1
|
Shlobin OA, Adir Y, Barbera JA, Cottin V, Harari S, Jutant EM, Pepke-Zaba J, Ghofrani HA, Channick R. Pulmonary hypertension associated with lung diseases. Eur Respir J 2024; 64:2401200. [PMID: 39209469 PMCID: PMC11525344 DOI: 10.1183/13993003.01200-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
Pulmonary hypertension (PH) associated with chronic lung disease (CLD) is both common and underrecognised. The presence of PH in the setting of lung disease has been consistently shown to be associated with worse outcomes. Recent epidemiological studies have advanced understanding of the heterogeneity of this patient population and shown that defining both the specific type of CLD as well as the severity of PH (i.e. deeper phenotyping) is necessary to inform natural history and prognosis. A systematic diagnostic approach to screening and confirmation of suspected PH in CLD is recommended. Numerous uncontrolled studies and one phase 3 randomised, controlled trial have suggested a benefit in treating PH in some patients with CLD, specifically those with fibrotic interstitial lung disease (ILD). However, other studies in diseases such as COPD-PH showed adverse outcomes with some therapies. Given the expanding list of approved pharmacological treatments for pulmonary arterial hypertension, developing a treatment algorithm for specific phenotypes of CLD-PH is required. This article will summarise existing data in COPD, ILD and other chronic lung diseases, and provide recommendations for classification of CLD-PH and approach to the diagnosis and management of these challenging patients.
Collapse
Affiliation(s)
- Oksana A Shlobin
- Advanced Lung Disease and Transplant Program, Inova Schar Heart and Vascular Institute, Inova Fairfax Hospital, Falls Church, VA, USA
| | - Yochai Adir
- Pulmonary Division, Lady Davis Carmel Medical Center, Faculty of Medicine Technion Institute of Technology, Haifa, Israel
| | - Joan A Barbera
- Department of Pulmonary Medicine, Hospital Clínic-IDIBAPS, University of Barcelona; Biomedical Research Networking Center on Respiratory Diseases (CIBERES), Barcelona, Spain
| | - Vincent Cottin
- Department of Respiratory Medicine, National Reference Centre for Rare Pulmonary Diseases, ERN-LUNG, Louis Pradel Hospital, Hospices Civils de Lyon and UMR 754, INRAE, Claude Bernard University Lyon 1, Lyon, France
| | - Sergio Harari
- Unità Operativa di Pneumologia e Terapia Semi-Intensiva Respiratoria, MultiMedica IRCCS, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Etienne-Marie Jutant
- Respiratory Department, Centre Hospitalier Universitaire de Poitiers, INSERM CIC 1402, IS-ALIVE Research Group, University of Poitiers, Poitiers, France
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Royal Papworth Hospital, University of Cambridge, Cambridge, UK
| | - Hossein-Ardeschir Ghofrani
- Justus-Liebig University Giessen, ECCPS, Kerckhoff-Klinik Bad Nauheim, Giessen, Germany
- Imperial College London, London, UK
| | - Richard Channick
- Pulmonary Vascular Disease Program, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
2
|
Bjork S, Jain D, Marliere MH, Predescu SA, Mokhlesi B. Obstructive Sleep Apnea, Obesity Hypoventilation Syndrome, and Pulmonary Hypertension: A State-of-the-Art Review. Sleep Med Clin 2024; 19:307-325. [PMID: 38692755 DOI: 10.1016/j.jsmc.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The pathophysiological interplay between sleep-disordered breathing (SDB) and pulmonary hypertension (PH) is complex and can involve a variety of mechanisms by which SDB can worsen PH. These mechanistic pathways include wide swings in intrathoracic pressure while breathing against an occluded upper airway, intermittent and/or sustained hypoxemia, acute and/or chronic hypercapnia, and obesity. In this review, we discuss how the downstream consequences of SDB can adversely impact PH, the challenges in accurately diagnosing and classifying PH in the severely obese, and review the limited literature assessing the effect of treating obesity, obstructive sleep apnea, and obesity hypoventilation syndrome on PH.
Collapse
Affiliation(s)
- Sarah Bjork
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Deepanjali Jain
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Manuel Hache Marliere
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Sanda A Predescu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA
| | - Babak Mokhlesi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Rush University Medical Center, 1750 W. Harrison Street, Jelke 297, Chicago, IL 60612, USA.
| |
Collapse
|
3
|
Nathani A, Attaway A, Mehra R. Hypoxic and Autonomic Mechanisms from Sleep-Disordered Breathing Leading to Cardiopulmonary Dysfunction. Sleep Med Clin 2024; 19:229-237. [PMID: 38692748 DOI: 10.1016/j.jsmc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Avantika Nathani
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA.
| | - Amy Attaway
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA
| | - Reena Mehra
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA; Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
4
|
Balcan B, Akdeniz B, Peker Y, Collaborators TTURCOSACT. Obstructive Sleep Apnea and Pulmonary Hypertension: A Chicken-and-Egg Relationship. J Clin Med 2024; 13:2961. [PMID: 38792502 PMCID: PMC11122166 DOI: 10.3390/jcm13102961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by repeated episodes of upper airway obstruction during sleep, and it is closely linked to several cardiovascular issues due to intermittent hypoxia, nocturnal hypoxemia, and disrupted sleep patterns. Pulmonary hypertension (PH), identified by elevated pulmonary arterial pressure, shares a complex interplay with OSA, contributing to cardiovascular complications and morbidity. The prevalence of OSA is alarmingly high, with studies indicating rates of 20-30% in males and 10-15% in females, escalating significantly with age and obesity. OSA's impact on cardiovascular health is profound, particularly in exacerbating conditions like systemic hypertension and heart failure. The pivotal role of hypoxemia increases intrathoracic pressure, inflammation, and autonomic nervous system dysregulation in this interplay, which all contribute to PH's pathogenesis. The prevalence of PH among OSA patients varies widely, with studies reporting rates from 15% to 80%, highlighting the variability in diagnostic criteria and methodologies. Conversely, OSA prevalence among PH patients also remains high, often exceeding 25%, stressing the need for careful screening and diagnosis. Treatment strategies like continuous positive airway pressure (CPAP) therapy show promise in mitigating PH progression in OSA patients. However, this review underscores the need for further research into long-term outcomes and the efficacy of these treatments. This review provides comprehensive insights into the epidemiology, pathophysiology, and treatment of the intricate interplay between OSA and PH, calling for integrated, personalized approaches in diagnosis and management. The future landscape of OSA and PH management hinges on continued research, technological advancements, and a holistic approach to improving patient outcomes.
Collapse
Affiliation(s)
- Baran Balcan
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
| | - Bahri Akdeniz
- Department of Cardiology, Dokuz Eylül University Faculty of Medicine, Izmir 35340, Turkey;
| | - Yüksel Peker
- Department of Pulmonary Medicine, Koç University School of Medicine, Istanbul 34450, Turkey;
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Clinical Sciences, Respiratory Medicine and Allergology, Faculty of Medicine, Lund University, 22185 Lund, Sweden
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | | |
Collapse
|
5
|
Chang JL, Goldberg AN, Alt JA, Alzoubaidi M, Ashbrook L, Auckley D, Ayappa I, Bakhtiar H, Barrera JE, Bartley BL, Billings ME, Boon MS, Bosschieter P, Braverman I, Brodie K, Cabrera-Muffly C, Caesar R, Cahali MB, Cai Y, Cao M, Capasso R, Caples SM, Chahine LM, Chang CP, Chang KW, Chaudhary N, Cheong CSJ, Chowdhuri S, Cistulli PA, Claman D, Collen J, Coughlin KC, Creamer J, Davis EM, Dupuy-McCauley KL, Durr ML, Dutt M, Ali ME, Elkassabany NM, Epstein LJ, Fiala JA, Freedman N, Gill K, Boyd Gillespie M, Golisch L, Gooneratne N, Gottlieb DJ, Green KK, Gulati A, Gurubhagavatula I, Hayward N, Hoff PT, Hoffmann OM, Holfinger SJ, Hsia J, Huntley C, Huoh KC, Huyett P, Inala S, Ishman SL, Jella TK, Jobanputra AM, Johnson AP, Junna MR, Kado JT, Kaffenberger TM, Kapur VK, Kezirian EJ, Khan M, Kirsch DB, Kominsky A, Kryger M, Krystal AD, Kushida CA, Kuzniar TJ, Lam DJ, Lettieri CJ, Lim DC, Lin HC, Liu SY, MacKay SG, Magalang UJ, Malhotra A, Mansukhani MP, Maurer JT, May AM, Mitchell RB, Mokhlesi B, Mullins AE, Nada EM, Naik S, Nokes B, Olson MD, Pack AI, Pang EB, Pang KP, Patil SP, Van de Perck E, Piccirillo JF, Pien GW, Piper AJ, Plawecki A, Quigg M, Ravesloot MJ, Redline S, Rotenberg BW, Ryden A, Sarmiento KF, Sbeih F, Schell AE, Schmickl CN, Schotland HM, Schwab RJ, Seo J, Shah N, Shelgikar AV, Shochat I, Soose RJ, Steele TO, Stephens E, Stepnowsky C, Strohl KP, Sutherland K, Suurna MV, Thaler E, Thapa S, Vanderveken OM, de Vries N, Weaver EM, Weir ID, Wolfe LF, Tucker Woodson B, Won CH, Xu J, Yalamanchi P, Yaremchuk K, Yeghiazarians Y, Yu JL, Zeidler M, Rosen IM. International Consensus Statement on Obstructive Sleep Apnea. Int Forum Allergy Rhinol 2023; 13:1061-1482. [PMID: 36068685 PMCID: PMC10359192 DOI: 10.1002/alr.23079] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Evaluation and interpretation of the literature on obstructive sleep apnea (OSA) allows for consolidation and determination of the key factors important for clinical management of the adult OSA patient. Toward this goal, an international collaborative of multidisciplinary experts in sleep apnea evaluation and treatment have produced the International Consensus statement on Obstructive Sleep Apnea (ICS:OSA). METHODS Using previously defined methodology, focal topics in OSA were assigned as literature review (LR), evidence-based review (EBR), or evidence-based review with recommendations (EBR-R) formats. Each topic incorporated the available and relevant evidence which was summarized and graded on study quality. Each topic and section underwent iterative review and the ICS:OSA was created and reviewed by all authors for consensus. RESULTS The ICS:OSA addresses OSA syndrome definitions, pathophysiology, epidemiology, risk factors for disease, screening methods, diagnostic testing types, multiple treatment modalities, and effects of OSA treatment on multiple OSA-associated comorbidities. Specific focus on outcomes with positive airway pressure (PAP) and surgical treatments were evaluated. CONCLUSION This review of the literature consolidates the available knowledge and identifies the limitations of the current evidence on OSA. This effort aims to create a resource for OSA evidence-based practice and identify future research needs. Knowledge gaps and research opportunities include improving the metrics of OSA disease, determining the optimal OSA screening paradigms, developing strategies for PAP adherence and longitudinal care, enhancing selection of PAP alternatives and surgery, understanding health risk outcomes, and translating evidence into individualized approaches to therapy.
Collapse
Affiliation(s)
- Jolie L. Chang
- University of California, San Francisco, California, USA
| | | | | | | | - Liza Ashbrook
- University of California, San Francisco, California, USA
| | | | - Indu Ayappa
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | - Maurits S. Boon
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Pien Bosschieter
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | - Itzhak Braverman
- Hillel Yaffe Medical Center, Hadera Technion, Faculty of Medicine, Hadera, Israel
| | - Kara Brodie
- University of California, San Francisco, California, USA
| | | | - Ray Caesar
- Stone Oak Orthodontics, San Antonio, Texas, USA
| | | | - Yi Cai
- University of California, San Francisco, California, USA
| | | | | | | | | | | | | | | | | | - Susmita Chowdhuri
- Wayne State University and John D. Dingell VA Medical Center, Detroit, Michigan, USA
| | - Peter A. Cistulli
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - David Claman
- University of California, San Francisco, California, USA
| | - Jacob Collen
- Uniformed Services University, Bethesda, Maryland, USA
| | | | | | - Eric M. Davis
- University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Mohan Dutt
- University of Michigan, Ann Arbor, Michigan, USA
| | - Mazen El Ali
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | - Kirat Gill
- Stanford University, Palo Alto, California, USA
| | | | - Lea Golisch
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | | | | | - Arushi Gulati
- University of California, San Francisco, California, USA
| | | | | | - Paul T. Hoff
- University of Michigan, Ann Arbor, Michigan, USA
| | - Oliver M.G. Hoffmann
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | | | - Jennifer Hsia
- University of Minnesota, Minneapolis, Minnesota, USA
| | - Colin Huntley
- Sidney Kimmel Medical Center at Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | - Sanjana Inala
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | - Meena Khan
- Ohio State University, Columbus, Ohio, USA
| | | | - Alan Kominsky
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | - Meir Kryger
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Derek J. Lam
- Oregon Health and Science University, Portland, Oregon, USA
| | | | | | | | | | | | | | - Atul Malhotra
- University of California, San Diego, California, USA
| | | | - Joachim T. Maurer
- University Hospital Mannheim, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Anna M. May
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Ron B. Mitchell
- University of Texas, Southwestern and Children’s Medical Center Dallas, Texas, USA
| | | | | | | | | | - Brandon Nokes
- University of California, San Diego, California, USA
| | | | - Allan I. Pack
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | - Mark Quigg
- University of Virginia, Charlottesville, Virginia, USA
| | | | - Susan Redline
- Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Armand Ryden
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | | | - Firas Sbeih
- Cleveland Clinic Head and Neck Institute, Cleveland, Ohio, USA
| | | | | | | | | | - Jiyeon Seo
- University of California, Los Angeles, California, USA
| | - Neomi Shah
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - Ryan J. Soose
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | - Erika Stephens
- University of California, San Francisco, California, USA
| | | | | | | | | | - Erica Thaler
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sritika Thapa
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Nico de Vries
- Academic Centre for Dentistry Amsterdam, Amsterdam, The Netherlands
| | | | - Ian D. Weir
- Yale School of Medicine, New Haven, Connecticut, USA
| | | | | | | | - Josie Xu
- University of Toronto, Ontario, Canada
| | | | | | | | | | | | - Ilene M. Rosen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Lin YC, Chen CT, Chao PZ, Chen PY, Liu WT, Tsao ST, Lin SF, Bai CH. Prevention of Incident Hypertension in Patients With Obstructive Sleep Apnea Treated With Uvulopalatopharyngoplasty or Continuous Positive Airway Pressure: A Cohort Study. Front Surg 2022; 9:818591. [PMID: 35402497 PMCID: PMC8987371 DOI: 10.3389/fsurg.2022.818591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose To determine whether treatment with uvulopalatopharyngoplasty (UPPP) or continuous positive airway pressure (CPAP) in patients with obstructive sleep apnea (OSA) prevents hypertension, compared to those not receiving any treatment. Methods A retrospective cohort study was conducted among 413 patients with OSA (age ≥ 35 years) at the Shuang Ho Hospital between 2009 and 2016. The patients were divided into three groups: UPPP, CPAP, and non-treatment groups. Data about the personal characteristics, history of comorbidities, and polysomnography (PSG) reports were collected at baseline. A Cox model with inverse probability of treatment weighting was used to adjust for confounders and baseline diversity. Results After multivariate adjustment and weighting for incident hypertension, patients in both the CPAP and UPPP groups showed a significant preventive effect on hypertension than in the non-treatment group. Moreover, patients in the CPAP group had lower event rates than those in the UPPP group. Conclusion UPPP can prevent the development of new-onset hypertension in patients with OSA. CPAP had a better preventive effect than UPPP. UPPP might be a good alternative for reducing the risk of the onset of hypertension when compliance to CPAP is poor.
Collapse
Affiliation(s)
- Yi-Chih Lin
- Department of Otolaryngology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chun-Tien Chen
- Department of Otolaryngology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Pin-Zhir Chao
- Department of Otolaryngology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Po-Yueh Chen
- Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Otolaryngology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Wen-Te Liu
- Sleep Center, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
- Department of Chest, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Sheng-Teng Tsao
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Feng Lin
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Emergency Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chyi-Huey Bai
- School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
- *Correspondence: Chyi-Huey Bai
| |
Collapse
|
7
|
Vadakkan Devassy T, Ps N, Sharma D, Thomas AM. Sleep disorders in elderly population suffering from TB and respiratory diseases. Indian J Tuberc 2022; 69 Suppl 2:S272-S279. [PMID: 36400523 DOI: 10.1016/j.ijtb.2022.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2022]
Abstract
Sleep disorders (SD) are more frequent in the elderly population than younger counterparts. The underlying SD has a more severe impact on cardiorespiratory fitness. In elderly population with respiratory disorders, incidence and baneful influence of sleep disorders are extremely high. Insomnia in elderly is very common probably due to age related changes, underlying co morbidities and multiple medications. With aging there is decrease in duration of slow wave sleep and increase in NREM stage 1 and 2 sleep, which increases number of spontaneous arousals. Compared to younger people, elderly individuals tend to sleep earlier and wake up earlier due to changes in their normal circadian rhythm. Poor sleep quality and restless leg syndrome are higher in Tuberculosis patients. Disturbances in immune regulation due to chronic insomnia may exacerbate chronic infections like TB. Because many respiratory diseases and medications are known to cause sleep disturbances, it is important to assess treatable medical conditions and insomnia inducing medications before initiating hypnotics. Diagnosing sleep disordered breathing (SDB) in ILD patients is particularly important as nocturnal oxygen desaturation is associated with poor prognosis and could possibly be a cause of pulmonary hypertension. In patients with pulmonary hypertension (PH) and underlying obstructive sleep apnoea, CPAP therapy may help to reduce the PH. Addressing sleep disorders will be highly beneficial in elderly COPD patients with sleep disorders. This article reviews different SD, its effects and the treatment benefits in improving the quality of life and reducing the risk of progression of respiratory dysfunction in elderly population with TB and respiratory diseases.
Collapse
Affiliation(s)
| | - Nishanth Ps
- DM Pulmonary Medicine Resident, Department of Pulmonary Medicine, Amala Institute of Medical Sciences, India
| | - Daksh Sharma
- DM Pulmonary Medicine Resident, Department of Pulmonary Medicine, Amala Institute of Medical Sciences, India
| | | |
Collapse
|
8
|
Esnaud R, Gagnadoux F, Beurnier A, Berrehare A, Trzepizur W, Humbert M, Montani D, Jutant EM. The association between sleep-related breathing disorders and pre-capillary pulmonary hypertension: A chicken and egg question. Respir Med Res 2021; 80:100835. [PMID: 34174525 DOI: 10.1016/j.resmer.2021.100835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 01/04/2023]
Abstract
The level of knowledge about a direct link between sleep-related breathing disorders and pre-capillary pulmonary hypertension (PH) is low and there is a chicken and egg question to know which disease causes the other. On one hand, sleep-related breathing disorders are considered as a cause of group 3 PH, in the subgroup of patients with hypoxemia without lung disease. Indeed, isolated sleep-related breathing disorders can lead to mild pre-capillary PH on their own, although this is rare for obstructive sleep apnea and difficult to establish for obesity-hypoventilation syndrome, the evolution towards PH being observed especially in the presence of respiratory comorbidities. The hemodynamic improvement under treatment with continuous positive airway pressure or non-invasive ventilation also argues for a causal link between pre-capillary PH and sleep-related breathing disorders. On the other hand, patients followed for pre-capillary PH, particularly pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension, develop more sleep-related breathing disorders than the general population, especially sleep hypoxemia, central sleep apnea in patients with severe PH and obstructive sleep apnea in older patients with higher body mass index. The main objective of this article is therefore to answer two main questions, which will then lead us to discuss the bilateral link between these diseases: are sleep-related breathing disorders independent risk factors for pre-capillary PH and does pre-capillary PH induce sleep-related breathing disorders? In other words, who is the chicken and who is the egg?
Collapse
Affiliation(s)
- R Esnaud
- INSERM UMR1063, Université d'Angers, Angers, France; Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - F Gagnadoux
- INSERM UMR1063, Université d'Angers, Angers, France; Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - A Beurnier
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Service de physiologie et d'explorations fonctionnelles respiratoires, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - A Berrehare
- Département de Pneumologie, Centre Hospitalier du Mans, Le Mans, France
| | - W Trzepizur
- INSERM UMR1063, Université d'Angers, Angers, France; Department of Respiratory and Sleep Medicine, Angers University Hospital, Angers, France
| | - M Humbert
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - D Montani
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - E-M Jutant
- Université Paris-Saclay, School of Medicine, Le Kremlin-Bicêtre, France; INSERM UMR_S 999 «Pulmonary Hypertension: Pathophysiology and Novel Therapies», Hôpital Marie Lannelongue, Le Plessis-Robinson, France; Assistance Publique-Hôpitaux de Paris (AP-HP), Department of Respiratory and Intensive Care Medicine, Pulmonary Hypertension National Referral Center, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
9
|
Sleep apnea and pulmonary hypertension: A riddle waiting to be solved. Pharmacol Ther 2021; 227:107935. [PMID: 34171327 DOI: 10.1016/j.pharmthera.2021.107935] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 02/02/2023]
Abstract
Obstructive sleep apnea (OSA) is an under-recognized yet highly prevalent disease that has major implications to cardiovascular health. Pulmonary hypertension (pH) is less common but none the less a fatal condition. The association of OSA and PH is a known but not well understood phenomenon. Furthermore, the relationship appears to be bi-directional with limited understanding of the mechanism(s) driving the processes. PH in OSA has real time consequences as it has been shown to increase mortality. Limited data suggests that treatment with continuous positive pressure therapy may be beneficial and reduce pulmonary pressure. In this review, we discuss current data on prevalence of PH in OSA and vice versa. We also explore the pathophysiology of this relationship and a proposed mechanism for their connection. Finally, we address the treatment of OSA with CPAP and its impact on pulmonary pressures. Gaps in knowledge and future research potential are illustrated and discoursed.
Collapse
|
10
|
Mochol J, Gawrys J, Gajecki D, Szahidewicz-Krupska E, Martynowicz H, Doroszko A. Cardiovascular Disorders Triggered by Obstructive Sleep Apnea-A Focus on Endothelium and Blood Components. Int J Mol Sci 2021; 22:5139. [PMID: 34066288 PMCID: PMC8152030 DOI: 10.3390/ijms22105139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 12/19/2022] Open
Abstract
Obstructive sleep apnea (OSA) is known to be an independent cardiovascular risk factor. Among arousal from sleep, increased thoracic pressure and enhanced sympathetic activation, intermittent hypoxia is now considered as one of the most important pathophysiological mechanisms contributing to the development of endothelial dysfunction. Nevertheless, not much is known about blood components, which justifies the current review. This review focuses on molecular mechanisms triggered by sleep apnea. The recurrent periods of hypoxemia followed by reoxygenation promote reactive oxygen species (ROS) overproduction and increase inflammatory response. In this review paper we also intend to summarize the effect of treatment with continuous positive airway pressure (CPAP) on changes in the profile of the endothelial function and its subsequent potential clinical advantage in lowering cardiovascular risk in other comorbidities such as diabetes, atherosclerosis, hypertension, atrial fibrillation. Moreover, this paper is aimed at explaining how the presence of OSA may affect platelet function and exert effects on rheological activity of erythrocytes, which could also be the key to explaining an increased risk of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Adrian Doroszko
- Department of Internal Medicine, Hypertension and Clinical Oncology, Faculty of Medicine, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (J.M.); (J.G.); (D.G.); (E.S.-K.); (H.M.)
| |
Collapse
|
11
|
Abstract
Pulmonary hypertension (PH) is a condition of raised pulmonary artery pressure (PAP), which may be secondary to a number of causes, one of which is sleep disordered breathing (SDB). When PH complicates SDB, it carries a significant burden of morbidity and mortality due to the risk of progression to right ventricular failure over time. This narrative review will cover the definition and classification of PH, and explore the epidemiology of PH in SDB. The mechanisms by which the two conditions are linked will be reviewed. Repetitive hypoxia with or without hypercapnia alongside frequent arousals can result in important metabolic and pulmonary vascular consequences for the left and right heart. MEDLINE was used to search for all relevant articles and abstracts published from January 1960 to October 2019 inclusive (in all languages). Current best practice in the investigation and management of PH complicating SDB will be reviewed. Important diagnostic investigations and when to consider and screen further for PH in patients with SDB will be discussed. Optimal disease management must include control of SDB with therapy. Additional treatment options will be reviewed. Areas for further research will be highlighted.
Collapse
Affiliation(s)
| | | | - Marino Philip
- Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
12
|
Castillo-Galán S, Arenas GA, Reyes RV, Krause BJ, Iturriaga R. Stim-activated TRPC-ORAI channels in pulmonary hypertension induced by chronic intermittent hypoxia. Pulm Circ 2020; 10:13-22. [PMID: 33110495 PMCID: PMC7557718 DOI: 10.1177/2045894020941484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Obstructive sleep apnea (OSA), a breathing disorder featured by chronic intermittent
hypoxia (CIH) is associated with pulmonary hypertension (PH). Rodents exposed to CIH
develop pulmonary vascular remodeling and PH, but the pathogenic mechanisms are not well
known. Overexpression of Stim-activated Transient Receptor Potential Channels (TRPC) and
Calcium Release-Activated Calcium Channel Protein (ORAI) TRPC-ORAI Ca2+
channels (STOC) has been involved in pulmonary vascular remodeling and PH in sustained
hypoxia. However, it is not known if CIH may change STOC levels. Accordingly, we studied
the effects of CIH on the expression of STOC subunits in the lung and if these changes
paralleled the progression of the vascular pulmonary remodeling and PH in a preclinical
model of OSA. Male Sprague-Dawley rats (∼200 g) were exposed to CIH (5%O2, 12
times/h for 8 h) for 14, 21, and 28 days. We measured right ventricular systolic pressure
(RVSP), cardiac morphometry with MRI, pulmonary vascular remodeling, and wire-myographic
arterial responses to KCl and endothelin-1 (ET-1). Pulmonary RNA and protein STOC levels
of TRPC1, TRPC4, TRPC6, ORAI 1, ORAI 2, and STIM1 subunits were measured by qPCR and
western blot, and results were compared with age-matched controls. CIH elicited a
progressive increase of RVSP and vascular contractile responses to KCl and ET-1, leading
to vascular remodeling and augmented right ventricular ejection fraction, which was
significant at 28 days of CIH. The levels of TRPC1, TRPC4, TRPC 6, ORAI 1, and STIM 1
channels increased following CIH, and some of them paralleled morphologic and functional
changes. Our findings show that CIH increased pulmonary STOC expression, paralleling
vascular remodeling and PH.
Collapse
Affiliation(s)
- Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German A Arenas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roberto V Reyes
- Laboratorio de Bioquímica y Biología Molecular de la Hipoxia, Universidad de Chile, Santiago, Chile
| | - Bernardo J Krause
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
13
|
Adir Y, Humbert M, Chaouat A. Sleep-related breathing disorders and pulmonary hypertension. Eur Respir J 2020; 57:13993003.02258-2020. [PMID: 32747397 DOI: 10.1183/13993003.02258-2020] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
Sleep-related breathing disorders (SBDs) include obstructive apnoea, central apnoea and sleep-related hypoventilation. These nocturnal events have the potential to increase pulmonary arterial pressure (PAP) during sleep but also in the waking state. "Pure" obstructive sleep apnoea syndrome (OSAS) is responsible for a small increase in PAP whose clinical impact has not been demonstrated. By contrast, in obesity hypoventilation syndrome (OHS) or overlap syndrome (the association of chronic obstructive pulmonary disease (COPD) with obstructive sleep apnoea (OSA)), nocturnal respiratory events contribute to the development of pulmonary hypertension (PH), which is often severe. In the latter circumstances, treatment of SBDs is essential in order to improve pulmonary haemodynamics.Patients with pulmonary arterial hypertension (PAH) or chronic thromboembolic pulmonary hypertension (CTEPH) are at risk of developing SBDs. Obstructive and central apnoea, as well as a worsening of ventilation-perfusion mismatch, can be observed during sleep. There should be a strong suspicion of SBDs in such a patient population; however, the precise indications for sleep studies and the type of recording remain to be specified. The diagnosis of OSAS in patients with PAH or CTEPH should encourage treatment with continuous positive airway pressure (CPAP). The presence of isolated nocturnal hypoxaemia should also prompt the initiation of long-term oxygen therapy. These treatments are likely to avoid worsening of PH; however, it is prudent not to treat central apnoea and Cheyne-Stokes respiration (CSR) with adaptive servo-ventilation in patients with chronic right-heart failure because of a potential risk of serious adverse effects from such treatment.In this review we will consider the current knowledge of the consequences of SBDs on pulmonary haemodynamics in patients with and without chronic respiratory disease (group 3 of the clinical classification of PH) and the effect of treatments of respiratory events during sleep on PH. The prevalence and consequences of SBDs in PAH and CTEPH (groups 1 and 4 of the clinical classification of PH, respectively), as well as therapeutic options, will also be discussed.
Collapse
Affiliation(s)
- Yochai Adir
- Pulmonary Division, Lady Davis Carmel Medical Center, Haifa, Israel.,Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Marc Humbert
- Université Paris-Saclay, Le Kremlin-Bicêtre, France.,INSERM, UMR_S 999 (Pulmonary Hypertension: Pathophysiology and Novel Therapies), Hôpital Marie Lannelongue, Le Plessis-Robinson, France.,Dept of Respiratory and Intensive Care Medicine, and the Pulmonary Hypertension National Referral Centre, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Ari Chaouat
- Dept of Pulmonology and the Multidisciplinary Sleep Disorders Centre, CHRU Nancy, Nancy, France.,INSERM, UMR_S 1116 (Acute and Chronic Cardiovascular Failure), Université de Lorraine, Nancy, France
| |
Collapse
|
14
|
Sleep-Disordered Breathing and Diastolic Heart Disease. CURRENT SLEEP MEDICINE REPORTS 2019. [DOI: 10.1007/s40675-019-00160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Tan L, Li T, Lei F, Li X, Zhou J, Zhang Y, Ren R, Yang L, Tang X. Longer apnea duration at low altitude in Tibetan and Han highlanders compared with Han lowlanders: A retrospective study. J Sleep Res 2019; 29:e12934. [PMID: 31642144 DOI: 10.1111/jsr.12934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023]
Abstract
Prolonged duration of obstructive apnea (OA) has been observed in highlanders after descending to low altitude. It is proposed that due to adaptation to a hypoxic high-altitude environment, Tibetan highlanders (TH) and Han highlanders (HH) would manifest different OA durations at low altitude as compared to Han lowlanders (HL). Data collection on consecutive obstructive sleep apnea patients (167 TH, 210 HH and 233 HL) was performed over a period of 8 years in Chengdu (altitude 500 m). The analyses were performed with non-matched groups and with body mass index and apnea-hypopnea index-matched groups. Significance rankings for mean duration of OA (s) in non-matched groups and matched groups were TH (27.7; 28.6) = HH (25.7; 26.0) > HL (21.7; 21.3), respectively. For the longest OA duration, the significance rankings across three groups with regard to the percentage of patients having a duration longer than 2 min (%) and mean values (s) were TH (26.9; 82) > HH (10.0; 67) > HL (1.3; 50). In terms of nadir and mean oxygen saturation, significant differences were found between TH and HH or HL. In addition, longest and mean OA duration were positively correlated with blood pressure and heart rate, whereas nadir and mean oxygen saturation were negatively correlated with these measures in both non-matched and matched groups, and the correlation was more robust in TH. These findings raise important clinical questions regarding whether such significant prolongation of OA duration and a more severe hypoxic burden among highlanders, especially in TH, may lead to adverse clinical consequences when at low altitude.
Collapse
Affiliation(s)
- Lu Tan
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taomei Li
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Fei Lei
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Li
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Junying Zhou
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ye Zhang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Rong Ren
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Yang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine,Translational Neuroscience Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Iturriaga R, Castillo-Galán S. Potential Contribution of Carotid Body-Induced Sympathetic and Renin-Angiotensin System Overflow to Pulmonary Hypertension in Intermittent Hypoxia. Curr Hypertens Rep 2019; 21:89. [PMID: 31599367 DOI: 10.1007/s11906-019-0995-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Obstructive sleep apnea (OSA), featured by chronic intermittent hypoxia (CIH), is an independent risk for systemic hypertension (HTN) and is associated with pulmonary hypertension (PH). The precise mechanisms underlying pulmonary vascular remodeling and PH in OSA are not fully understood. However, it has been suggested that lung tissue hypoxia, oxidative stress, and pro-inflammatory mediators following CIH exposure may contribute to PH. RECENT FINDINGS New evidences obtained in preclinical OSA models support that an enhanced carotid body (CB) chemosensory reactiveness to oxygen elicits sympathetic and renin-angiotensin system (RAS) overflow, which contributes to HTN. Moreover, the ablation of the CBs abolished the sympathetic hyperactivity and HTN in rodents exposed to CIH. Accordingly, it is plausible that the enhanced CB chemosensory reactivity may contribute to the pulmonary vascular remodeling and PH through the overactivation of the sympathetic-RAS axis. This hypothesis is supported by the facts that (i) CB stimulation increases pulmonary arterial pressure, (ii) denervation of sympathetic fibers in pulmonary arteries reduces pulmonary remodeling and pulmonary arterial hypertension (PAH) in humans, and (iii) administration of angiotensin-converting enzyme (ACE) or blockers of Ang II type 1 receptor (ATR1) ameliorates pulmonary remodeling and PH in animal models. In this review, we will discuss the supporting evidence for a plausible contribution of the CB-induced sympathetic-RAS axis overflow on pulmonary vascular remodeling and PH induced by CIH, the main characteristic of OSA.
Collapse
Affiliation(s)
- Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.
| | - Sebastian Castillo-Galán
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile
| |
Collapse
|
17
|
Holt A, Bjerre J, Zareini B, Koch H, Tønnesen P, Gislason GH, Nielsen OW, Schou M, Lamberts M. Sleep Apnea, the Risk of Developing Heart Failure, and Potential Benefits of Continuous Positive Airway Pressure (CPAP) Therapy. J Am Heart Assoc 2018; 7:JAHA.118.008684. [PMID: 29934418 PMCID: PMC6064879 DOI: 10.1161/jaha.118.008684] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Whether there is an association between sleep apnea (SA) and the risk of developing heart failure (HF) is unclear. Furthermore, it has never been established whether continuous positive airway pressure (CPAP) therapy can prevent development of HF. We aimed to investigate SA patients’ risk of developing HF and the association of CPAP therapy. Methods and Results Using nationwide databases, the entire Danish population was followed from 2000 until 2012. patients with SA receiving and not receiving CPAP therapy were identified and compared with the background population. The primary end point was first‐time hospital contact for HF and adjusted incidence rate ratios of HF were calculated using Poisson regression models. Among 4.9 million individuals included, 40 485 developed SA during the study period (median age: 53.4 years, 78.5% men) of whom 45.2% received CPAP therapy. Crude rates of HF were increased in all patients with SA relative to the background population. In the adjusted model, the incidence rate ratios of HF were increased in the untreated SA patients of all ages, compared with the background population. Comparing the CPAP‐treated patients with SA with the untreated patients with SA showed significantly lower incidence rate ratios of HF among older patients. Conclusions In this nationwide cohort study, SA not treated with CPAP was associated with an increased risk of HF in patients of all ages. Use of CPAP therapy was associated with a lower risk of incident HF in patients >60 years of age, suggesting a protective effect of CPAP therapy in the elderly.
Collapse
Affiliation(s)
- Anders Holt
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Jenny Bjerre
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Bochra Zareini
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Henning Koch
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Philip Tønnesen
- Department of Sleep Medicine, Copenhagen University Hospital Rigshospitalet and Glostrup, Copenhagen, Denmark
| | - Gunnar H Gislason
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark.,Department of Epidemiology and Research, The Danish Heart Foundation, Copenhagen, Denmark.,The National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
| | - Olav W Nielsen
- Department of Cardiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Morten Schou
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| | - Morten Lamberts
- Department of Cardiology, Copenhagen University Hospital Herlev and Gentofte, Hellerup, Denmark
| |
Collapse
|
18
|
Suárez M, Osorio J, Torres M, Montserrat JM. Should the diagnosis and management of OSA move into general practice? Breathe (Sheff) 2016; 12:243-247. [PMID: 28210297 PMCID: PMC5298147 DOI: 10.1183/20734735.011216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sleep apnoea is a common disease that for accurate management requires the participation of primary care medicine http://ow.ly/G6Mq301zcaM.
Collapse
Affiliation(s)
- Monique Suárez
- Unitat del Son. Servei de Pneumologia, Hospital Clínic, Barcelona, Spain
| | - Jeisson Osorio
- Unitat del Son. Servei de Pneumologia, Hospital Clínic, Barcelona, Spain
| | - Marta Torres
- Unitat del Son. Servei de Pneumologia, Hospital Clínic, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- IDIBAPS, Barcelona, Spain
- Both authors contributed equally
| | - Josep M. Montserrat
- Unitat del Son. Servei de Pneumologia, Hospital Clínic, Barcelona, Spain
- CIBER de Enfermedades Respiratorias, Madrid, Spain
- IDIBAPS, Barcelona, Spain
- Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Both authors contributed equally
| |
Collapse
|