang B, Zhang A, Xing C. Adenosine kinase inhibition protects against cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol 2019; 317:F107-F115. [PMID: 30995110 DOI: 10.1152/ajprenal.00385.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Numerous studies have demonstrated that several mechanisms, including oxidative stress, DNA damage, and inflammatory responses, are closely linked to cisplatin-induced nephrotoxicity. Adenosine, emerging as a key regulatory molecule, is mostly protective in the pathophysiology of inflammatory diseases. A previous study showed that some of the adenosine receptors led to renal protection against ischemia-reperfusion injury. However, these adenosine receptor agonists lack a useful therapeutic index due to cardiovascular side effects. We hypothesized that inhibition of adenosine kinase (ADK) might exacerbate extracellular adenosine levels to reduce cisplatin-induced renal injury. In the present study, pretreatment with the ADK inhibitor ABT-702 could markedly attenuate cisplatin-induced acute kidney injury, tubular cell apoptosis, oxidative stress, and inflammation in the kidneys. Consistent with in vivo results, inhibition of ADK suppressed cisplatin-induced apoptosis, reactive oxygen species production, and inflammation in HK2 cells. Additionally, the protective effect of ADK inhibition was abolished by A1 or A2B adenosine receptor antagonist and enhanced by A2A or A3 adenosine receptor antagonist. Collectively, the results suggest that inhibition of ADK might increase extracellular adenosine levels, which inhibited cisplatin-induced oxidative stress and inflammation via A1 and A2B adenosine receptors, finally suppressing cisplatin-induced cell apoptosis. Pharmacological therapies based on ADK will be of potential use in therapy of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- Wei Cao
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Yanggang Yuan
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xi Liu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Qing Li
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Xiaofei An
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhimin Huang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Lin Wu
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Bo Zhang
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Nanjing Medical University, Nanjing, China
| | - Changying Xing
- Department of Nephrology, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Wahlman C, Doyle TM, Little JW, Luongo L, Janes K, Chen Z, Esposito E, Tosh DK, Cuzzocrea S, Jacobson KA, Salvemini D. Chemotherapy-induced pain is promoted by enhanced spinal adenosine kinase levels through astrocyte-dependent mechanisms. Pain 2018; 159:1025-1034. [PMID: 29419652 PMCID: PMC5955834 DOI: 10.1097/j.pain.0000000000001177] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Development of chemotherapy-induced neuropathic pain (CINP) compromises the use of chemotherapy and greatly impacts thousands of lives. Unfortunately, there are no Food and Drug Administration-approved drugs to prevent or treat CINP. Neuropathological changes within CNS, including neuroinflammation and increased neuronal excitability, are driven by alterations in neuro-glia communication; but, the molecular signaling pathways remain largely unexplored. Adenosine is a potent neuroprotective purine nucleoside released to counteract the consequences of these neuropathological changes. Adenosine signaling at its adenosine receptors (ARs) is dictated by adenosine kinase (ADK) in astrocytes, which provides a cellular sink for the removal of extracellular adenosine. We now demonstrate that chemotherapy (oxaliplatin) in rodents caused ADK overexpression in reactive astrocytes and reduced adenosine signaling at the A3AR subtype (A3AR) within the spinal cord. Dysregulation of ADK and A3AR signaling was associated with increased proinflammatory and neuroexcitatory interleukin-1β expression and activation of nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome, but not putative oxaliplatin-associated GSK3β transcriptional regulation. Intrathecal administration of the highly selective A3AR agonist MRS5698 attenuated IL-1β production and increased the expression of potent anti-inflammatory and neuroprotective IL-10. The effects of MRS5698 were blocked by attenuating IL-10 signaling in rats with intrathecal neutralizing IL-10 antibody and in IL-10 knockout mice. These findings provide new molecular insights implicating astrocyte-based ADK-adenosine axis and nucleotide-binding oligomerization domain-like receptor protein 3 in the development of CINP and IL-10 in the mechanism of action of A3AR agonists. These findings strengthen the pharmacological rationale for clinical evaluation of A3AR agonists already in advanced clinical trials as anticancer agents as an adjunct to chemotherapy.
Collapse
Affiliation(s)
- Carrie Wahlman
- Department of Pharmacology and Physiology, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Timothy M. Doyle
- Department of Pharmacology and Physiology, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Joshua W. Little
- Department of Pharmacology and Physiology, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
- Department of Surgery, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “L. Vanvitelli”, Italy
| | - Kali Janes
- Department of Pharmacology and Physiology, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Zhoumou Chen
- Department of Pharmacology and Physiology, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina 98122, Italy
| | - Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, Messina 98122, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0810, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Center for Anatomical Science and Education, Saint Louis University School of Medicine, 1402 South Grand Blvd, St. Louis, MO 63104, USA
| |
Collapse
|
9
|
The putative role of oxidative stress and inflammation in the pathophysiology of sleep dysfunction across neuropsychiatric disorders: Focus on chronic fatigue syndrome, bipolar disorder and multiple sclerosis. Sleep Med Rev 2018; 41:255-265. [PMID: 29759891 DOI: 10.1016/j.smrv.2018.03.007] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 02/20/2018] [Accepted: 03/27/2018] [Indexed: 12/29/2022]
Abstract
Sleep and circadian abnormalities are prevalent and burdensome manifestations of diverse neuro-immune diseases, and may aggravate the course of several neuropsychiatric disorders. The underlying pathophysiology of sleep abnormalities across neuropsychiatric disorders remains unclear, and may involve the inter-play of several clinical variables and mechanistic pathways. In this review, we propose a heuristic framework in which reciprocal interactions of immune, oxidative and nitrosative stress, and mitochondrial pathways may drive sleep abnormalities across potentially neuroprogressive disorders. Specifically, it is proposed that systemic inflammation may activate microglial cells and astrocytes in brain regions involved in sleep and circadian regulation. Activated glial cells may secrete pro-inflammatory cytokines (for example, interleukin-1 beta and tumour necrosis factor alpha), nitric oxide and gliotransmitters, which may influence the expression of key circadian regulators (e.g., the Circadian Locomotor Output Cycles Kaput (CLOCK) gene). Furthermore, sleep disruption may further aggravate oxidative and nitrosative, peripheral immune activation, and (neuro) inflammation across these disorders in a vicious pathophysiological loop. This review will focus on chronic fatigue syndrome, bipolar disorder, and multiple sclerosis as exemplars of neuro-immune disorders. We conclude that novel therapeutic targets exploring immune and oxidative & nitrosative pathways (p.e. melatonin and molecular hydrogen) hold promise in alleviating sleep and circadian dysfunction in these disorders.
Collapse
|
10
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
11
|
Cheng KY, Liu Y, Han YG, Li JK, Jia JL, Chen B, Yao ZX, Nie L, Cheng L. Follistatin-like protein 1 suppressed pro-inflammatory cytokines expression during neuroinflammation induced by lipopolysaccharide. J Mol Histol 2016; 48:63-72. [PMID: 27913976 DOI: 10.1007/s10735-016-9706-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
Abstract
Follistain-like protein 1 (FSTL1), has been recently demonstrated to be involved in the embryo development of nervous system and glioblastoma. However, the role of FSTL1 in neuroinflammation remains unexplored. In this study, the expression of FSTL1 in astrocytes was verified and its role was studied in neuroinflammation induced by in vivo intracerebroventricular (ICV) injection of lipopolysaccharide (LPS) or LPS treatment to astrocytes in vitro. FSTL1 was significantly induced after ICV LPS injection or LPS treatment. FSTL1 suppressed upregulation of pro-inflammatory cytokines in astrocytes after LPS treatment. Moreover, FSTL1 downregulated expression of pro-inflammatory cytokines through suppressing MAPK/p-ERK1/2 pathway in astrocytes. Our results suggest that FSTL1 may play an anti-inflammatory role in neuroinflammation mediated by astrocytes.
Collapse
Affiliation(s)
- Kai-Yuan Cheng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Yi Liu
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Ying-Guang Han
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jing-Kun Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Jia-Lin Jia
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Bin Chen
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Zhi-Xiao Yao
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lin Nie
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China
| | - Lei Cheng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Jinan, 250012, China.
| |
Collapse
|