1
|
Girma A. Biology of human respiratory syncytial virus: Current perspectives in immune response and mechanisms against the virus. Virus Res 2024; 350:199483. [PMID: 39396572 PMCID: PMC11513633 DOI: 10.1016/j.virusres.2024.199483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Human respiratory syncytial virus (hRSV) remains a leading cause of morbidity and mortality in infants, young children, and older adults. hRSV infection's limited treatment and vaccine options significantly increase bronchiolitis' morbidity rates. The severity and outcome of viral infection hinge on the innate immune response. Developing vaccines and identifying therapeutic interventions suitable for young children, older adults, and pregnant women relies on comprehending the molecular mechanisms of viral PAMP recognition, genetic factors of the inflammatory response, and antiviral defense. This review covers fundamental elements of hRSV biology, diagnosis, pathogenesis, and the immune response, highlighting prospective options for vaccine development.
Collapse
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Sciences, Mekdela Amba University, P.O. Box 32, Tulu Awuliya, Ethiopia.
| |
Collapse
|
2
|
Berdnikovs S, Newcomb DC, Hartert TV. How early life respiratory viral infections impact airway epithelial development and may lead to asthma. Front Pediatr 2024; 12:1441293. [PMID: 39156016 PMCID: PMC11327159 DOI: 10.3389/fped.2024.1441293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024] Open
Abstract
Childhood asthma is a common chronic disease of the airways that results from host and environment interactions. Most risk factor studies of asthma point to the first year of life as a susceptibility window of mucosal exposure that directly impacts the airway epithelium and airway epithelial cell development. The development of the airway epithelium, which forms a competent barrier resulting from coordinated interactions of different specialized cell subsets, occurs during a critical time frame in normal postnatal development in the first year of life. Understanding the normal and aberrant developmental trajectory of airway epithelial cells is important in identifying pathways that may contribute to barrier dysfunction and asthma pathogenesis. Respiratory viruses make first contact with and infect the airway mucosa. Human rhinovirus (HRV) and respiratory syncytial virus (RSV) are mucosal pathogens that are consistently identified as asthma risk factors. Respiratory viruses represent a unique early life exposure, different from passive irritant exposures which injure the developing airway epithelium. To replicate, respiratory viruses take over the host cell transcriptional and translational processes and exploit host cell energy metabolism. This takeover impacts the development and differentiation processes of airway epithelial cells. Therefore, delineating the mechanisms through which early life respiratory viral infections alter airway epithelial cell development will allow us to understand the maturation and heterogeneity of asthma and develop tools tailored to prevent disease in specific children. This review will summarize what is understood about the impact of early life respiratory viruses on the developing airway epithelium and define critical gaps in our knowledge.
Collapse
Affiliation(s)
- Sergejs Berdnikovs
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dawn C. Newcomb
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Tina V. Hartert
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
3
|
Lee HS, Volpe SJ, Chang EH. The Role of Viruses in the Inception of Chronic Rhinosinusitis. Clin Exp Otorhinolaryngol 2022; 15:310-318. [PMID: 36455880 PMCID: PMC9723285 DOI: 10.21053/ceo.2022.01004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/12/2022] [Accepted: 10/25/2022] [Indexed: 11/22/2022] Open
Abstract
Chronic rhinosinusitis (CRS) is a complex inflammatory disorder that affects between 2% and 16% of adults in the United States, with estimated healthcare costs between 4 and 12 million USD. Viruses are a common etiologic factor for URIs, are frequently identified in the sinuses of patients with CRS, and trigger CRS exacerbations. Therefore, investigating the role of viruses provides an opportunity to identify their role in the pathogenesis of CRS. In this review, we identified the viruses frequently isolated in patients with CRS, as well as their associated immunologic responses and contributions to inflammation. Rhinovirus, parainfluenza virus, influenza virus, and respiratory syncytial virus are the viruses commonly found in patients with CRS. This information allows us to target pathways early in the pathogenesis of CRS, thereby playing a significant role in slowing the progression of this chronic disease.
Collapse
Affiliation(s)
- Hyeon Seung Lee
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Sophia J Volpe
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Eugene H Chang
- Department of Otolaryngology, University of Arizona College of Medicine, Tucson, AZ, USA
| |
Collapse
|
4
|
Enweasor C, Flayer CH, Haczku A. Ozone-Induced Oxidative Stress, Neutrophilic Airway Inflammation, and Glucocorticoid Resistance in Asthma. Front Immunol 2021; 12:631092. [PMID: 33717165 PMCID: PMC7952990 DOI: 10.3389/fimmu.2021.631092] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Despite recent advances in using biologicals that target Th2 pathways, glucocorticoids form the mainstay of asthma treatment. Asthma morbidity and mortality remain high due to the wide variability of treatment responsiveness and complex clinical phenotypes driven by distinct underlying mechanisms. Emerging evidence suggests that inhalation of the toxic air pollutant, ozone, worsens asthma by impairing glucocorticoid responsiveness. This review discusses the role of oxidative stress in glucocorticoid resistance in asthma. The underlying mechanisms point to a central role of oxidative stress pathways. The primary data source for this review consisted of peer-reviewed publications on the impact of ozone on airway inflammation and glucocorticoid responsiveness indexed in PubMed. Our main search strategy focused on cross-referencing "asthma and glucocorticoid resistance" against "ozone, oxidative stress, alarmins, innate lymphoid, NK and γδ T cells, dendritic cells and alveolar type II epithelial cells, glucocorticoid receptor and transcription factors". Recent work was placed in the context from articles in the last 10 years and older seminal research papers and comprehensive reviews. We excluded papers that did not focus on respiratory injury in the setting of oxidative stress. The pathways discussed here have however wide clinical implications to pathologies associated with inflammation and oxidative stress and in which glucocorticoid treatment is essential.
Collapse
Affiliation(s)
- Chioma Enweasor
- UC Davis Lung Center, University of California, Davis, CA, United States
| | - Cameron H. Flayer
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Angela Haczku
- UC Davis Lung Center, University of California, Davis, CA, United States
| |
Collapse
|
5
|
Fernandes IG, de Brito CA, dos Reis VMS, Sato MN, Pereira NZ. SARS-CoV-2 and Other Respiratory Viruses: What Does Oxidative Stress Have to Do with It? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8844280. [PMID: 33381273 PMCID: PMC7757116 DOI: 10.1155/2020/8844280] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/09/2020] [Accepted: 12/13/2020] [Indexed: 02/08/2023]
Abstract
The phenomenon of oxidative stress, characterized as an imbalance in the production of reactive oxygen species and antioxidant responses, is a well-known inflammatory mechanism and constitutes an important cellular process. The relationship of viral infections, reactive species production, oxidative stress, and the antiviral response is relevant. Therefore, the aim of this review is to report studies showing how reactive oxygen species may positively or negatively affect the pathophysiology of viral infection. We focus on known respiratory viral infections, especially severe acute respiratory syndrome coronaviruses (SARS-CoVs), in an attempt to provide important information on the challenges posed by the current COVID-19 pandemic. Because antiviral therapies for severe acute respiratory syndrome coronaviruses (e.g., SARS-CoV-2) are rare, knowledge about relevant antioxidant compounds and oxidative pathways may be important for understanding viral pathogenesis and identifying possible therapeutic targets.
Collapse
Affiliation(s)
- Iara Grigoletto Fernandes
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cyro Alves de Brito
- Technical Division of Medical Biology, Immunology Center, Adolfo Lutz Institute, São Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Nátalli Zanete Pereira
- Laboratory of Medical Investigation 56, Dermatology Department, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
6
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
7
|
Carvajal JJ, Avellaneda AM, Salazar-Ardiles C, Maya JE, Kalergis AM, Lay MK. Host Components Contributing to Respiratory Syncytial Virus Pathogenesis. Front Immunol 2019; 10:2152. [PMID: 31572372 PMCID: PMC6753334 DOI: 10.3389/fimmu.2019.02152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most prevalent viral etiological agent of acute respiratory tract infection. Although RSV affects people of all ages, the disease is more severe in infants and causes significant morbidity and hospitalization in young children and in the elderly. Host factors, including an immature immune system in infants, low lymphocyte levels in patients under 5 years old, and low levels of RSV-specific neutralizing antibodies in the blood of adults over 65 years of age, can explain the high susceptibility to RSV infection in these populations. Other host factors that correlate with severe RSV disease include high concentrations of proinflammatory cytokines such as interleukins (IL)-6, IL-8, tumor necrosis factor (TNF)-α, and thymic stromal lymphopoitein (TSLP), which are produced in the respiratory tract of RSV-infected individuals, accompanied by a strong neutrophil response. In addition, data from studies of RSV infections in humans and in animal models revealed that this virus suppresses adaptive immune responses that could eliminate it from the respiratory tract. Here, we examine host factors that contribute to RSV pathogenesis based on an exhaustive review of in vitro infection in humans and in animal models to provide insights into the design of vaccines and therapeutic tools that could prevent diseases caused by RSV.
Collapse
Affiliation(s)
- Jonatan J. Carvajal
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Andrea M. Avellaneda
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Salazar-Ardiles
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge E. Maya
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Margarita K. Lay
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Redox Biology of Respiratory Viral Infections. Viruses 2018; 10:v10080392. [PMID: 30049972 PMCID: PMC6115776 DOI: 10.3390/v10080392] [Citation(s) in RCA: 257] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 12/16/2022] Open
Abstract
Respiratory viruses cause infections of the upper or lower respiratory tract and they are responsible for the common cold—the most prevalent disease in the world. In many cases the common cold results in severe illness due to complications, such as fever or pneumonia. Children, old people, and immunosuppressed patients are at the highest risk and require fast diagnosis and therapeutic intervention. However, the availability and efficiencies of existing therapeutic approaches vary depending on the virus. Investigation of the pathologies that are associated with infection by respiratory viruses will be paramount for diagnosis, treatment modalities, and the development of new therapies. Changes in redox homeostasis in infected cells are one of the key events that is linked to infection with respiratory viruses and linked to inflammation and subsequent tissue damage. Our review summarizes current knowledge on changes to redox homeostasis, as induced by the different respiratory viruses.
Collapse
|
9
|
Wang MM, Lu M, Zhang CL, Wu X, Chen JX, Lv WW, Sun T, Qiu H, Huang SH. Oxidative stress modulates the expression of toll‑like receptor 3 during respiratory syncytial virus infection in human lung epithelial A549 cells. Mol Med Rep 2018; 18:1867-1877. [PMID: 29845280 DOI: 10.3892/mmr.2018.9089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/11/2018] [Indexed: 11/05/2022] Open
Abstract
Toll‑like receptor 3 (TLR3) can react with double stranded RNA and is involved in the inflammatory response to respiratory syncytial virus (RSV) infection. Also, oxidative stress has been reported to be involved in RSV infection. However, the correlation between oxidative stress and TLR3 activation during RSV infection is unclear. Therefore, the present study investigated the association between TLR3 expression and oxidative stress modulation during RSV infection in A549 cells. For comparison, seven treatment groups were established, including RSV‑treated cells, N‑acetyl‑L‑cysteine (NAC)+RSV‑treated cells, oxidant hydrogen peroxide (H2O2)+RSV‑treated cells, normal cell control, inactivated RSV control, NAC control and H2O2 control. The mRNA expression changes of TLR3, interferon regulatory factor‑3 (IRF3), nuclear factor‑κB (NF‑κB) and superoxide dismutase 1 (SOD1) were measured using semi‑quantitative reverse transcription‑polymerase chain reaction, and the protein changes of TLR3 and phospho‑NF‑κB p65 were determined using western blot in A549 cells from the different treatment groups. The present study also evaluated the differences in hydroxyl free radical (·OH), nitric oxide (NO) and total SOD activity in the different treatment groups. The results demonstrated that RSV infection of A549 cells increased the levels of ·OH and NO, while decreasing the activity of total SOD. Pretreatment of A549 cells with H2O2 prior to RSV infection upregulated the mRNA and protein expression of TLR3 and NF‑κB, and downregulated the mRNA expression of IRF3 and SOD1, as well as the total SOD activity. When the infected cells were pretreated with NAC, the mRNA and protein expression of these genes were reversed. These variations in the TLR3‑mediated signaling pathway molecules suggested that oxidative stress may be a key regulator for TLR3 activation during RSV infection. RSV‑induced oxidative stress may potentially activate TLR3 and enhance TLR3‑mediated inflammation. These results may provide better understanding of the RSV‑induced inflammatory and immune pathways, and may also contribute to the drug development and prevention of human RSV diseases.
Collapse
Affiliation(s)
- Min-Min Wang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Min Lu
- Department of Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chuan-Long Zhang
- Department of Pediatrics, The People's Hospital of Lu'an City, Lu'an, Anhui 237005, P.R. China
| | - Xuan Wu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Jing-Xian Chen
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Wei-Wei Lv
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Tao Sun
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Huan Qiu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Sheng-Hai Huang
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
10
|
A disrupted transsulphuration pathway results in accumulation of redox metabolites and induction of gametocytogenesis in malaria. Sci Rep 2017; 7:40213. [PMID: 28091526 PMCID: PMC5238400 DOI: 10.1038/srep40213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intra-erythrocytic growth of malaria parasite is known to induce redox stress. In addition to haem degradation which generates reactive oxygen species (ROS), the parasite is also thought to efflux redox active homocysteine. To understand the basis underlying accumulation of homocysteine, we have examined the transsulphuration (TS) pathway in the parasite, which is known to convert homocysteine to cysteine in higher eukaryotes. Our bioinformatic analysis revealed absence of key enzymes in the biosynthesis of cysteine namely cystathionine-β-synthase and cystathionine-γ-lyase in the parasite. Using mass spectrometry, we confirmed the absence of cystathionine, which is formed by enzymatic conversion of homocysteine thereby confirming truncation of TS pathway. We also quantitated levels of glutathione and homocysteine in infected erythrocytes and its spent medium. Our results showed increase in levels of these metabolites intracellularly and in culture supernatants. Our results provide a mechanistic basis for the long-known occurrence of hyperhomocysteinemia in malaria. Most importantly we find that homocysteine induces the transcription factor implicated in gametocytogenesis namely AP2-G and consequently triggers sexual stage conversion. We confirmed this observation both in vitro using Plasmodium falciparum cultures, and in vivo in the mouse model of malaria. Our study implicates homocysteine as a potential physiological trigger of gametocytogenesis.
Collapse
|
11
|
Implications of oxidative stress on viral pathogenesis. Arch Virol 2016; 162:907-917. [PMID: 28039563 DOI: 10.1007/s00705-016-3187-y] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022]
Abstract
Reactive species are frequently formed after viral infections. Antioxidant defences, including enzymatic and non-enzymatic components, protect against reactive species, but sometimes these defences are not completely adequate. An imbalance in the production of reactive species and the body's inability to detoxify these reactive species is referred to as oxidative stress. The aim of this review is to analyse the role of oxidative stress in the pathogenesis of viral infections and highlight some major therapeutic approaches that have gained importance, with regards to controlling virus-induced oxidative injury. Attention will be focused on DNA viruses (papillomaviruses, hepadnaviruses), RNA viruses (flaviviruses, orthomyxoviruses, paramyxoviruses, togaviruses) and retroviruses (human immunodeficiency virus). In general, viruses cause an imbalance in the cellular redox environment, which depending on the virus and the cell can result in different responses, e.g. cell signaling, antioxidant defences, reactive species, and other processes. Therefore, the modulation of reactive species production and oxidative stress potentially represents a novel pharmacological approach for reducing the consequences of viral pathogenesis.
Collapse
|
12
|
Guerrero CA, Acosta O. Inflammatory and oxidative stress in rotavirus infection. World J Virol 2016; 5:38-62. [PMID: 27175349 PMCID: PMC4861870 DOI: 10.5501/wjv.v5.i2.38] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/23/2015] [Accepted: 01/29/2016] [Indexed: 02/05/2023] Open
Abstract
Rotaviruses are the single leading cause of life-threatening diarrhea affecting children under 5 years of age. Rotavirus entry into the host cell seems to occur by sequential interactions between virion proteins and various cell surface molecules. The entry mechanisms seem to involve the contribution of cellular molecules having binding, chaperoning and oxido-reducing activities. It appears to be that the receptor usage and tropism of rotaviruses is determined by the species, cell line and rotavirus strain. Rotaviruses have evolved functions which can antagonize the host innate immune response, whereas are able to induce endoplasmic reticulum (ER) stress, oxidative stress and inflammatory signaling. A networking between ER stress, inflammation and oxidative stress is suggested, in which release of calcium from the ER increases the generation of mitochondrial reactive oxygen species (ROS) leading to toxic accumulation of ROS within ER and mitochondria. Sustained ER stress potentially stimulates inflammatory response through unfolded protein response pathways. However, the detailed characterization of the molecular mechanisms underpinning these rotavirus-induced stressful conditions is still lacking. The signaling events triggered by host recognition of virus-associated molecular patterns offers an opportunity for the development of novel therapeutic strategies aimed at interfering with rotavirus infection. The use of N-acetylcysteine, non-steroidal anti-inflammatory drugs and PPARγ agonists to inhibit rotavirus infection opens a new way for treating the rotavirus-induced diarrhea and complementing vaccines.
Collapse
|
13
|
Martínez I, García-Carpizo V, Guijarro T, García-Gomez A, Navarro D, Aranda A, Zambrano A. Induction of DNA double-strand breaks and cellular senescence by human respiratory syncytial virus. Virulence 2016; 7:427-42. [PMID: 26809688 DOI: 10.1080/21505594.2016.1144001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Human respiratory syncytial virus (HRSV) accounts for the majority of lower respiratory tract infections during infancy and childhood and is associated with significant morbidity and mortality. HRSV provokes a proliferation arrest and characteristic syncytia in cellular systems such as immortalized epithelial cells. We show here that HRSV induces the expression of DNA damage markers and proliferation arrest such as P-TP53, P-ATM, CDKN1A and γH2AFX in cultured cells secondary to the production of mitochondrial reactive oxygen species (ROS). The DNA damage foci contained γH2AFX and TP53BP1, indicative of double-strand breaks (DSBs) and could be reversed by antioxidant treatments such as N-Acetylcysteine (NAC) or reduced glutathione ethyl ester (GSHee). The damage observed is associated with the accumulation of senescent cells, displaying a canonical senescent phenotype in both mononuclear cells and syncytia. In addition, we show signs of DNA damage and aging such as γH2AFX and CDKN2A expression in the respiratory epithelia of infected mice long after viral clearance. Altogether, these results show that HRSV triggers a DNA damage-mediated cellular senescence program probably mediated by oxidative stress. The results also suggest that this program might contribute to the physiopathology of the infection, tissue remodeling and aging, and might be associated to long-term consequences of HRSV infections.
Collapse
Affiliation(s)
- Isidoro Martínez
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| | - Verónica García-Carpizo
- b Department of Endocrine Physiopathology and Nervous System , Institute for Biomedical Research (IIBM), CSIC-UAM , Madrid , Spain
| | - Trinidad Guijarro
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| | - Ana García-Gomez
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| | - Diego Navarro
- b Department of Endocrine Physiopathology and Nervous System , Institute for Biomedical Research (IIBM), CSIC-UAM , Madrid , Spain
| | - Ana Aranda
- b Department of Endocrine Physiopathology and Nervous System , Institute for Biomedical Research (IIBM), CSIC-UAM , Madrid , Spain
| | - Alberto Zambrano
- a Department of Molecular Pathology , Spanish National Center for Microbiology, Institute of Health Carlos III , Madrid , Spain
| |
Collapse
|
14
|
Moreno-Solís G, Dela Torre-Aguilar MJ, Torres-Borrego J, Llorente-Cantarero FJ, Fernández-Gutiérrez F, Gil-Campos M, Túnez-Fiñana I, Pérez-Navero JL. Oxidative stress and inflamatory plasma biomarkers in respiratory syncytial virus bronchiolitis. CLINICAL RESPIRATORY JOURNAL 2016; 11:839-846. [PMID: 26663823 DOI: 10.1111/crj.12425] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 11/18/2015] [Accepted: 12/04/2015] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Oxidative stress (OS) plays a crucial role in the pathogenesis of inflammatory lung diseases. OBJECTIVES (i) We determined whether acute bronchiolitis (AB) caused by respiratory syncytial virus (RSV) induced OS; (ii) assessed whether OS biomarkers correlated with the severity of RSV-AB; and (iii) studied whether the levels of interleukins are associated with OS biomarkers. METHODS We performed an observational study by comparing healthy infants (Group 1) with RSV-AB infants, classified as Group 2 (pulse oximetry (SpO2 ) >93%), and Group 3 (SpO2 ≤ 92%), which needed oxygen therapy. Blood samples were collected to determine the levels of lipid peroxidation (LPO) products (LPO), total glutathione (TG), oxidised glutathione (GSSG), reduced glutathione (GSH), glutathione peroxidase (GPx), interleukins (ILs) IL-10, IL-6, IL-8, interferon-gamma (IFNγ), tumour necrosis factor-alpha (TNFα) and macrophage inflammatory proteins (MIP α and MIP β). RESULTS Forty-six RSV-AB infants (47% needed oxygen therapy) and 27 healthy infants were included. The GSH/GSSG ratio was lower in RSV-AB infants than in Group 1 (P<0.001). GSSG and GPx were significantly higher in Group 3. GSSG predicted the need for oxygen therapy with an optimal cut-off point of 15 µM/g for haemoglobin. The GSH/GSSG ratio negatively correlated with IL-6 (P: 0.014), IL-8 (P: 0.014) and IL-10 (P: 0.033). Group 3 exhibited a direct correlation between GPx and IL-10 levels (P: 0.024) and between LPO and MIP β (P: 0.003). CONCLUSIONS RSV induced OS in AB. An increase in GSSG correlated with the disease severity in the infants. OS may contribute to the pathogenesis of RSV-AB.
Collapse
Affiliation(s)
- Gloria Moreno-Solís
- Department of Paediatrics, Paediatric Pulmonology and Allergy Unit, Reina Sofia University Hospital, Cordoba, Spain
| | | | - Javier Torres-Borrego
- Department of Paediatrics, Paediatric Pulmonology and Allergy Unit, Reina Sofia University Hospital, Cordoba, Spain
| | | | - Fernando Fernández-Gutiérrez
- Department of Paediatrics, Unit of Metabolism and Paediatric Research, Reina Sofia University Hospital, Cordoba, Spain
| | - Mercedes Gil-Campos
- Faculty of Medicine, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), University of Cordoba, Spain.,Department of Paediatrics, Unit of Metabolism and Paediatric Research, Reina Sofia University Hospital, Cordoba, Spain
| | - Isaac Túnez-Fiñana
- Faculty of Medicine, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), University of Cordoba, Spain
| | - Juan Luis Pérez-Navero
- Faculty of Medicine, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), University of Cordoba, Spain.,Department of Paediatrics, Unit of Metabolism and Paediatric Research, Reina Sofia University Hospital, Cordoba, Spain
| |
Collapse
|
15
|
Cheng ML, Weng SF, Kuo CH, Ho HY. Enterovirus 71 induces mitochondrial reactive oxygen species generation that is required for efficient replication. PLoS One 2014; 9:e113234. [PMID: 25401329 PMCID: PMC4234665 DOI: 10.1371/journal.pone.0113234] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022] Open
Abstract
Redox homeostasis is an important host factor determining the outcome of infectious disease. Enterovirus 71 (EV71) infection has become an important endemic disease in Southeast Asia and China. We have previously shown that oxidative stress promotes viral replication, and progeny virus induces oxidative stress in host cells. The detailed mechanism for reactive oxygen species (ROS) generation in infected cells remains elusive. In the current study, we demonstrate that mitochondria were a major ROS source in EV71-infected cells. Mitochondria in productively infected cells underwent morphologic changes and exhibited functional anomalies, such as a decrease in mitochondrial electrochemical potential ΔΨm and an increase in oligomycin-insensitive oxygen consumption. Respiratory control ratio of mitochondria from infected cells was significantly lower than that of normal cells. The total adenine nucleotide pool and ATP content of EV71-infected cells significantly diminished. However, there appeared to be a compensatory increase in mitochondrial mass. Treatment with mito-TEMPO reduced eIF2α phosphorylation and viral replication, suggesting that mitochondrial ROS act to promote viral replication. It is plausible that EV71 infection induces mitochondrial ROS generation, which is essential to viral replication, at the sacrifice of efficient energy production, and that infected cells up-regulate biogenesis of mitochondria to compensate for their functional defect.
Collapse
Affiliation(s)
- Mei-Ling Cheng
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Metabolomics Core Laboratory, Chang Gung University, Tao-Yuan, Taiwan
| | - Shiue-Fen Weng
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Chih-Hao Kuo
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
| | - Hung-Yao Ho
- Healthy Aging Research Center, Chang Gung University, Tao-Yuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Tao-Yuan, Taiwan
- Office of Research and Development, Chang Gung Memorial Hospital, Tao-Yuan, Taiwan
- * E-mail:
| |
Collapse
|
16
|
Abstract
Respiratory syncytial virus (RSV) is amongst the most important pathogenic infections of childhood and is associated with significant morbidity and mortality. Although there have been extensive studies of epidemiology, clinical manifestations, diagnostic techniques, animal models and the immunobiology of infection, there is not yet a convincing and safe vaccine available. The major histopathologic characteristics of RSV infection are acute bronchiolitis, mucosal and submucosal edema, and luminal occlusion by cellular debris of sloughed epithelial cells mixed with macrophages, strands of fibrin, and some mucin. There is a single RSV serotype with two major antigenic subgroups, A and B. Strains of both subtypes often co-circulate, but usually one subtype predominates. In temperate climates, RSV infections reflect a distinct seasonality with onset in late fall or early winter. It is believed that most children will experience at least one RSV infection by the age of 2 years. There are several key animal models of RSV. These include a model in mice and, more importantly, a bovine model; the latter reflects distinct similarity to the human disease. Importantly, the prevalence of asthma is significantly higher amongst children who are hospitalized with RSV in infancy or early childhood. However, there have been only limited investigations of candidate genes that have the potential to explain this increase in susceptibility. An atopic predisposition appears to predispose to subsequent development of asthma and it is likely that subsequent development of asthma is secondary to the pathogenic inflammatory response involving cytokines, chemokines and their cognate receptors. Numerous approaches to the development of RSV vaccines are being evaluated, as are the use of newer antiviral agents to mitigate disease. There is also significant attention being placed on the potential impact of co-infection and defining the natural history of RSV. Clearly, more research is required to define the relationships between RSV bronchiolitis, other viral induced inflammatory responses, and asthma.
Collapse
Affiliation(s)
- Andrea T. Borchers
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Christopher Chang
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6501, Davis, CA 95616 USA
| | - Laurel J. Gershwin
- Department of Pathology, Microbiology and Immunology, University of California, Davis, School of Veterinary Medicine, Davis, CA USA
| |
Collapse
|
17
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.
Collapse
|
18
|
Kumar RK, Siegle JS, Kaiko GE, Herbert C, Mattes JE, Foster PS. Responses of airway epithelium to environmental injury: role in the induction phase of childhood asthma. J Allergy (Cairo) 2011; 2011:257017. [PMID: 22574070 PMCID: PMC3206385 DOI: 10.1155/2011/257017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 08/26/2011] [Indexed: 12/21/2022] Open
Abstract
The pathogenesis of allergic asthma in childhood remains poorly understood. Environmental factors which appear to contribute to allergic sensitisation, with development of a Th2-biased immunological response in genetically predisposed individuals, include wheezing lower respiratory viral infections in early life and exposure to airborne environmental pollutants. These may activate pattern recognition receptors and/or cause oxidant injury to airway epithelial cells (AECs). In turn, this may promote Th2 polarisation via a "final common pathway" involving interaction between AEC, dendritic cells, and CD4+ T lymphocytes. Potentially important cytokines produced by AEC include thymic stromal lymphopoietin and interleukin-25. Their role is supported by in vitro studies using human AEC, as well as by experiments in animal models. To date, however, few investigations have employed models of the induction phase of childhood asthma. Further research may help to identify interventions that could reduce the risk of allergic asthma.
Collapse
Affiliation(s)
- Rakesh K. Kumar
- Inflammation and Infection Research Centre, School of Medial Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica S. Siegle
- Inflammation and Infection Research Centre, School of Medial Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Gerard E. Kaiko
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2300, Australia
| | - Cristan Herbert
- Inflammation and Infection Research Centre, School of Medial Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joerg E. Mattes
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2300, Australia
| | - Paul S. Foster
- Centre for Asthma and Respiratory Disease, School of Biomedical Sciences, University of Newcastle and Hunter Medical Research Institute, Callaghan, NSW 2300, Australia
| |
Collapse
|
19
|
Sekine K, Mochizuki H, Inoue Y, Kobayashi T, Suganuma E, Matsuda S, Arakawa H. Regulation of Oxidative Stress in Patients with Kawasaki Disease. Inflammation 2011; 35:952-8. [DOI: 10.1007/s10753-011-9398-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Yadav UCS, Ramana KV, Srivastava SK. Aldose reductase inhibition suppresses airway inflammation. Chem Biol Interact 2011; 191:339-45. [PMID: 21334316 DOI: 10.1016/j.cbi.2011.02.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 02/11/2011] [Accepted: 02/12/2011] [Indexed: 12/12/2022]
Abstract
Airway inflammation induced by reactive oxygen species (ROS)-mediated activation of redox-sensitive transcription factors is the hallmark of asthma, a prevalent chronic respiratory disease. In various cellular and animal models, we have recently demonstrated that, in response to multiple stimuli, aldose reductase (AKR1B1) regulates the inflammatory signals via NF-kappa B activation. Since NF-κB activation is implicated in asthma pathogenesis, we investigated whether AKR1B1 inhibition could prevent ovalbumin (Ova)- and ragweed pollen extract (RWE)-induced airway inflammation and hyper-responsiveness in mice models and tumor necrosis factor-alpha (TNF-α)-, lipopolysachharide (LPS)- and RWE-induced cytotoxic and inflammatory signals in primary human small airway epithelial cells (SAEC). Sensitization and challenge with Ova or RWE caused airway inflammation and production of inflammatory cytokines, accumulation of eosinophils in airways and sub-epithelial regions, mucin production in the bronchoalveolar lavage fluid, airway hyperresponsiveness, elevated IgE levels and release of Th2 cytokines in the airway and treatment with AKR1B1 inhibitors markedly reduced these pathological changes in mice. In SAEC, treatment with TNF-α, LPS or RWE induced apoptosis, reactive oxygen species generation, synthesis of inflammatory markers IL-6, IL-8, and PGE2 and activation of NF-κB and AP-1. Pharmacological inhibition prevented these changes suggesting that AKR1B1 mediates ROS induced inflammation in small airway epithelial cells. Our results indicate that AKR1B1 inhibitors may offer a novel therapeutic approach to treat inflammatory airway diseases such as asthma.
Collapse
Affiliation(s)
- Umesh C S Yadav
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | | | | |
Collapse
|
21
|
Jian Liu, Abate W, Jinsheng Xu, Corry D, Kaul B, Jackson SK. Three-dimensional spheroid cultures of A549 and HepG2 cells exhibit different lipopolysaccharide (LPS) receptor expression and LPS-induced cytokine response compared with monolayer cultures. Innate Immun 2010; 17:245-55. [PMID: 20418262 DOI: 10.1177/1753425910365733] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Lipopolysaccharide (LPS) is a potent modulator of pathogen-induced host inflammatory responses. Lipopolysaccharide signaling to host cells is correlated with the expression of well-characterized LPS receptors. We have developed three-dimensional (3-D) cell cultures (spheroids) that are more representative of in vivo conditions than traditional monolayer cultures and may provide novel in vitro models to study the inflammatory response. In this work, we have compared F-actin organization, LPS-induced pro-inflammatory cytokine response and LPS receptor expression between spheroid and monolayer cultures from A549 lung epithelial cells and HepG2 hepatocytes. Significant junctional F-actin was seen at the cell—cell contact points throughout the spheroids, while monolayer cells showed stress fibers of actin and more prominent F-actin localized at the cell base. A time course of cytokine release in response to LPS showed that A549 spheroids secreted persistently higher levels of interleukin (IL)-6 and IL-8 compared with monolayer cultures. Unlike monolayer cultures, HepG2 spheroids responded to LPS by releasing a significant level of IL-8. We identified a significant increase in the expression of CD14 and MD2 in these spheroids compared with monolayers, which may explain the enhanced cytokine response to LPS. Thus, we suggest that 3-D spheroid cell cultures are more typical of in vivo cell responses to LPS during the development of inflammation and would be a better in vitro model in inflammation studies.
Collapse
Affiliation(s)
- Jian Liu
- Centre for Research in Biomedicine, University of the West of England, Bristol UK
| | - Wondwossen Abate
- Centre for Research in Biomedicine, University of the West of England, Bristol UK
| | - Jinsheng Xu
- Centre for Research in Biomedicine, University of the West of England, Bristol UK
| | - David Corry
- Centre for Research in Biomedicine, University of the West of England, Bristol UK
| | - Baksho Kaul
- Centre for Research in Biomedicine, University of the West of England, Bristol UK
| | - Simon K. Jackson
- Centre for Research in Biomedicine, University of the West of England, Bristol UK
| |
Collapse
|