1
|
Al Saihati HA, Badr OA, Dessouky AA, Mostafa O, Samir Farid A, Aborayah NH, Abdullah Aljasir M, Baioumy B, Mahmoud Taha N, El-Sherbiny M, Hamed Al-Serwi R, Ramadan MM, Salim RF, Shaheen D, E M Ali F, Ebrahim N. Exploring the cytoprotective role of mesenchymal stem Cell-Derived exosomes in chronic liver Fibrosis: Insights into the Nrf2/Keap1/p62 signaling pathway. Int Immunopharmacol 2024; 141:112934. [PMID: 39178516 DOI: 10.1016/j.intimp.2024.112934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Hepatic fibrosis is a common pathology present in most chronic liver diseases. Autophagy is a lysosome-mediated intracellular catabolic and recycling process that plays an essential role in maintaining normal hepatic functions. Nuclear factor erythroid 2-like 2 (Nrf2) is a transcription factor responsible for the regulation of cellular anti-oxidative stress response. This study was designed to assess the cytoprotective effect of mesenchymal stem cell-derived exosomes (MSC-exos) on endothelial-mesenchymal transition (EMT) in Carbon Tetrachloride (CCL4) induced liver fibrosis. Rats were treated with 0.1 ml of CCL4 twice weekly for 8 weeks, followed by administration of a single dose of MSC-exos. Rats were then sacrificed after 4 weeks, and liver samples were collected for gene expression analyses, Western blot, histological studies, immunohistochemistry, and transmission electron microscopy. Our results showed that MSC-exos administration decreased collagen deposition, apoptosis, and inflammation. Exosomes modulate the Nrf2/Keap1/p62 pathway, restoring autophagy and Nrf2 levels through modulation of the non-canonical pathway of Nrf2/Keap1/p62. Additionally, MSC-exos regulated miR-153-3p, miR-27a, miR-144 and miRNA-34a expression. In conclusion, the present study shed light on MSC-exos as a cytoprotective agent against EMT and tumorigenesis in chronic liver inflammation.
Collapse
Affiliation(s)
- Hajir A Al Saihati
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Albatin, Saudi Arabia.
| | - Omnia A Badr
- Department of Genetics and Genetic Engineering, Faculty of Agriculture, Benha University, Egypt.
| | - Arigue A Dessouky
- Department of Medical Histology and Cell Biology, Faculty of Medicine, Zagazig University, 44519 Zagazig, Egypt.
| | - Ola Mostafa
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Egypt.
| | - Ayman Samir Farid
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh 13736, Qalyubia, Egypt.
| | - Nashwa H Aborayah
- Department of Clinical Pharmacology, Faculty of Medicine, Benha University, Egypt, Department of Pharmacology, Mutah University, Mutah 61710, Jordan.
| | - Mohammad Abdullah Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia.
| | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Egypt.
| | | | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt.
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Mahmoud M Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah City, United Arab Emirates; Department of Cardiology, Faculty of Medicine, Mansoura University, Mansoura City, Egypt.
| | - Rabab F Salim
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha Universit, Egypt.
| | - Dalia Shaheen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, Egypt
| | - Nesrine Ebrahim
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Stem Cell Unit, Egypt.
| |
Collapse
|
2
|
Latief U, Kaur M, Dar SH, Thakur S, Per TS, Tung GK, Jain SK. Preparation and Characterisation of Liposomes of Bergenia Ciliata Extract and Evaluation of their Hepatoprotective Activity. J Pharm Sci 2023; 112:328-335. [PMID: 35872024 DOI: 10.1016/j.xphs.2022.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/18/2022] [Accepted: 07/18/2022] [Indexed: 12/24/2022]
Abstract
Acute liver damage (ALD) can cause biochemical and pathological changes, which can lead to major complications and even death. The goal of the study was to examine the therapeutic efficacy of liposomes of Bergenia ciliata extract against thioacetamide-induced liver damage in rats. Liposomal batches of B. ciliata extract were prepared by altering the kind and amount of phospholipids and characterized through various physiochemical properties such as laser diffraction, TEM, encapsulation efficiency, stability and in-vitro release studies. In-vivo hepatoprotective studies were performed on TAA-induced acute hepatic damage model. Further, in-silico studies of bergenin against the three hepatic damage markers viz. TGF-β1, TNF-α and interleukin-6 were also performed. Laser diffraction and TEM showed that most stable liposome batch of B. ciliata extract were in the range of 678-1170 nm with encapsulation efficiency of 84.3±3.5. Extract was found to be rapidly dissociated from B. ciliata liposomes in HCl than PBS, according to in-vitro release data. In-vivo data revealed a significant decline in LFT indicators, amelioration of pathological changes and high bergenin bioavailability in the liposomal group. Protective activity of bergenin against ALD targets like TGF-β1, TNF-α and interleukin-6 was anticipated via molecular docking research. As a result, the current findings of the study indicate that B. ciliata liposomes and bergenin have promising ameliorative potential in the management of ALD.
Collapse
Affiliation(s)
- Uzma Latief
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Sajad Hussain Dar
- Department of Chemistry, Jamia Millia Islamia, New Delhi, 110025, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Tasir Sharief Per
- Department of Botany, Govt. Degree College Doda, Jammu and Kashmir, 182202, India
| | - Gurleen Kaur Tung
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Subheet Kumar Jain
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, 143005, India; Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
3
|
Elsherbini DMA, Ghoneim FM, El-Mancy EM, Ebrahim HA, El-Sherbiny M, El-Shafey M, Al-Serwi RH, Elsherbiny NM. Astrocytes profiling in acute hepatic encephalopathy: Possible enrolling of glial fibrillary acidic protein, tumor necrosis factor-alpha, inwardly rectifying potassium channel (Kir 4.1) and aquaporin-4 in rat cerebral cortex. Front Cell Neurosci 2022; 16:896172. [PMID: 36060277 PMCID: PMC9428715 DOI: 10.3389/fncel.2022.896172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hepatic encephalopathy (HE) is a neurological disarray manifested as a sequel to chronic and acute liver failure (ALF). A potentially fatal consequence of ALF is brain edema with concomitant astrocyte enlargement. This study aims to outline the role of astrocytes in acute HE and shed light on the most critical mechanisms driving this role. Rats were allocated into two groups. Group 1, the control group, received the vehicle. Group 2, the TAA group, received TAA (300 mg/kg) for 3 days. Serum AST, ALT, and ammonia were determined. Liver and cerebral cortical sections were processed for hematoxylin and eosin staining. Additionally, mRNA expression and immunohistochemical staining of cortical GFAP, TNFα, Kir4.1, and AQP4 were performed. Cortical sections from the TAA group demonstrated neuropil vacuolation and astrocytes enlargement with focal gliosis. GFAP, TNFα, and AQP4 revealed increased mRNA expression, positive immunoreactivity, and a positive correlation to brain water content. In contrast, Kir 4.1 showed decreased mRNA expression and immunoreactivity and a negative correlation to brain water content. In conclusion, our findings revealed altered levels of TNFα, Kir 4.1, GFAP, and AQP4 in HE-associated brain edema. A more significant dysregulation of Kir 4.1 and TNFα was observed compared to AQP4 and GFAP.
Collapse
Affiliation(s)
- Dalia Mahmoud Abdelmonem Elsherbini
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- *Correspondence: Dalia Mahmoud Abdelmonem Elsherbini,
| | - Fatma M. Ghoneim
- Department of Histology and Cell Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Mohammed El-Mancy
- Deanship of Common First Year, Jouf University, Sakaka, Saudi Arabia
- Department of Zoology, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Hasnaa Ali Ebrahim
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Mohamed El-Sherbiny,
| | - Mohamed El-Shafey
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Physiological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
4
|
Jiang T, Xia G, Yang B, Zhang HW, Yin YS, Tang CW, Yang JH. Application of Bone Marrow Mesenchymal Stem Cells Effectively Eliminates Endotoxemia to Protect Rat from Acute Liver Failure Induced by Thioacetamide. Tissue Eng Regen Med 2022; 19:403-415. [PMID: 35122584 PMCID: PMC8971247 DOI: 10.1007/s13770-021-00421-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Endotoxemia is related to worse clinical outcomes in acute liver failure (ALF), but its management remains unsatisfactory. In this study, we aimed to assess whether the application of bone marrow mesenchymal stem cells (BMSCs) could eliminate endotoxemia and protect rats against ALF induced by thioacetamide (TAA). METHODS BMSCs were isolated from rats and identified by the specific morphology, differentiation potential, and surface markers. The optimal dose of TAA for this study was explored and TAA-induced ALF rats were randomized to three groups: the normal control group (Saline), ALF group (TAA + Saline), and BMSCs-treated group (TAA + BMSCs). The intestinal migration and differentiation of BMSCs was tracked in vivo, and intestinal permeability, endotoxin and inflammatory cytokines, histology, and mortality were analyzed. Moreover, we added the inhibitor of the PI3K/AKT/mTOR signaling pathway into the co-culture system of BMSCs with enterocytes and then performed CK and Villin expression experiments to assess the role of PI3K/AKT/mTOR signal pathway in the intestinal differentiation of BMSCs. RESULTS BMSCs migrated to the intestinal injury sites and differentiated into enterocytes, intestinal permeability was decreased compared with the ALF group. The higher expression of endotoxin and inflammatory cytokines were reversed after BMSCs transplantation in rats with ALF. Mortality and intestinal lesion were significantly decreased. Blocking the PI3K/AKT/mTOR signal pathway inhibited BMSCs' intestinal differentiation in vitro. CONCLUSION BMSCs can eliminate endotoxemia and reduce mortality in rats with ALF, and the PI3K/AKT/mTOR signal pathway is involved in intestinal differentiation. BMSCs transplantation could be a potential candidate for the treatment of endotoxemia in ALF.
Collapse
Affiliation(s)
- Ting Jiang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Geng Xia
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Bo Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Hong-Wei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, 935 Jiaoling Road, Kunming, 650031, Yunnan, China
| | - Yue-Shan Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, 37 Guoxue lane, Chengdu, 610044, Sichuan, China
| | - Jin-Hui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, 374 Dianmian Avenue, Kunming, 650106, Yunnan, China.
| |
Collapse
|
5
|
Fernandes JC, Schemitt EG, Da Silva J, Marroni NP, Lima A, Ferreira RB. Combination of Trans-Resveratrol and ε-Viniferin Induces a Hepatoprotective Effect in Rats with Severe Acute Liver Failure via Reduction of Oxidative Stress and MMP-9 Expression. Nutrients 2021; 13:nu13113677. [PMID: 34835933 PMCID: PMC8622851 DOI: 10.3390/nu13113677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/11/2023] Open
Abstract
Stilbenes are a major grapevine class of phenolic compounds, known for their biological activities, including anti-inflammatory and antioxidant, but never studied in combination. We aimed to evaluate the effect of trans-resveratrol + ε-viniferin as an antioxidant mixture and its role in inflammatory development an in vivo model of severe acute liver failure induced with TAA. Trans-resveratrol + trans-ε-viniferin (5 mg/kg each) was administered to Wistar rats. Resveratrol + ε-viniferin significantly decreased TBARS and SOD activity and restored CAT and GST activities in the treated group. This stilbene combination reduced the expression of TNFα, iNOS, and COX-2, and inhibited MMP-9. The combination of resveratrol + ε-viniferin had a hepatoprotective effect, reducing DNA damage, exhibiting a protective role on the antioxidant pathway by altering SOD, CAT, and GST activities; by downregulating TNFα, COX-2, and iNOS; and upregulating IL-10. Our results suggested that adding viniferin to resveratrol may be more effective in hepatoprotection than resveratrol alone, opening a new perspective on using this stilbene combination in functional diets.
Collapse
Affiliation(s)
- João C. Fernandes
- Linking Landscape, Environment, Agriculture and Food (LEAF), Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.)
- Correspondence: (J.C.F.); Tel.: +351-213-653-414
| | - Elizângela G. Schemitt
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (E.G.S.); (N.P.M.)
| | - Juliana Da Silva
- Laboratório de Genética Toxicológica, Universidade Luterana do Brasil, Canoas 92425-900, Brazil;
| | - Norma P. Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040-060, Brazil; (E.G.S.); (N.P.M.)
| | - Ana Lima
- Linking Landscape, Environment, Agriculture and Food (LEAF), Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.)
- Faculty of Veterinary Medicine, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisbon, Portugal
| | - Ricardo B. Ferreira
- Linking Landscape, Environment, Agriculture and Food (LEAF), Universidade de Lisboa, Instituto Superior de Agronomia, Tapada da Ajuda, 1349-017 Lisbon, Portugal; (A.L.); (R.B.F.)
| |
Collapse
|
6
|
Zeng F, Luo J, Han H, Xie W, Wang L, Han R, Chen H, Cai Y, Huang H, Xia Z. Allopurinol ameliorates liver injury in type 1 diabetic rats through activating Nrf2. Int J Immunopathol Pharmacol 2021; 35:20587384211031417. [PMID: 34240649 PMCID: PMC8274082 DOI: 10.1177/20587384211031417] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperglycemia-induced oxidative stress plays important roles in the development of non-alcoholic fatty liver disease (NAFLD), which is a common complication in diabetic patients. The Nrf2-Keap1 pathway is important for cell antioxidant protection, while its role in exogenous antioxidant mediated protection against NAFLD is unclear. We thus, postulated that antioxidant treatment with allopurinol (ALP) may attenuate diabetic liver injury and explored the underlying mechanisms. Control (C) and streptozotocin (STZ)-induced diabetes rats (D) were untreated or treated with ALP for 4 weeks starting at 1 week after diabetes induction. Serum levels of alanine aminotransferase (ALT) and aspartate transaminase (AST), production of lipid peroxidation product malondialdehyde (MDA), and serum superoxide dismutase (SOD) were detected. Liver protein expressions of cleaved-caspase 3, IL-1β, nuclear factor-erythroid-2-related factor-2 (Nrf2), heme oxygenase-1 (HO-1), P62, Kelch-like ECH-associated protein 1 (Keap1), and LC3 were analyzed. In vitro, cultured rat normal hepatocytes BRL-3A were grouped to normal glucose (5.5 mM, NG) or high glucose (25 mM, HG) and treated with or without allopurinol (100 µM) for 48 h. Rats in the D group demonstrated liver injury evidenced as increased serum levels of ALT and AST. Diabetes increased apoptotic cell death, enhanced liver protein expressions of cleaved-caspase 3 and IL-1β with concomitantly increased production of MDA while serum SOD content was significantly reduced (all P < 0.05 vs C). In the meantime, protein levels of Nrf2, HO-1, and P62 were reduced while Keap1 and LC3 were increased in the untreated D group as compared to control (P < 0.05 vs C). And all the above alterations were significantly attenuated by ALP. Similar to our findings obtained from in vivo study, we got the same results in in vitro experiments. It is concluded that ALP activates the Nrf2/p62 pathway to ameliorate oxidative stress and liver injury in diabetic rats.
Collapse
Affiliation(s)
- Fei Zeng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jierong Luo
- Department of Anesthesiology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China.,Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Hong Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjie Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingzhi Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ronghui Han
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hao Chen
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yin Cai
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Anesthesiology, HuiZhou First Hospital, Guangdong Medical University, Huizhou, China
| |
Collapse
|
7
|
Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Sci Rep 2021; 11:9894. [PMID: 33972568 PMCID: PMC8110790 DOI: 10.1038/s41598-021-88872-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Excess fructose consumption contributes to development obesity, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD). Uric acid (UA), a metabolite of fructose metabolism, may have a direct role in development of NAFLD, with unclear mechanism. This study aimed to evaluate role of fructose and UA in NAFLD and explore mechanisms of allopurinol (Allo, a UA lowering medication) on NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats fed a high fructose diet (HFrD), with Long-Evans Tokushima Otsuka (LETO) rats used as a control. There were six groups: LETO, LETO-Allo, OLETF, OLETF-Allo, OLETF-HFrD, and OLETF-HFrD-Allo. HFrD significantly increased body weight, epididymal fat weight, and serum concentrations of UA, cholesterol, triglyceride, HbA1c, hepatic enzymes, HOMA-IR, fasting insulin, and two hour-glucose after intraperitoneal glucose tolerance tests, as well as NAFLD activity score of liver, compared to the OLETF group. Allopurinol treatment significantly reduced hepatic steatosis, epididymal fat, serum UA, HOMA-IR, hepatic enzyme levels, and cholesterol in the OLETF-HFrD-Allo group. Additionally, allopurinol significantly downregulated expression of lipogenic genes, upregulated lipid oxidation genes, downregulated hepatic pro-inflammatory cytokine genes, and decreased ER-stress induced protein expression, in comparison with the OLETF-HFrD group. In conclusion, allopurinol ameliorates HFrD-induced hepatic steatosis through modulation of hepatic lipid metabolism, inflammation, and ER stress pathway. UA may have a direct role in development of fructose-induced hepatic steatosis, and allopurinol could be a candidate for prevention or treatment of NAFLD.
Collapse
|
8
|
Sepehrinezhad A, Shahbazi A, Sahab Negah S, Joghataei MT, Larsen FS. Drug-induced-acute liver failure: A critical appraisal of the thioacetamide model for the study of hepatic encephalopathy. Toxicol Rep 2021; 8:962-970. [PMID: 34026559 PMCID: PMC8122178 DOI: 10.1016/j.toxrep.2021.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/17/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatic encephalopathy (HE) following acute and chronic liver failure is defined as a complex of neuropsychiatric abnormalities, such as discrete personal changes, sleep disorder, forgetfulness, confusion, and decreasing the level of consciousness to coma. The use and design of suitable animal models that represent clinical features and pathological changes of HE are valuable to map the molecular mechanisms that result in HE. Among different types of animal models, thioacetamide (TAA) has been used extensively for the induction of acute liver injury and HE. This agent is not directly hepatotoxic but its metabolites induce liver injury through the induction of oxidative stress and produce systemic inflammation similar to that seen in acute HE patients. In this short review article, we shortly review the most important pathological findings in animal models of acute HE following the administration of TAA.
Collapse
Key Words
- ALT, alanine aminotransferase
- AQP4, aquaporin 4 water channel
- AST, aspartate aminotransferase
- Acute liver failure
- Animal model
- B7, B7 molecules (CD80+CD86)
- BBB, blood-brain barrier
- CBF, cerebral blood flow
- CCL2, chemokine ligand 2
- CNS, central nervous system
- CTLA4, Cytotoxic T-lymphocyte-associated Protein 4
- CYP2E1, Cytochrome P450 family 2 subfamily E member 1
- GFAP, glial fibrillary acidic protein
- HE, hepatic encephalopathy
- Hepatic encephalopathy
- IL-6, interleukin 6
- IL-β, interleukin 1 β
- Iba1, ionized calcium-binding adaptor molecule 1
- JNK, c-Jun N-terminal kinase
- NAC, N-acetylcysteine
- NF-κB, nuclear factor κB
- OA, L-ornithine-l-aspartate
- ROS, reactive oxygen species
- TAA, thioacetamide
- TASO, thioacetamide sulfoxide
- TASO2, thioacetamide sulfdioxide
- TLR-2, toll-like receptor 2
- TLR-4, toll-like receptor 4
- TNFα, tumor necrosis factor α
- Thioacetamide
- Toxicity pathway
Collapse
Affiliation(s)
- Ali Sepehrinezhad
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shahbazi
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fin Stolze Larsen
- Department of Hepatology CA-3163, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
9
|
Hassan M, Ibrahim MA, Hafez HM, Mohamed MZ, Zenhom NM, Abd Elghany HM. Role of Nrf2/HO-1 and PI3K/Akt Genes in the Hepatoprotective Effect of Cilostazol. ACTA ACUST UNITED AC 2020; 14:61-67. [PMID: 30179140 DOI: 10.2174/1574884713666180903163558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/13/2018] [Accepted: 08/29/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Cilostazol, a phosphodiesterase 3 inhibitor (PDE3I), is a platelet aggregation inhibitor and vasodilator that is useful for treating intermittent claudication. Experimental studies have shown that cilostazol has potent anti-inflammatory, anti-oxidant effects effects. OBJECTIVES Although the hepatoprotective effect cilostazol has been studied, the molecular mechanisms of such protection, including: the nuclear factor-erythroid 2-related factor 2 (Nrf2) / hemoxygenase (HO-1) and the phosphoinositide 3-kinase (PI3K) /serine/threonine kinase (Akt) pathways are not fully explored, which is the aim of this study. METHODS To achieve the aim of this study, 35 rats were grouped into: control groups, liver injury group (model- non treated: injected with thioacetamide (TAA), 150 mg/kg, i.p.), and two cilostazoltreated groups (treated with cilostazol 10 and 50 mg/kg, p.o.). The rats were treated for 8 days and injected with TAA on the 7th day of the experiment and sacrificed 48 hours after TAA injection. RESULTS The model group showed evidence of liver injury as indicated by the elevation of liver enzymes and confirmed by histopathological findings. TAA-induced liver injury was accompanied by down-regulation of the cytoprotective pathways: PI3K/Akt and Nrf2/HO-1 mRNAs. Cilostazol administration ameliorated TAA-induced liver injury, where it caused a significant improvement in the activity of liver enzymes as well as in the histopathological changes. Such an effect was associated with a significant increase in the expression of PI3K/Akt and Nrf2/HO-1 mRNAs as detected by Real-time reverse transcription polymerase chain reaction (RT-PCR). CONCLUSION Cilostazol protected rats against TAA hepatotoxicity through up-regulation of PI3K/Akt and Nrf2/HO-1 gene expression.
Collapse
Affiliation(s)
- Marwa Hassan
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Mohamad A Ibrahim
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Heba M Hafez
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Mervat Z Mohamed
- Department of Pharmacology, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| | - Hend M Abd Elghany
- Department of Biochemistry, Faculty of Medicine, Minia University, 61511 Minia, Egypt
| |
Collapse
|
10
|
Luo J, Yan D, Li S, Liu S, Zeng F, Cheung CW, Liu H, Irwin MG, Huang H, Xia Z. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J Cell Mol Med 2019; 24:1760-1773. [PMID: 31856386 PMCID: PMC6991641 DOI: 10.1111/jcmm.14870] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/15/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
Allopurinol (ALP) attenuates oxidative stress and diabetic cardiomyopathy (DCM), but the mechanism is unclear. Activation of nuclear factor erythroid 2‐related factor 2 (Nrf2) following the disassociation with its repressor Keap1 under oxidative stress can maintain inner redox homeostasis and attenuate DCM with concomitant attenuation of autophagy. We postulated that ALP treatment may activate Nrf2 to mitigate autophagy over‐activation and consequently attenuate DCM. Streptozotocin‐induced type 1 diabetic rats were untreated or treated with ALP (100 mg/kg/d) for 4 weeks and terminated after heart function measurements by echocardiography and pressure‐volume conductance system. Cardiomyocyte H9C2 cells infected with Nrf2 siRNA or not were incubated with high glucose (HG, 25 mmol/L) concomitantly with ALP treatment. Cell viability, lactate dehydrogenase, 15‐F2t‐Isoprostane and superoxide dismutase (SOD) were measured with colorimetric enzyme‐linked immunosorbent assays. ROS, apoptosis, was assessed by dihydroethidium staining and TUNEL, respectively. The Western blot and qRT‐PCR were used to assess protein and mRNA variations. Diabetic rats showed significant reductions in heart rate (HR), left ventricular eject fraction (LVEF), stroke work (SW) and cardiac output (CO), left ventricular end‐systolic volume (LVVs) as compared to non‐diabetic control and ALP improved or normalized HR, LVEF, SW, CO and LVVs in diabetic rats (all P < .05). Hearts of diabetic rats displayed excessive oxidative stress manifested as increased levels of 15‐F2t‐Isoprostane and superoxide anion production, increased apoptotic cell death and cardiomyocytes autophagy that were concomitant with reduced expressions of Nrf2, heme oxygenase‐1 (HO‐1) and Keap1. ALP reverted all the above‐mentioned diabetes‐induced biochemical changes except that it did not affect the levels of Keap1. In vitro, ALP increased Nrf2 and reduced the hyperglycaemia‐induced increases of H9C2 cardiomyocyte hypertrophy, oxidative stress, apoptosis and autophagy, and enhanced cellular viability. Nrf2 gene silence cancelled these protective effects of ALP in H9C2 cells. Activation of Nrf2 subsequent to the suppression of Keap1 and the mitigation of autophagy over‐activation may represent major mechanisms whereby ALP attenuates DCM.
Collapse
Affiliation(s)
- Jierong Luo
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China.,Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Dan Yan
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Sisi Li
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Shiming Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fei Zeng
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chi Wai Cheung
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health System, Sacramento, CA, USA
| | - Michael G Irwin
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhengyuan Xia
- Department of Anesthesiology, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
11
|
El-Mahdy NA, Saleh DA, Amer MS, Abu-Risha SES. Role of allopurinol and febuxostat in the amelioration of dextran-induced colitis in rats. Eur J Pharm Sci 2019; 141:105116. [PMID: 31654756 DOI: 10.1016/j.ejps.2019.105116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Ulcerative colitis is a chronic auto-inflammatory disorder confined to the colorectal region. It is challenging to find an absolute treatment and current therapy aims to ameliorate symptoms, decrease relapses and prevent prognosis of colorectal cancer. In the present study, we investigated the possible action of xanthine oxidase inhibitors in murine colitis model by measuring different indicative parameters and comparing the results to those of the reference sulfasalazine. Also, we compared the effects of combining sulfasalazine and allopurinol to each drug alone. Dextran Sodium Sulfate (DSS) is used in this study to induce ulcerative colitis in male wistar rats as it is known to be the closest model that mimics human ulcerative colitis. Allopurinol was given prior to colitis induction by four days and febuxostat for six days before induction with DSS (5% w/v) and continue to give them concomitantly during the induction.Il-1β, malondialdehyde, reduced glutathione (GSH), xanthine oxidase, and superoxide dismutase were measured in colonic tissue. We also measured concentrations of IL-1β, Il-6 and uric acid in serum. Allopurinol dose-dependently ameliorated biochemical injuries. Febuxostat has shown better results than allopurinol and sulfasalazine, and this is the first study to demonstrate this.
Collapse
Affiliation(s)
- Nageh Ahmed El-Mahdy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Dina Ali Saleh
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt.
| | - Magdy Salah Amer
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
12
|
Chen YY, Lin Y, Han PY, Jiang S, Che L, He CY, Lin YC, Lin ZN. HBx combined with AFB1 triggers hepatic steatosis via COX-2-mediated necrosome formation and mitochondrial dynamics disorder. J Cell Mol Med 2019; 23:5920-5933. [PMID: 31282064 PMCID: PMC6714226 DOI: 10.1111/jcmm.14388] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus (HBV) infection and aflatoxin B1 (AFB1) exposure have been recognized as independent risk factors for the occurrence and exacerbation of hepatic steatosis but their combined impacts and the potential mechanisms remain to be further elucidated. Here, we showed that exposure to AFB1 impaired mitochondrial dynamics and increased intracellular lipid droplets (LDs) in the liver of HBV-transgenic mice in vivo and the hepatitis B virus X protein (HBx)-expressing human hepatocytes both ex vivo and in vitro. HBx combined with AFB1 exposure also up-regulated receptor interaction protein 1 (RIP1), receptor interaction protein 3 (RIP3) and activated mixed lineage kinase domain like protein (MLKL), providing evidence of necrosome formation in the hepatocytes. The shift of the mitochondrial dynamics towards imbalance of fission and fusion was rescued when MLKL was inhibited in the HBx and AFB1 co-treated hepatocytes. Most importantly, based on siRNA or CRISPR/Cas9 system, we found that the combination of HBx and AFB1 exposure increased cyclooxygenase-2 (COX-2) to mediate up-regulation of RIP3 and dynamin-related protein 1 (Drp1), which in turn promoted location of RIP3-MLKL necrosome on mitochondria, subsequently exacerbated steatosis in hepatocytes. Taken together, these findings advance the understanding of mechanism associated with HBx and AFB1-induced hepatic necrosome formation, mitochondrial dysfunction and steatosis and make COX-2 a good candidate for treatment.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Pei-Yu Han
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Shan Jiang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Cheng-Yong He
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
13
|
Potential Effect of 1,25 Dihydroxyvitamin D 3 on Thioacetamide-Induced Hepatotoxicity in Rats. J Surg Res 2019; 243:165-172. [PMID: 31177036 DOI: 10.1016/j.jss.2019.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND 1,25 Dihydroxyvitamin D3 (1,25(OH)2D3) modulates inflammation and immune responses. Deficiency of 1,25(OH)2D3 was found to be associated with the risk of cancer, cardiovascular disease, osteoarthritis, infections, and autoimmune diseases. This study evaluated the effect of 1,25 dihydroxyvitamin D3 1,25(OH)2D3 on thioacetamide (TAA)-induced acute liver injury in rats. MATERIALS AND METHODS Rats were treated with either saline or 1,25(OH)2D3 (0.30 μg/kg; orogastrically) for 15 d. Starting from day 13, TAA (200 mg/kg; intraperitoneally) was given for 3 d. On day 15, all rats were euthanized. Liver and blood samples were collected. RESULTS TAA caused severe damage, increased lipid peroxidation with reductions in endogenous antioxidants, increased apoptosis, increased production of reactive oxygen species, and elevated inducible nitric oxide synthase (iNOS), and nuclear factor kappa B (NF-κB) expression in liver. Extent of damage was decreased by 1,25(OH)2D3 (P < 0.01). 1,25(OH)2D3 attenuated the increase in malondialdehyde (P < 0.01), increase in myeloperoxidase (P < 0.01), increase in chemiluminescence levels (P < 0.05) and apoptotic activity (P < 0.001). Elevated liver iNOS and NF-κB expression in TAA group was also reduced by 1,25(OH)2D3 (P < 0.001, for iNOS; P < 0.001, for NF-κB). TAA group revealed high serum aspartate transaminase and alanine transaminase (ALT) activities (P < 0.01, for aspartate transaminase; P = 0.08, for ALT) and reduced albumin levels (P < 0.01) compared with control. 1,25(OH)2D3 had no statistically significant effect on these parameters. CONCLUSIONS 1,25(OH)2D3 provides protection against hepatic injury in a rat model of TAA-induced hepatotoxicity via suppression of inflammatory reaction, oxidative stress, and apoptosis.
Collapse
|
14
|
El Awdan SA, Abdel Rahman RF, Ibrahim HM, Hegazy RR, El Marasy SA, Badawi M, Arbid MS. Regression of fibrosis by cilostazol in a rat model of thioacetamide-induced liver fibrosis: Up regulation of hepatic cAMP, and modulation of inflammatory, oxidative stress and apoptotic biomarkers. PLoS One 2019; 14:e0216301. [PMID: 31067255 PMCID: PMC6505801 DOI: 10.1371/journal.pone.0216301] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/17/2019] [Indexed: 12/20/2022] Open
Abstract
In liver fibrosis, conversion of fibroblasts to profibrogenic myofibroblasts significantly drives the development of the disease. A crucial role of cyclic adenosine monophosphate (cAMP) in regulation of fibroblast function has been reported. Increase in cAMP levels has been found to decrease fibroblast proliferation, inhibit their conversion to myofibroblast, and stimulate their death. cAMP is generated by adenyl cyclase (AC), and degraded by cyclic nucleotide phosphodiesterase (PDE). In this study, the antifibrotic effect of a PDE inhibitor, cilostazol (Cilo), on a rat model of liver fibrosis induced by thioacetamide (TAA) was investigated. Four groups of rats were used; the first group received the vehicles and served as the normal control group, while liver fibrosis was induced in the other groups using (TAA, 200 mg/kg/biweekly for 8 successive weeks, ip). The last two groups were treated with Cilo (50 and 100 mg/kg/day, po, respectively). Induction of liver fibrosis in TAA-treated rats was observed as evidenced by the biochemical and histopathological findings. On the other hand, a potent antifibrotic effect was observed in the groups treated with Cilo, with preference to the higher dose. In these groups, a significant increase in the liver content of cAMP was demonstrated that was accompanied by reduction in the hepatic expression of key fibrogenic cytokines, growth factors, and inflammatory biomarkers, including interleukin-6, tumor necrosis factor-alpha, nuclear factor kappa B, and transforming growth factor-beta as compared to TAA group. Moreover, amelioration of TAA-induced oxidative stress and apoptosis in the liver has been observed. These findings reveal the antifibrotic effect of Cilo against TAA-induced liver fibrosis in rats, and suggest regulation of cAMP pathway, together with the modulation of oxidative stress, inflammation, and apoptosis as mechanistic cassette underlines this effect.
Collapse
Affiliation(s)
- Sally A. El Awdan
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | | | - Heba M. Ibrahim
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab R. Hegazy
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Salma A. El Marasy
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Manal Badawi
- Pathology Department, Medical Division, National Research Centre, Giza, Egypt
| | - Mahmoud S. Arbid
- Pharmacology Department, Medical Division, National Research Centre, Giza, Egypt
| |
Collapse
|
15
|
Schemitt EG, Hartmann RM, Colares JR, Licks F, Salvi JO, Marroni CA, Marroni NP. Protective action of glutamine in rats with severe acute liver failure. World J Hepatol 2019; 11:273-286. [PMID: 30967905 PMCID: PMC6447424 DOI: 10.4254/wjh.v11.i3.273] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/29/2019] [Accepted: 03/12/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Severe acute liver failure (SALF) is a rare, but high-mortality, rapidly evolving syndrome that leads to hepatocyte degeneration with impaired liver function. Thioacetamide (TAA) is a known xenobiotic, which promotes the increase of the formation of reactive oxygen species. Erythroid 2-related factor 2 (Nrf2) activates the antioxidant protection of cells. Studies have evidenced the involvement of inflammatory mediators in conditions of oxidative stress. AIM To evaluate the antioxidant effects of glutamine on Nrf2 activation and NFκB-mediated inflammation in rats with TAA-induced IHAG. METHODS Male Wistar rats (n = 28) were divided into four groups: control, control+glutamine, TAA, and TAA + glutamine. Two TAA doses (400 mg/kg) were administered intraperitoneally, 8 h apart. Glutamine (25 mg/kg) was administered at 30 min, 24 h, and 36 h. At 48 h, blood was collected for liver integrity analysis [aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP)]. The liver was harvested for histology and assessment of oxidative stress [thiobarbituric acid-reactive substances (TBARS), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione (GSH), Nrf2, Kelch-like ECH-associated protein 1 (Keap1), NADPH quinone oxidoreductase1 (NQO1), superoxide dismutase (SOD)] and inflammatory process. RESULTS TAA caused disruption of the hepatic parenchyma, with inflammatory infiltration, massive necrosis, and ballooning degeneration. Glutamine mitigated this tissue damage, with visible regeneration of hepatic parenchyma; decreased TBARS (P < 0.001), GSH (P < 0.01), IL-1β, IL6, and TNFα levels (P <0.01) in hepatic tissue; and decreased blood levels of AST, ALT, and ALP (P <0.05). In addition, CAT, GPx, and GST activities were restored in the glutamine group (P <0.01, P <0.01, and P <0.001, respectively vs TAA alone). Glutamine increased expression of Nrf2 (P < 0.05), NQO1, and SOD (P < 0.01), as well as levels of IL-10 (P <0.001), while decreasing expression of Keap1, TLR4, NFκB (P < 0.001), COX-2 and iNOS, (P < 0.01), and reducing NO2 and NO3 levels (P < 0.05). CONCLUSION In the TAA experimental model of IHAG, glutamine activated the Nrf2 pathway, thus promoting antioxidant protection, and blunted the NFκB-mediated pathway, reducing inflammation.
Collapse
Affiliation(s)
- Elizângela G Schemitt
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil
| | - Renata M Hartmann
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil
| | - Josieli R Colares
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil
| | - Francielli Licks
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil
| | - Jéferson O Salvi
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil
| | - Cláudio A Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil.
| | - Norma P Marroni
- Laboratory of Experimental Hepatology and Gastroenterology, Hospital de Clínicas de Porto Alegre, Porto Alegre 90040060, Brazil
| |
Collapse
|
16
|
Allopurinol potentiates the hepatoprotective effect of metformin and vitamin E in fructose-induced fatty liver in rats. Clin Exp Hepatol 2019; 5:65-74. [PMID: 30915409 PMCID: PMC6431087 DOI: 10.5114/ceh.2019.83159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023] Open
Abstract
Aim of the study Non-alcoholic fatty liver disease (NAFLD) is a challenging health problem. Hyperuricemia is a key player in the pathogenesis of NAFLD. This study investigated the effect of allopurinol (uric acid synthesis inhibitor) in combination with metformin and vitamin E in prevention of fructose induced-fatty liver in rats. Material and methods Rats were divided into 7 groups: control group, fructose group (model group of NAFLD), allopurinol-treated group, metformin-treated group, vitamin E-treated group, metformin plus vitamin E-treated group and a combination group (received allopurinol plus metformin plus vitamin E). Development of NAFLD was assessed biochemically by serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) as well as by histopathological examination. Oxidative stress parameters [reduced glutathione (GSH), superoxide dismutase (SOD), malondialdehyde (MDA)], and the inflammatory mediators tumor necrosis factor α (TNF-α) and inducible nitric oxide synthase (iNOS) were assessed, along with serum levels of uric acid and triglyceride (TG). Results Combination of allopurinol plus metformin plus vitamin E significantly attenuated fatty changes compared to their respective monotherapy. Interestingly, though all treated groups showed significant attenuation in the oxidative stress markers, TNF-α level and iNOS immunostaining in hepatic tissue, along with a significant decrease in the levels of uric acid and TG, the combination group showed a further significant decrease in the serum level of uric acid and iNOS immunostaining compared to other treated regimens. Conclusions Allopurinol synergistically increases the protective effect of metformin and vitamin E in treatment of NAFLD, namely via reduction of uric acid synthesis and iNOS expression.
Collapse
|
17
|
Beneficial Effects of Desalinated Magma Seawater in Ameliorating Thioacetamide-induced Chronic Hepatotoxicity. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0371-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
18
|
Lin X, Wei J, Nie J, Bai F, Zhu X, Zhuo L, Lu Z, Huang Q. Inhibition of RKIP aggravates thioacetamide-induced acute liver failure in mice. Exp Ther Med 2018; 16:2992-2998. [PMID: 30214516 PMCID: PMC6125827 DOI: 10.3892/etm.2018.6542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 05/31/2017] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence has indicated that Raf kinase inhibitor protein (RKIP) is involved in several intracellular signaling pathways; its abnormal expression is associated with tumor progression and metastasis in several human neoplasms. However, the role of RKIP in acute liver injury has remained elusive. In the present study, acute liver failure was induced by thioacetamide in mice, and locostatin was used to interfere with RKIP expression. It was found that RKIP expression was significantly inhibited by locostatin. Down-regulation of RKIP expression resulted in severe liver injury and extensive release of alanine aminotransferase and aspartate aminotransferase. In addition, reduced RKIP expression significantly enhanced the levels of reactive oxygen species and the content of pro-inflammatory factors such as tumor necrosis factor-α as well as interleukin-6 and −1β, and decreased the levels of nuclear factor E2-related factor-2 and heme oxygenase-1. Furthermore, down-regulation of RKIP promoted the activation of the nuclear factor-κB and extracellular signal-regulated kinase signaling pathways. In conclusion, the present study indicates an inverse correlation between RKIP level and the degree of hepatic injury, that is, a decrease in RKIP expression may exacerbate acute liver failure.
Collapse
Affiliation(s)
- Xing Lin
- Pharmaceutical College and Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinbin Wei
- Pharmaceutical College and Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jinlan Nie
- Pharmaceutical College and Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Facheng Bai
- Pharmaceutical College and Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xunshuai Zhu
- Pharmaceutical College and Life Sciences Institute, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Lang Zhuo
- Department of Bioengineering, Institute of Bioengineering and Nanotechnology, Singapore 169483, Republic of Singapore
| | - Zhongpeng Lu
- Department of Biochemistry, University of Arkansas Medical School, Little Rock, AR 72205-7199, USA
| | - Quanfang Huang
- Department of Pharmacy, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, P.R. China
| |
Collapse
|
19
|
Cilostazol attenuates indices of liver damage induced by thioacetamide in albino rats through regulating inflammatory cytokines and apoptotic biomarkers. Eur J Pharmacol 2018; 822:168-176. [DOI: 10.1016/j.ejphar.2018.01.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 12/28/2022]
|
20
|
Ouyang ZH, Wang WJ, Yan YG, Wang B, Lv GH. The PI3K/Akt pathway: a critical player in intervertebral disc degeneration. Oncotarget 2017; 8:57870-57881. [PMID: 28915718 PMCID: PMC5593690 DOI: 10.18632/oncotarget.18628] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 05/10/2017] [Indexed: 12/16/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is thought to be the primary cause of low back pain, a severe public health problem worldwide. Current therapy for IDD aims to alleviate the symptoms and does not target the underlying pathological alternations within the disc. Activation of the phosphatidylinositol 3-kinase (PI3K)/Akt pathway protects against IDD, which is attributed to increase of ECM content, prevention of cell apoptosis, facilitation of cell proliferation, induction or prevention of cell autophagy, alleviation of oxidative damage, and adaptation of hypoxic microenvironment. In the current review, we summarize recent progression on activation and negative regulation of the PI3K/Akt signaling pathway, and highlight its impact on IDD. Targeting this pathway could become an attractive therapeutic strategy for IDD in the near future.
Collapse
Affiliation(s)
- Zhi-Hua Ouyang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China.,Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Wen-Jun Wang
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Yi-Guo Yan
- Department of Spine Surgery, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Bing Wang
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| | - Guo-Hua Lv
- Department of Spine Surgery, The 2nd Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
21
|
Prieto-Moure B, Lloris-Carsí JM, Belda-Antolí M, Toledo-Pereyra LH, Cejalvo-Lapeña D. Allopurinol Protective Effect of Renal Ischemia by Downregulating TNF-α, IL-1β, and IL-6 Response. J INVEST SURG 2016; 30:143-151. [PMID: 27690698 DOI: 10.1080/08941939.2016.1230658] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Allopurinol is a well-known antioxidant that protects tissue against ischemia and reperfusion injury, blocking purine catabolism, and possibly reducing TNF-α and other cytokines. It also plays a significant role in reducing the inflammatory processes by inhibiting chemotaxis and other inflammatory mediators. The objective of this study was to define the role of allopurinol regarding kidney ischemic injury particularly as to its effect on inflammatory molecules such as TNF-α, IL-1β, and IL-6 response. One hundred and twenty five rats were subjected to warm renal ischemia. Five more animals were included as sham. Animal survival and plasma levels of lipid peroxidation, myeloperoxidase, lactate dehydrogenase, glutathione, urea, creatinine, and cytokines were determined. Inflammatory parameters (TNF-α, IL-1β, and IL-6) were measured in all groups by quantitative immunosorbent assay. Further, immunohistological and histopathological studies were carried out on animals treated prior to, or following reperfusion with 10 and 50 mg/kg of Allopurinol. The statistical analysis included ANOVA and Fisher test as well as χ2 test. Significance was reached at a p < 0.05. The results of this study indicated that Allopurinol protected against kidney ischemia-reperfusion injury since significantly better results of survival, biochemical analysis, and histopathological testing were observed in treated animals as compared to ischemic controls. In conclusion, Allopurinol protected ischemic kidneys through a mechanism associated with downregulation of TNF-α, IL-1 β, and IL-6, in addition to other well-known effects such as decreased lipid peroxidation and neutrophil activity. It also increased antioxidant capacity and diminished endogenous peroxidase stain in renal ischemic tissue. Therefore, this experiment showed an effectiveness of allopurinol protection against proteomic and morphological damage.
Collapse
Affiliation(s)
| | | | | | - Luis H Toledo-Pereyra
- c Western Michigan University , Homer Stryker MD School of Medicine and Michigan State University, College of Human and Osteopathic Medicine , Kalamazoo , Michigan , USA
| | | |
Collapse
|
22
|
NRF2 Is a Key Target for Prevention of Noise-Induced Hearing Loss by Reducing Oxidative Damage of Cochlea. Sci Rep 2016; 6:19329. [PMID: 26776972 PMCID: PMC4726010 DOI: 10.1038/srep19329] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 12/09/2015] [Indexed: 01/16/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is one of the most common sensorineural hearing deficits. Recent studies have demonstrated that the pathogenesis of NIHL is closely related to ischemia-reperfusion injury of cochlea, which is caused by blood flow decrease and free radical production due to excessive noise. This suggests that protecting the cochlea from oxidative stress is an effective therapeutic approach for NIHL. NRF2 is a transcriptional activator playing an essential role in the defense mechanism against oxidative stress. To clarify the contribution of NRF2 to cochlear protection, we examined Nrf2–/– mice for susceptibility to NIHL. Threshold shifts of the auditory brainstem response at 7 days post-exposure were significantly larger in Nrf2–/– mice than wild-type mice. Treatment with CDDO-Im, a potent NRF2-activating drug, before but not after the noise exposure preserved the integrity of hair cells and improved post-exposure hearing levels in wild-type mice, but not in Nrf2–/– mice. Therefore, NRF2 activation is effective for NIHL prevention. Consistently, a human NRF2 SNP was significantly associated with impaired sensorineural hearing levels in a cohort subjected to occupational noise exposure. Thus, high NRF2 activity is advantageous for cochlear protection from noise-induced injury, and NRF2 is a promising target for NIHL prevention.
Collapse
|
23
|
Li S, Tan HY, Wang N, Zhang ZJ, Lao L, Wong CW, Feng Y. The Role of Oxidative Stress and Antioxidants in Liver Diseases. Int J Mol Sci 2015; 16:26087-124. [PMID: 26540040 PMCID: PMC4661801 DOI: 10.3390/ijms161125942] [Citation(s) in RCA: 976] [Impact Index Per Article: 108.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/20/2015] [Accepted: 10/19/2015] [Indexed: 12/15/2022] Open
Abstract
A complex antioxidant system has been developed in mammals to relieve oxidative stress. However, excessive reactive species derived from oxygen and nitrogen may still lead to oxidative damage to tissue and organs. Oxidative stress has been considered as a conjoint pathological mechanism, and it contributes to initiation and progression of liver injury. A lot of risk factors, including alcohol, drugs, environmental pollutants and irradiation, may induce oxidative stress in liver, which in turn results in severe liver diseases, such as alcoholic liver disease and non-alcoholic steatohepatitis. Application of antioxidants signifies a rational curative strategy to prevent and cure liver diseases involving oxidative stress. Although conclusions drawn from clinical studies remain uncertain, animal studies have revealed the promising in vivo therapeutic effect of antioxidants on liver diseases. Natural antioxidants contained in edible or medicinal plants often possess strong antioxidant and free radical scavenging abilities as well as anti-inflammatory action, which are also supposed to be the basis of other bioactivities and health benefits. In this review, PubMed was extensively searched for literature research. The keywords for searching oxidative stress were free radicals, reactive oxygen, nitrogen species, anti-oxidative therapy, Chinese medicines, natural products, antioxidants and liver diseases. The literature, including ours, with studies on oxidative stress and anti-oxidative therapy in liver diseases were the focus. Various factors that cause oxidative stress in liver and effects of antioxidants in the prevention and treatment of liver diseases were summarized, questioned, and discussed.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Hor-Yue Tan
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Lixing Lao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Chi-Woon Wong
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
24
|
Abouzied MM, Eltahir HM, Taye A, Abdelrahman MS. Experimental evidence for the therapeutic potential of tempol in the treatment of acute liver injury. Mol Cell Biochem 2015; 411:107-15. [DOI: 10.1007/s11010-015-2572-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/26/2015] [Indexed: 01/04/2023]
|
25
|
Zhang RZ, Qiu H, Wang N, Long FL, Mao DW. Effect of Rheum palmatum L. on NF-κB signaling pathway of mice with acute liver failure. ASIAN PAC J TROP MED 2015; 8:841-7. [DOI: 10.1016/j.apjtm.2015.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/20/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023] Open
|
26
|
Mohammed NEM, Messiha BAS, Abo-Saif AA. Effect of amlodipine, lisinopril and allopurinol on acetaminophen-induced hepatotoxicity in rats. Saudi Pharm J 2015; 24:635-644. [PMID: 27829805 PMCID: PMC5094429 DOI: 10.1016/j.jsps.2015.04.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/30/2015] [Indexed: 12/09/2022] Open
Abstract
Background Exposure to chemotherapeutic agents such as acetaminophen may lead to serious liver injury. Calcium deregulation, angiotensin II production and xanthine oxidase activity are suggested to play mechanistic roles in such injury. Objective This study evaluates the possible protective effects of the calcium channel blocker amlodipine, the angiotensin converting enzyme inhibitor lisinopril, and the xanthine oxidase inhibitor allopurinol against experimental acetaminophen-induced hepatotoxicity, aiming to understand its underlying hepatotoxic mechanisms. Material and methods Animals were allocated into a normal control group, a acetaminophen hepatotoxicity control group (receiving a single oral dose of acetaminophen; 750 mg/kg/day), and four treatment groups receive N-acetylcysteine (300 mg/kg/day; a reference standard), amlodipine (10 mg/kg/day), lisinopril (20 mg/kg/day) and allopurinol (50 mg/kg/day) orally for 14 consecutive days prior to acetaminophen administration. Evaluation of hepatotoxicity was performed by the assessment of hepatocyte integrity markers (serum transaminases), oxidative stress markers (hepatic malondialdehyde, glutathione and catalase), and inflammatory markers (hepatic myeloperoxidase and nitrate/nitrite), in addition to a histopathological study. Results Rats pre-treated with amlodipine, lisinopril or allopurinol showed significantly lower serum transaminases, significantly lower hepatic malondialdehyde, myeloperoxidase and nitrate/nitrite, as well as significantly higher hepatic glutathione and catalase levels, compared with acetaminophen control rats. Serum transaminases were normalized in the lisinopril treatment group, while hepatic myeloperoxidase was normalized in the all treatment groups. Histopathological evaluation strongly supported the results of biochemical estimations. Conclusion Amlodipine, lisinopril or allopurinol can protect against acetaminophen-induced hepatotoxicity, showing mechanistic roles of calcium channels, angiotensin converting enzyme and xanthine oxidase enzyme in the pathogenesis of hepatotoxicity induced by acetaminophen.
Collapse
Affiliation(s)
- Nesreen E M Mohammed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Sueif, Egypt
| | - Basim A S Messiha
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni Sueif University, Beni-Sueif, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Sueif, Egypt
| |
Collapse
|
27
|
El-Bassossy HM, Shaltout HA. Allopurinol alleviates hypertension and proteinuria in high fructose, high salt and high fat induced model of metabolic syndrome. Transl Res 2015; 165:621-30. [PMID: 25528722 DOI: 10.1016/j.trsl.2014.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/20/2014] [Accepted: 11/22/2014] [Indexed: 01/11/2023]
Abstract
Metabolic syndrome (MetS) is a global epidemic associated with great socioeconomic and public health impact. Prevalence of the MetS has been consistently associated with cardiorenal mortality. The objective of this study was to investigate the effect of allopurinol treatment on various components of an established MetS in rats. In a first group, MetS was induced in male Wistar rats by the addition of 10% fructose to drinking water and placing the rats on high-fat and high-salt diet for 12 weeks (M). In the second group, MetS was induced for 12 weeks plus allopurinol administration (20 mg/kg/d) orally for 4 weeks starting at week 9 (MA). The third group was control (C) group that received a normal diet. The M group had higher blood pressure (BP) (85.5 ± 3.17 vs 66.1 ± 3.3 mm Hg) and proteinuria (1.8 ± 0.3 vs 0.59 ± 0.13 g/d) compared with the C group. Allopurinol reversed the BP and proteinuria in MA rats to the control level. Allopurinol administration suppressed the low-grade inflammation associated with MetS and reversed the increases in kidney transforming growth factor beta and urine 8-isoprostane acid observed in the MA group to control levels. In addition, allopurinol reduced angiotensin II and angiotensin receptor type 1 levels in the kidney of MA rats compared with the M group. The administration of allopurinol for short term in an established MetS model reduced features of the MetS especially hypertension and proteinuria. Addition of allopurinol to the therapy of MetS may provide superior means to alleviate hypertension and proteinuria associated with MetS.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Faculty of Pharmacy, Department of Pharmacology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; Faculty of Pharmacy, Department of Pharmacology, Zagazig University, Zagazig, Egypt.
| | - Hossam A Shaltout
- Hypertension and Vascular Research Center, Wake Forest University School of Medicine, Winston-Salem, North Carolina; Department of Obstetrics and Gynecology, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
28
|
Dong G, Ren M, Wang X, Jiang H, Yin X, Wang S, Wang X, Feng H. Allopurinol reduces severity of delayed neurologic sequelae in experimental carbon monoxide toxicity in rats. Neurotoxicology 2015; 48:171-9. [PMID: 25845300 DOI: 10.1016/j.neuro.2015.03.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/21/2015] [Accepted: 03/25/2015] [Indexed: 01/24/2023]
Abstract
Approximately half of those who survive severe carbon monoxide (CO) poisoning develop delayed neurologic sequelae. Growing evidence supports the crucial role of free radicals in delayed brain injury associated with CO toxicity. Xanthine oxidase (XO) has been reported to play a pivotal role in the generation of reactive oxygen species (ROS) in CO poisoning. A recent report indicates that allopurinol both attenuated oxidative stress and possessed anti-inflammatory properties in an animal model of acute liver failure. In this study, we aimed to explore the potential of allopurinol to reduce the severity of delayed neurologic sequelae. The rats were first exposed to 1000 ppm CO for 40 min and then to 3000 ppm CO for another 20 min. Following CO poisoning, the rats were injected with allopurinol (50 mg/kg, i.p.) six times. Results showed that allopurinol significantly reduced neuronal death and suppressed expression of pro-inflammatory factors, including tumor necrosis factor-α, intercellular adhesion molecule-1, ionized calcium-binding adapter molecule 1, and degraded myelin basic protein. Furthermore, behavioral studies revealed an improved performance in the Morris water maze test. Our findings indicated that allopurinol may have protective effects against delayed neurologic sequelae caused by CO toxicity.
Collapse
Affiliation(s)
- Guangtao Dong
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Ming Ren
- Department of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, PR China
| | - Xiujie Wang
- Department of Emergency Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Hongquan Jiang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xiang Yin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Shuyu Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Xudong Wang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Honglin Feng
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| |
Collapse
|
29
|
Zhang X, Zhang JH, Chen XY, Hu QH, Wang MX, Jin R, Zhang QY, Wang W, Wang R, Kang LL, Li JS, Li M, Pan Y, Huang JJ, Kong LD. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxid Redox Signal 2015; 22:848-70. [PMID: 25602171 PMCID: PMC4367240 DOI: 10.1089/ars.2014.5868] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS Increased fructose consumption predisposes the liver to nonalcoholic fatty liver disease (NAFLD), but the mechanisms are elusive. Thioredoxin-interacting protein (TXNIP) links oxidative stress to NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation and this signaling axis may be involved in fructose-induced NAFLD. Here, we explore the role of reactive oxygen species (ROS)-induced TXNIP overexpression in fructose-mediated hepatic NLRP3 inflammasome activation, inflammation, and lipid accumulation. RESULTS Rats were fed a 10% fructose diet for 8 weeks and treated with allopurinol and quercetin during the last 4 weeks. Five millimolars of fructose-exposed hepatocytes (primary rat hepatocytes, rat hepatic parenchymal cells [RHPCs], HLO2, HepG2) were co-incubated with antioxidants or caspase-1 inhibitor or subjected to TXNIP or NLRP3 siRNA interference. Fructose induced NLRP3 inflammasome activation and pro-inflammatory cytokine secretion, janus-activated kinase 2/signal transducers and activators of transcription 3-mediated inflammatory signaling, and expression alteration of lipid metabolism-related genes in cultured hepatocytes and rat livers. NLRP3 silencing and caspase-1 suppression blocked these effects in primary rat hepatocytes and RHPCs, confirming that inflammasome activation alters hepatocyte lipid metabolism. Hepatocellular ROS and TXNIP were increased in animal and cell models. TXNIP silencing blocked NLRP3 inflammasome activation, inflammation, and lipid metabolism perturbations but not ROS induction in fructose-exposed hepatocytes, whereas antioxidants addition abrogated TXNIP induction and diminished the detrimental effects in fructose-exposed hepatocytes and rat livers. INNOVATION AND CONCLUSIONS This study provides a novel mechanism for fructose-induced NAFLD pathogenesis by which the ROS-TXNIP pathway mediates hepatocellular NLRP3 inflammasome activation, inflammation and lipid accumulation. Antioxidant-based interventions can inhibit the ROS-TXNIP pathway.
Collapse
Affiliation(s)
- Xian Zhang
- 1 State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University , Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
El-Bassossy HM, Watson ML. Xanthine oxidase inhibition alleviates the cardiac complications of insulin resistance: effect on low grade inflammation and the angiotensin system. J Transl Med 2015; 13:82. [PMID: 25889404 PMCID: PMC4355989 DOI: 10.1186/s12967-015-0445-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 02/23/2015] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND We have previously shown that hyperuricemia plays an important role in the vascular complications of insulin resistance (IR). Here we investigated the effect of xanthine oxidase (XO) inhibition on the cardiac complications of IR. METHODS IR was induced in rats by a high fructose high fat diet for 12 weeks. Allopurinol, a standard XO inhibitor, was administered in the last 4 weeks before cardiac hemodynamics and electrocardiography, serum glucose, insulin, tumor necrosis factor alpha (TNFα), 8-isoprostane, uric acid, lactate dehydrogenase (LDH) and XO activity were measured. Expression of cardiac angiotensin II (AngII) and angiotensin receptor 1 (AT1) were assessed by immunofluorescence. RESULTS IR animals had significant hyperuricemia which was inhibited by allopurinol administration. IR was associated with impaired ventricular relaxation (reflected by a decreased diastolic pressure increment and prolonged diastolic duration) and XO inhibition greatly attenuated impaired relaxation. IR was accompanied by cardiac ischemia (reflected by increased QTc and T peak trend intervals) while XO inhibition alleviated the ECG abnormalities. When subjected to isoproterenol-induced ischemia, IR hearts were less resistant (reflected by larger ST height depression and higher LDH level) while XO inhibition alleviated the accompanying ischemia. In addition, XO inhibition prevented the elevation of serum 8-isoprostane and TNFα, and blocked elevated AngII and AT1 receptor expression in the heart tissue of IR animals. However, XO inhibition did not affect the developed hyperinsulinemia or dyslipidemia. CONCLUSIONS XO inhibition alleviates cardiac ischemia and impaired relaxation in IR through the inhibition of low grade inflammation and the angiotensin system.
Collapse
Affiliation(s)
- Hany M El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia. .,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt.
| | - Malcolm L Watson
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK.
| |
Collapse
|
31
|
El-Bassossy HM, Elberry AA, Azhar A, Ghareib SA, Alahdal AM. Ameliorative effect of allopurinol on vascular complications of insulin resistance. J Diabetes Res 2015; 2015:178540. [PMID: 25785277 PMCID: PMC4345076 DOI: 10.1155/2015/178540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/23/2015] [Indexed: 02/07/2023] Open
Abstract
The aim of the current study was to evaluate the possible protective effect of allopurinol (Allo) on experimentally induced insulin resistance (IR) and vascular complications. Rats were divided into four groups: control, IR, allopurinol-treated IR (IR-Allo), and allopurinol-treated control (Allo). IR was induced by adding fructose and high fat, high salt diet for 12 weeks. The results showed that Allo has alleviated the increased level of TNF-α and the systolic, diastolic, mean, and notch pressure observed in IR with no change in pulse pressure. In addition, Allo decreased the heart rate in the treated group compared to IR rats. On the other hand, it has no effect on increased levels of insulin, glucose, fructosamine, or body weight gain compared to IR group, while it increased significantly the insulin level and body weight without hyperglycemia in the control group. Moreover, Allo treatment ameliorated increased level of 4HNE, Ang II, and Ang R1. In conclusion, the results of the current study show that Allo has a protective effect on vascular complications of IR which may be attributed to the effect of Allo on decreasing the TNF-α, 4HNE, Ang II, and Ang R1 as well as increasing the level of insulin secretion.
Collapse
Affiliation(s)
- Hany M. El-Bassossy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed A. Elberry
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Beni Suef University, Beni Suef 62511, Egypt
- *Ahmed A. Elberry:
| | - Ahmad Azhar
- Department of Pediatrics, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Salah A. Ghareib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Abdulrahman M. Alahdal
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
32
|
Stefanello ST, Flores da Rosa EJ, Dobrachinski F, Amaral GP, Rodrigues de Carvalho N, Almeida da Luz SC, Bender CR, Schwab RS, Dornelles L, Soares FAA. Effect of diselenide administration in thioacetamide-induced acute neurological and hepatic failure in mice. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00166d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hepatic encephalopathy is a common complication of severe acute hepatic failure and has been associated with high short-term mortality rates.
Collapse
|
33
|
The effects of dexketoprofen on endogenous leptin and lipid peroxidation during liver ischemia reperfusion injury. Int Surg 2014; 99:757-63. [PMID: 25437584 DOI: 10.9738/intsurg-d-14-00121.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatic ischemia reperfusion (IR) injury has complex mechanisms. We investigated the effect of dexketoprofen on endogenous leptin and malondialdehyde (MDA) levels. Wistar albino rats were divided into 4 equal groups and were subjected to 1-hour ischemia and different subsequent reperfusion intervals. Dexketoprofen was administered in a dose of 25 mg/kg 15 minutes before ischemia induction and 1-hour reperfusion to the Dexketoprofen one-hour reperfusion group, n = 6 (DIR1) group and 6-hour reperfusion to the Dexketoprofen six-hour reperfusion group, n = 6 (DIR6) group. In the control groups, 0.9% physiologic serum (SF) was administered 15 minutes before ischemia induction and 1-hour reperfusion to the one-hour reperfusion group, n = 6 (IR1) group and 6-hour reperfusion to the six-hour reperfusion group, n = 6 (IR6) group. Although serum leptin (P = 0.044) and hepatic tissue MDA levels (P = 0.004) were significantly higher in the IR6 group than in the IR1 group, there were no significant differences in dexketoprofen pretreatment between the DIR1 and DIR6 groups. There were no differences in serum MDA levels among the 4 groups, and serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were significantly higher in the IR1 (P = 0.026 and P = 0.018, respectively) and IR6 (P = 0.000 and P = 0.002, respectively) groups than in the DIR1 and DIR6 groups. Dexketoprofen pretreatment can protect the liver from IR injury by decreasing inflammation and lipid peroxidation. Our study shows that dexketoprofen has no effects on endogenous leptin during IR injury.
Collapse
|
34
|
Liang Y, Huang B, Song E, Bai B, Wang Y. Constitutive activation of AMPK α1 in vascular endothelium promotes high-fat diet-induced fatty liver injury: role of COX-2 induction. Br J Pharmacol 2014; 171:498-508. [PMID: 24372551 DOI: 10.1111/bph.12482] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 09/24/2013] [Accepted: 10/16/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND AND PURPOSE AMP-activated protein kinase (AMPK), an important regulator of energy metabolism, comprises three (α, β and γ) subunits, each with a unique tissue distribution. As AMPK has a wide range of protein and gene targets, defining its role has been difficult. Here, we have studied a transgenic mouse model overexpressing the constitutively active α1 subunit of AMPK in endothelial cells (EC-AMPK) to elucidate its role in energy homeostasis. EXPERIMENTAL APPROACH Wild-type and EC-AMPK mice were fed with a high fat diet for 16 weeks. Drugs (or vehicles) were given daily by oral gavage. Body weight, fat mass composition, glucose and lipid levels were monitored regularly. Tissues including aortae and liver were collected for quantitative RT-PCR, Western blotting, elisa, histological and biochemical evaluations. KEY RESULTS Compared with wild-type animals, high fat diet caused more severe metabolic defects in EC-AMPK mice, which exhibited increased body weight and fat mass, elevated blood pressure, augmented glucose and lipid levels, impaired glucose tolerance, hepatomegaly and steatohepatitis. Constitutive activation of AMPK α1 in endothelial cells induced COX-2 expression and arterial inflammation. Genes involved in lipid metabolism were down-regulated in aortae and livers of EC-AMPK mice. Chronic treatment with selective COX-2 inhibitors, celecoxib or nimesulide, significantly ameliorated arterial inflammation, steatohepatitis and hyperlipidaemia in EC-AMPK mice, without altering their blood pressure or clotting. CONCLUSIONS AND IMPLICATIONS Constitutive activation of endothelial AMPK α1 promotes vascular inflammation and the development of obesity-induced fatty livers largely via induction of COX-2.
Collapse
Affiliation(s)
- Yan Liang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | | | | | | | | |
Collapse
|
35
|
Evaluation effects of allopurinol and FSH on reduction of ischemia-reperfusion injury and on preservation of follicle after heterotopic auto-transplantation of ovarian tissue in mouse. Reprod Med Biol 2013; 13:29-35. [PMID: 29662369 DOI: 10.1007/s12522-013-0160-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 06/24/2013] [Indexed: 12/13/2022] Open
Abstract
Purpose Allopurinol and FSH injection are applied to reduce ischemia-reperfusion injury and to increase survival rate for ovarian follicles after ovarian heterotopic autotransplantation in mice. Methods Ovarian tissues from 6-week-old mice were grafted into back muscle then collected after 3 weeks. A total of five groups were included in this experiment as follows: control group (n = 5), sham-operated group (n = 5), allopurinol treatment group (AP) (n = 5), follicle stimulating hormone (FSH) treatment group (n = 5), as well as, allopurinol and FSH treatment group (APF) (n = 5). We investigated survival, number and development of follicles, vaginal cytology along with plasma malondialdehyde (MDA) concentration in grafted ovary. Results Total follicles count significantly increased in APF group compared with other treatment groups (p < 0.05). MDA concentration significantly decreased in AP group and APF treatment group compared with sham-operated group. In AP group, vaginal smears showed presence of cornified epithelial cells three-five day after surgery. Conclusions We demonstrated that allopurinol, as a XO inhibitor, plays an important role in order to decrease ischemia injury and to increase survival rate for follicles. Also, FSH, as a folliculogenesis and angiogenesis factor, increases development of follicles. It seems that allopurinol can cause re-establishing hypothalamus-pituitary axis and finally can restore estrous cycle earlier than for the sham operated group, so it explains the increasing survival rate for follicles.
Collapse
|
36
|
Pérez-Mazliah D, Albareda MC, Alvarez MG, Lococo B, Bertocchi GL, Petti M, Viotti RJ, Laucella SA. Allopurinol reduces antigen-specific and polyclonal activation of human T cells. Front Immunol 2012; 3:295. [PMID: 23049532 PMCID: PMC3448060 DOI: 10.3389/fimmu.2012.00295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/04/2012] [Indexed: 11/13/2022] Open
Abstract
Allopurinol is the most popular commercially available xanthine oxidase inhibitor and it is widely used for treatment of symptomatic hyperuricaemia, or gout. Although, several anti-inflammatory actions of allopurinol have been demonstrated in vivo and in vitro, there have been few studies on the action of allopurinol on T cells. In the current study, we have assessed the effect of allopurinol on antigen-specific and mitogen-driven activation and cytokine production in human T cells. Allopurinol markedly decreased the frequency of IFN-γ and IL-2-producing T cells, either after polyclonal or antigen-specific stimulation with Herpes Simplex virus 1, Influenza (Flu) virus, tetanus toxoid and Trypanosoma cruzi-derived antigens. Allopurinol attenuated CD69 upregulation after CD3 and CD28 engagement and significantly reduced the levels of spontaneous and mitogen-induced intracellular reactive oxygen species in T cells. The diminished T cell activation and cytokine production in the presence of allopurinol support a direct action of allopurinol on human T cells, offering a potential pharmacological tool for the management of cell-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Damián Pérez-Mazliah
- Instituto Nacional de Parasitología "Dr. Mario Fatala Chaben" Ciudad Autónoma de Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|