1
|
Shen L, Tian Q, Ran Q, Gan Q, Hu Y, Du D, Qin Z, Duan X, Zhu X, Huang W. Z-Ligustilide: A Potential Therapeutic Agent for Atherosclerosis Complicating Cerebrovascular Disease. Biomolecules 2024; 14:1623. [PMID: 39766330 PMCID: PMC11726876 DOI: 10.3390/biom14121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Atherosclerosis (AS) is one of the major catalysts of ischemic cerebrovascular disease, and the death and disease burden from AS and its cerebrovascular complications are increasing. Z-ligustilide (Z-LIG) is a key active ingredient in Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort. In this paper, we first introduced LIG's physicochemical properties and pharmacokinetics. Then, we reviewed Z-LIG's intervention and therapeutic mechanisms on AS and its cerebrovascular complications. The mechanisms of Z-LIG intervention in AS include improving lipid metabolism, antioxidant and anti-inflammatory effects, protecting vascular endothelium, and inhibiting vascular endothelial fibrosis, pathological thickening, and plaque calcification. In ischemic cerebrovascular diseases complicated by AS, Z-LIG exerts practical neuroprotective effects in ischemic stroke (IS), transient ischemic attack (TIA), and vascular dementia (VaD) through anti-neuroinflammatory, anti-oxidation, anti-neuronal apoptosis, protection of the blood-brain barrier, promotion of mitochondrial division and angiogenesis, improvement of cholinergic activity, inhibition of astrocyte proliferation, and endoplasmic reticulum stress. This paper aims to provide a basis for subsequent studies of Z-LIG in the prevention and treatment of AS and its cerebrovascular complications and, thus, to promote the development of interventional drugs for AS.
Collapse
Affiliation(s)
- Longyu Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianqian Tian
- Faculty of Social Sciences, The University of Hong Kong, Hong Kong 999077, China
| | - Qiqi Ran
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Qianrong Gan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Yu Hu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Donglian Du
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Zehua Qin
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyi Duan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| | - Xinyun Zhu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China;
| | - Wei Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (L.S.); (Z.Q.)
| |
Collapse
|
2
|
Gu Z, Zhou G, Zhang X, Liang G, Xiao X, Dou Y. Research progress of plant medicine and Chinese herbal compounds in the treatment of rheumatoid arthritis combined with osteoporosis. Front Med (Lausanne) 2024; 10:1288591. [PMID: 38274450 PMCID: PMC10808767 DOI: 10.3389/fmed.2023.1288591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. The clinical manifestations of various joint pain and bone destruction are common. RA has a high disability rate and is closely related to local and systemic osteoporosis (OP). RA can occur at any age, however, its incidence increases with age. Most patients are 40 to 50 years old with an incidence among women approximately 3 to 5 times more than among men. Osteoporosis is a kind of metabolic bone disease characterized by bone mass and bone microstructure damage and is one of the common complications of RA. Currently, in the clinic, more patients develop RA with OP symptoms. Therefore, both OP and RA-related factors should be considered in the OP treatment of RA. Currently, there is more and more research on RA combined with OP drugs, including basic drugs, bone resorption inhibitors, bone formation promoters, and anti-rheumatic drugs to improve the condition. The high cost or limited efficacy of certain Western drugs, coupled with their potential for adverse reactions during treatment highlight the pressing need for novel pharmaceuticals in clinical practice. In recent years, traditional Chinese medicine (TCM) can improve the bone formation and bone resorption indexes of patients with RA, regulate the balance of osteoclasts and osteoblasts, and regulate the immune inflammatory response, so as to treat RA combined with OP. This article discusses the advancements in single Chinese medicine and Chinese medicine combination treatments for RA complicated with OP, focusing on the mechanism of action and syndrome differentiation and classification, to offer new ideas for future clinical prevention and treatment.
Collapse
Affiliation(s)
- Zhuoxu Gu
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Zhou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xianquan Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guihong Liang
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| | - Xiao Xiao
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yaoxing Dou
- State Key Laboratory of Traditional Chinese Medicine Syndrome/The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The Research Team on Bone and Joint Degeneration and Injury of Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
| |
Collapse
|
3
|
Liu J, Chen QX, Wu WF, Wang D, Zhao SY, Li JH, Chang YQ, Zeng SG, Hu JY, Li YJ, Du JX, Jiao SM, Xiao HC, Zhang Q, Xu J, Zhao JF, Zhou HB, Wang YH, Zou J, Sun PH. Novel ligustilide derivatives target quorum sensing system LasR/LasB and relieve inflammatory response against Pseudomonas aeruginosa infection. Eur J Med Chem 2024; 263:115972. [PMID: 37995562 DOI: 10.1016/j.ejmech.2023.115972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
The increasing antibiotic resistance driven by Pseudomonas aeruginosa typically leads to uncontrolled and persistent inflammatory damage, which is primarily attributed to the virulence and biofilms produced by the bacteria. Herein, we present a novel anti-infective drug strategy designed to inhibit the bacterial quorum sensing system, thereby attenuating P. aeruginosa virulence, and modulating inflammation from drug-resistant bacterial infections. We discovered new quorum sensing LasR/LasB inhibitors derived from the structural modification of a ligustilide derivative library. Of these compounds, 5f demonstrated significant inhibitory activity against LasB (LasB-gfp, IC50 = 8.7 μM) and a moderate inhibitory effect on P. aeruginosa biofilms (IC50 = 7.4 μM). Through live image analysis in a fluorescent protein-labeled zebrafish larva model, we observed that compound 5f significantly inhibited the migration of macrophages. Moreover, compound 5f effectively attenuated quorum sensing-mediated virulence factors and biofilm formation by P. aeruginosa. It also alleviated the inflammatory response by P. aeruginosa-infected macrophages through the downregulation of mitogen-activated protein kinase and NF-κB signal-transduction pathways. Notably, in vivo experiments, this compound demonstrated marked therapeutic effects in acute lung injury models induced by lipopolysaccharides from P. aeruginosa. These results indicate that compound 5f has the potential to be a novel anti-infective candidate against drug-resistant infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Jun Liu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Qiu-Xian Chen
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Wen-Fu Wu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Dong Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Si-Yu Zhao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Hao Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yi-Qun Chang
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shao-Gao Zeng
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Yi Hu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Yu-Jie Li
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jia-Xin Du
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Shu-Meng Jiao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Hai-Chuan Xiao
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Qiang Zhang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China
| | - Hai-Bo Zhou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Yong-Heng Wang
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Jian Zou
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China.
| | - Ping-Hua Sun
- College of Pharmacy, Jinan University, Guangzhou, 510632, PR China; College of Pharmacy, Shihezi University, Xinjiang, 832099, PR China; Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, PR China.
| |
Collapse
|
4
|
Li S, Chiu TY, Jin X, Cao D, Xu M, Zhu M, Zhou Q, Liu C, Zong Y, Wang S, Yu K, Zhang F, Bai M, Liu G, Liang Y, Zhang C, Simonsen HT, Zhao J, Liu B, Zhao S. Integrating genomic and multiomic data for Angelica sinensis provides insights into the evolution and biosynthesis of pharmaceutically bioactive compounds. Commun Biol 2023; 6:1198. [PMID: 38001348 PMCID: PMC10674023 DOI: 10.1038/s42003-023-05569-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Angelica sinensis roots (Angelica roots) are rich in many bioactive compounds, including phthalides, coumarins, lignans, and terpenoids. However, the molecular bases for their biosynthesis are still poorly understood. Here, an improved chromosome-scale genome for A. sinensis var. Qinggui1 is reported, with a size of 2.16 Gb, contig N50 of 4.96 Mb and scaffold N50 of 198.27 Mb, covering 99.8% of the estimated genome. Additionally, by integrating genome sequencing, metabolomic profiling, and transcriptome analysis of normally growing and early-flowering Angelica roots that exhibit dramatically different metabolite profiles, the pathways and critical metabolic genes for the biosynthesis of these major bioactive components in Angelica roots have been deciphered. Multiomic analyses have also revealed the evolution and regulation of key metabolic genes for the biosynthesis of pharmaceutically bioactive components; in particular, TPSs for terpenoid volatiles, ACCs for malonyl CoA, PKSs for phthalide, and PTs for coumarin biosynthesis were expanded in the A. sinensis genome. These findings provide new insights into the biosynthesis of pharmaceutically important compounds in Angelica roots for exploration of synthetic biology and genetic improvement of herbal quality.
Collapse
Affiliation(s)
- Shiming Li
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Tsan-Yu Chiu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Dong Cao
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Meng Xu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Mingzhi Zhu
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, Hunan, China
| | - Qi Zhou
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Chun Liu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Yuan Zong
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Shujie Wang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Kang Yu
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Feng Zhang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Mingzhou Bai
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
| | - Guangrui Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Yunlong Liang
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China
| | - Chi Zhang
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, The Technical University of Denmark, 2800, Kongens, Lyngby, Denmark
- Laboratory of Plant Biotechnology, Université Jean Monnet, 23 Rue du Dr Michelon, 42000, Saint-Etienne, France
| | - Jian Zhao
- National Research Center of Engineering and Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, 410128, Changsha, Hunan, China.
| | - Baolong Liu
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, 810008, Xining, Qinghai, China.
| | - Shancen Zhao
- BGI-Shenzhen, 518083, Shenzhen, Guangdong, China.
- Beijing Life Science Academy, 102200, Beijing, China.
| |
Collapse
|
5
|
Network Pharmacology-Based Investigation on Therapeutic Mechanisms of the Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma Herb Pair for Anti-Migraine Effect. PLANTS 2022; 11:plants11172196. [PMID: 36079577 PMCID: PMC9460128 DOI: 10.3390/plants11172196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/16/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Migraines are a common neurological disorder characterized by desperate throbbing unilateral headaches and are related to phonophobia, photophobia, nausea, and vomiting. The Angelica dahurica Radix and Ligusticum chuanxiong Rhizoma herb pair (ALHP) has been used to treat migraines for centuries in traditional Chinese medicine (TCM). However, the physiological mechanisms of migraine treatment have not yet been elucidated. In this study, a total of 50 hub targets related to the effect of 28 bioactive compounds in ALHP on anti-migraine were obtained through network pharmacology analysis. GO and KEGG analyses of the hub targets demonstrated that ALHP treatment of migraines significantly involved the G-protein-coupled receptor signaling pathway, chemical synaptic transmission, inflammatory response, and other biological processes. According to the degree of gene targets in the network, ACE, SLC3A6, NR3CI, MAPK1, PTGS2, PIK3CA, RELA, GRIN1, GRM5, IL1B, and DRD2 were found to be the core gene targets. The docking results showed a high affinity for docked conformations between compounds and predicted targets. The results of this study suggest that ALHP could treat migraines by regulating immunological functions, diminishing inflammation, and improving immunity through different physiological pathways, which contributes to the scientific base for more in-depth research as well as for a more widespread clinical application of ALHP.
Collapse
|
6
|
Synthesis and Antioxidant/Anti-Inflammatory Activity of 3-Arylphthalides. Pharmaceuticals (Basel) 2022; 15:ph15050588. [PMID: 35631414 PMCID: PMC9144619 DOI: 10.3390/ph15050588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Phthalides are a group of compounds with relevant biological activities in different areas such as cytotoxicity, anti-stroke activity, neuroprotection, and inflammation, among others. In this study we designed and synthesized a series of 3-arylphthalide derivatives in order to identify their antioxidant and anti-inflammatory activities. The synthetic methodology was established in terms of atom and step economy through a dehydrative coupling reaction between 3-hydroxyphthalide and different properly functionalized arene rings. The evaluation of the antioxidant activity was performed by the ABTS assay and for the anti-inflammatory activity the inhibition of LPS-induced nitric oxide (NO) production in microglial cells Bv.2 and macrophage cells RAW 264.7 was measured. The synthesized compound 3-(2,4-dihydroxyphenyl)phthalide (5a) showed better antioxidant activity than the Trolox standard and caused strong inhibition of NO production in LPS-stimulated Bv.2 and RAW 264.7 cells. In addition, compound 5a reduced the expression of the pro-inflammatory cytokines Il1b and Il6 in RAW 264.7 cells. These results, which are the first account of the anti-inflammatory activity of 3-arylphthalides, suggest that compound 5a could be a promising candidate for more advanced anti-inflammatory studies.
Collapse
|
7
|
Vong CT, Chen Y, Chen Z, Gao C, Yang F, Wang S, Wang Y. Classical prescription Dachuanxiong Formula delays nitroglycerin-induced pain response in migraine mice through reducing endothelin-1 level and regulating fatty acid biosynthesis. JOURNAL OF ETHNOPHARMACOLOGY 2022; 288:114992. [PMID: 35032586 DOI: 10.1016/j.jep.2022.114992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/15/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dachuanxiong Formula (DCXF) is a classical Chinese medicine prescription and is composed of dried rhizomes from Ligusticum striatum DC. (Chuanxiong Rhizoma) and Gastrodia elata Bl. (Gastrodiae Rhizoma) at the ratio of 4:1 (w/w). It has been used as Chinese medicine prescription for thousands of years. DCXF is used traditionally to treat many diseases, including migraine, atherosclerosis and ischemic stroke. AIM OF THE STUDY This study aimed to investigate the effects of DCXF on pain response in migraine mice, and the underlying mechanisms using proteomics and bioinformatics analyses. MATERIALS AND METHODS DCXF extract was prepared by mixing Chuanxiong Rhizoma and Gastrodiae Rhizoma at a mass ratio of 4:1 (w/w). After extraction, the extract was filtered prior to high performance liquid chromatography (HPLC) analysis. Nitroglycerin (NTG) was used to establish a mouse migraine model, and a behaviour study was conducted by hot plate test. In addition, proteomics and bioinformatics studies were conducted to investigate the mechanisms of DCXF-mediating anti-migraine treatment. RESULTS Our results showed that there were significant differences in the latencies between NTG-treated and DCXF low dose- and high doses-treated groups at 30 min after NTG injection, this suggested that DCXF could ameliorate pain response in migraine mice. Besides, the plasma levels of endothelin-1 were also measured. NTG group significantly enhanced the endothelin-1 level compared to the control group. In contrast, DCXF low dose and high dose groups significantly reduced this level compared to NTG group. In addition, the underlying mechanisms were also investigated. Our results demonstrated that the anti-migraine treatment of DCXF was highly associated with fatty acid synthesis, suggesting that DCXF ameliorated pain response through reducing endothelin-1 level and regulating fatty acid synthesis. CONCLUSIONS The present study revealed the anti-migraine effect of DCXF in migraine mice and provided insights into the mechanisms of DCXF-mediating anti-migraine treatment.
Collapse
Affiliation(s)
- Chi Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yulong Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Zhejie Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Caifang Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Fengqing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China.
| | - Shengpeng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| |
Collapse
|
8
|
Dwivedi S, Kushalan S, Paithankar JG, D'Souza LC, Hegde S, Sharma A. Environmental toxicants, oxidative stress and health adversities: interventions of phytochemicals. J Pharm Pharmacol 2021; 74:516-536. [PMID: 33822130 DOI: 10.1093/jpp/rgab044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Oxidative stress is the most common factor mediating environmental chemical-induced health adversities. Recently, an exponential rise in the use of phytochemicals as an alternative therapeutics against oxidative stress-mediated diseases has been documented. Due to their free radical quenching property, plant-derived natural products have gained substantial attention as a therapeutic agent in environmental toxicology. The present review aimed to describe the therapeutic role of phytochemicals in mitigating environmental toxicant-mediated sub-cellular and organ toxicities via controlling cellular antioxidant response. METHODS The present review has covered the recently related studies, mainly focussing on the free radical scavenging role of phytochemicals in environmental toxicology. KEY FINDINGS In vitro and in vivo studies have reported that supplementation of antioxidant-rich compounds can ameliorate the toxicant-induced oxidative stress, thereby improving the health conditions. Improving the cellular antioxidant pool has been considered as a mode of action of phytochemicals. However, the other cellular targets of phytochemicals remain uncertain. CONCLUSIONS Knowing the therapeutic value of phytochemicals to mitigate the chemical-induced toxicity is an initial stage; mechanistic understanding needs to decipher for development as therapeutics. Moreover, examining the efficacy of phytochemicals against mixer toxicity and identifying the bioactive molecule are major challenges in the field.
Collapse
Affiliation(s)
- Shiwangi Dwivedi
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Sharanya Kushalan
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Jagdish Gopal Paithankar
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Leonard Clinton D'Souza
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| | - Smitha Hegde
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Bioresource and Biotechnology, Deralakatte, Mangaluru, India
| | - Anurag Sharma
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Division of Environmental Health and Toxicology, Deralakatte, Mangaluru, India
| |
Collapse
|
9
|
Li Y, Luo Z, Luo B, Lan Q, Fan J, Xue W, Miao J, Li Y, Tang L, Fan L. Design, Synthesis and Antifungal Activities of 6-Substituted 3-Butylphthalide Derivatives against Phytopathogenic Fungi. Chem Biodivers 2020; 17:e2000435. [PMID: 32687253 DOI: 10.1002/cbdv.202000435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/20/2020] [Indexed: 01/10/2023]
Abstract
In order to discover novel potential antifungal agents, a series of 6-substituted 3-butylphthalide derivatives were designed, synthesized and evaluated for their antifungal activities against nine phytopathogenic fungi. Preliminary bioassay tests showed that five 3-butylphthalide derivatives exhibited more potent antifungal activities than hymexazol at the concentration of 50 μg/mL. Especially, 3-butyl-6-nitro-2-benzofuran-1(3H)-one and 3-butyl-6-hydroxy-5-nitro-2-benzofuran-1(3H)-one had significant fungicidal activity against some phytopathogenic fungi. The EC50 of 3-butyl-6-nitro-2-benzofuran-1(3H)-one against FS, FO and FG were 6.6, 9.6 and 16.0 μg/mL, respectively. The EC50 of 3-butyl-6-hydroxy-5-nitro-2-benzofuran-1(3H)-one against BC, PO, VM, SS and AS were 6.3, 5.9, 10.0, 4.5 and 8.4 μg/mL, respectively. The preliminary structure-activity relationships (SARs) of all target compounds were also investigated.
Collapse
Affiliation(s)
- Yong Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Zhongfu Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Bilan Luo
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Qing Lan
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Judi Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Wei Xue
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, P. R. China
| | - Jing Miao
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Yi Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Lei Tang
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| | - Lingling Fan
- State Key Laboratory of Functions and Applications of Medicinal Plants, College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, P. R. China
| |
Collapse
|
10
|
Xie Q, Zhang L, Xie L, Zheng Y, Liu K, Tang H, Liao Y, Li X. Z‐ligustilide: A review of its pharmacokinetics and pharmacology. Phytother Res 2020; 34:1966-1991. [DOI: 10.1002/ptr.6662] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/17/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Qingxuan Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Linlin Zhang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Long Xie
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yu Zheng
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Kai Liu
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Hailong Tang
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Yanmei Liao
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| | - Xiaofang Li
- School of PharmacyChengdu University of Traditional Chinese Medicine Chengdu China
| |
Collapse
|
11
|
Fei F, Su N, Li X, Fei Z. Neuroprotection mediated by natural products and their chemical derivatives. Neural Regen Res 2020; 15:2008-2015. [PMID: 32394948 PMCID: PMC7716029 DOI: 10.4103/1673-5374.282240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Neuronal injuries can lead to various diseases such as neurodegenerative diseases, stroke, trauma, ischemia and, more specifically, glaucoma and optic neuritis. The cellular mechanisms that regulate neuronal death include calcium influx and calcium overload, excitatory amino acid release, oxidative stress, inflammation and microglial activation. Much attention has been paid to the effective prevention and treatment of neuroprotective drugs by natural products. This review summarizes the neuroprotective aspects of natural products, extracted from Panax ginseng, Camellia sinensis, soy and some other plants, and some of their chemical derivatives. Their antioxidative and anti-inflammatory action and their inhibition of apoptosis and microglial activation are assessed. This will provide new directions for the development of novel drugs and strategies to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Fei Fei
- Department of Ophthalmology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Ning Su
- Department of Radiation Oncology, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Xia Li
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
12
|
Hu J, Wei J, Zeng C, Duan F, Liu S, Tan H. Z-ligustilide protects BV-2 microglial cells against oxygen-glucose deprivation/reoxygenation-induced injury by inhibiting NLRP3 inflammasome activation and pyroptosis. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Z-ligustilide (LIG) is the main bioactive compound of Danggui essential oil, which was reported to exert neuroprotective and anti-inflammatory effects. However, the underlying mechanism remains largely elusive. The present study aims to investigate the effect of LIG on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and whether Nod-like receptor protein 3 (NLRP3) inflammasome and related pyroptosis are targets for the treatment of LIG. The OGD/R model was established in BV-2 microglial cells to investigate the protective effect of LIG. Cell viability and the release of lactate dehydrogenase (LDH) were determined by cell counting assay kit 8 and the LDH release assay kit. Western blot and immunofluorescence staining were carried out to detect NLRP3 inflammasome activation and pyroptosis. Active caspase-1 and TdT-mediated dUTP nick end labeling (TUNEL) double positive cells were defined as pyroptosis population. Statistical comparison among multiple groups was carried out by one-way analysis of variance (ANOVA) followed by least significant difference (LSD) test. Compared with control cells, OGD/R impaired cell viability and induced the release of LDH in BV-2 microglial cells, which were associated with the activation of NLRP3 inflammasome as evidenced by increased expression of NLRP3 and the cleavage of caspase-1 and interleukin-1 beta (IL-1β). In parallel with NLRP3 inflammasome activation, OGD/R induced pyroptotic cell death, manifested by the cleavage of gasdermin D (GSDMD) and increased population of active caspase-1+/TUNEL+ cells. All these events were significantly attenuated by treatment with LIG, indicating that LIG significantly inhibited NLRP3 inflammasome activation and pyroptosis, and ameliorated OGD/R-induced cell injury. In conclusion, LIG protects BV-2 microglial cells against OGD/R-induced injury via inhibition of NLRP3 inflammasome and pyroptosis.
Collapse
Affiliation(s)
- Jia Hu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Sijun Liu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
13
|
Preliminary studies on the anti-osteoporosis activity of Baohuoside I. Biomed Pharmacother 2019; 115:108850. [PMID: 31004988 DOI: 10.1016/j.biopha.2019.108850] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 11/20/2022] Open
Abstract
The aim of the present study was to investigate the anti-osteoporotic activity of Baohuoside I, an active component of Herba Epimedii. Effects of Baohuoside I on the differentiation of BMSCs and the formation of adipocytes were evaluated using alkaline phosphatase staining and methylene blue staining method, respectively. Osteoporosis model was established in ovariectomized rats prior to the measurement of the serum SOD and MDA levels as well as the expression of inflammatory cytokines protein in the rats' tissues after treatment with Baohuoside I using ELISA assay kits. The estrogen-like effect of Baohuoside I was also measured on HeLa cells. The positive rates of ALP staining in Baohuoside I groups were significantly higher (p < 0.01) compared with the normal group, with no obvious adipocyte formation observed in the groups that received Baohuoside I treatments. The levels of inflammatory markers (IL-1β, TNF-α, IL-6 and IL-8) in the treated groups were significantly lower (p < 0.05) than in the model group. Likewise, the treated groups exhibited a significantly higher (p < 0.05) serum levels of MDA compared with the model group, while SOD levels were markedly lower (p < 0.05) in a dose-dependent fashion. Baohuoside I showed no estrogen-like effect on HeLa cells upon treatment with the drug. Collectively, these results indicated that the anti-osteoporotic activity of Baohuoside I could be related to the induction of BMSCs differentiation into osteoblasts coupled with the inhibition of adipocyte formation, regulation of immune functions, and antioxidant activity.
Collapse
|
14
|
Cytoprotective Effects of Mangiferin and Z-Ligustilide in PAH-Exposed Human Airway Epithelium in Vitro. Nutrients 2019; 11:nu11020218. [PMID: 30678167 PMCID: PMC6412222 DOI: 10.3390/nu11020218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/12/2022] Open
Abstract
According to World Health Organisation (WHO) air pollution increases the risk of cardiovascular disorders, respiratory diseases, including COPD, lung cancer and acute respiratory infections, neuro-degenerative and other diseases. It is also known that various phytochemicals may mitigate such risks. This study tested if phytochemicals mangiferin (MNG) and Z-ligustilide (Z-LG) may protect PAH-exposed human lung bronchial epithelial cells (BEAS-2B). Organic PAH extract was obtained from the urban fine PM with high benzo(a)pyrene content collected in Eastern European mid-sized city during winter heating season. Cell proliferation traits and levels of intracellular oxidative stress were examined. Effect of MNG (0.5 µg/mL) alone or in combination with PAH on bronchial epithelium wound healing was evaluated. Both phytochemicals were also evaluated for their antioxidant properties in acellular system. Treatment with MNG produced strong cytoprotective effect on PAH-exposed cells (p < 0.01) while Z-LG (0.5 µg/mL) exhibited strong negative effect on cell proliferation in untreated and PAH-exposed cells (p < 0.001). MNG, being many times stronger antioxidant than Z-LG in chemical in vitro assays (p < 0.0001), was also able to decrease PAH-induced oxidative stress in the cell cultures (p < 0.05). Consequently MNG ameliorates oxidative stress, speeds up wound healing process and restores proliferation rate in PAH-exposed bronchial epithelium. Such protective effects of MNG in air pollution affected airway epithelium stimulate further research on this promising phytochemical.
Collapse
|
15
|
Castardo-de-Paula JC, de Campos BH, de Jager L, Amorim EDT, Zanluqui NG, de Farias CC, Higachi L, Pinge-Filho P, Barbosa DS, Martins-Pinge MC. Effects of Inducible Nitric Oxide Synthase Inhibition on Cardiovascular Risk of Adult Endotoxemic Female Rats: Role of Estrogen. Front Physiol 2018; 9:1020. [PMID: 30108513 PMCID: PMC6079304 DOI: 10.3389/fphys.2018.01020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 01/23/2023] Open
Abstract
Aim: Autonomic modulation responds to ovarian hormones and estrogen increases nitric oxide bioavailability. Also, females have minor susceptibility to sepsis and a higher survival rate. However, few studies have evaluated the role of estrogen in cardiovascular, autonomic, and oxidative parameters during initial endotoxemia and under inducible nitric oxide synthase (iNOS) inhibition in female rats. Methods: Female wistar rats were subjected to ovariectomy and divided into three groups: OVX (ovariectomized), OVX+E (OVX plus daily estradiol) and SHAM (false surgery). After 8 weeks, mean arterial pressure (MAP) and heart rate (HR) were recorded in non-anesthetized catheterized rats, before and after intravenous LPS injection, preceded by S-methylisothiourea sulfate (SMT) injection, or sterile saline. Cardiovascular recordings underwent spectral analysis for evaluation of autonomic modulation. Two hours after LPS, plasma was collected to assess total radical-trapping antioxidant (TRAP), nitrite levels (NO2), lipoperoxidation (LOOH), and paraoxonase 1 (PON1) activity. Results: Two hours after LPS, females treated with SMT presented a decrease of MAP, when compared to saline-LPS groups. At this same time, all SMT+LPS groups presented an increase of sympathetic and a decrease of parasympathetic modulation of HR. Two hours after saline+LPS, OVX presented decreased total radical-trapping antioxidant (TRAP) compared to SHAM. When treated with SMT+LPS, OVX did not altered TRAP, while estradiol reduced LOOH levels. Conclusion: iNOS would be responsible for sympathetic inhibition and consumption of antioxidant reserves of females during endotoxemia, since iNOS is inhibited, treatment with estradiol could be protective in inflammatory challenges.
Collapse
Affiliation(s)
| | - Blenda H de Campos
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Lorena de Jager
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Eric D T Amorim
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Nágela G Zanluqui
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Carine C de Farias
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital, State University of Londrina, Londrina, Brazil
| | - Luciana Higachi
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital, State University of Londrina, Londrina, Brazil
| | - Phileno Pinge-Filho
- Department of Pathological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| | - Décio S Barbosa
- Department of Pathology, Clinical and Toxicological Analysis, Center of Health Sciences, University Hospital, State University of Londrina, Londrina, Brazil
| | - Marli C Martins-Pinge
- Department of Physiological Sciences, Center of Biological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
16
|
Suo T, Liu J, Chen X, Yu H, Wang T, Li C, Wang Y, Wang C, Li Z. Combining Chemical Profiling and Network Analysis to Investigate the Pharmacology of Complex Prescriptions in Traditional Chinese Medicine. Sci Rep 2017; 7:40529. [PMID: 28084407 PMCID: PMC5233960 DOI: 10.1038/srep40529] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/07/2016] [Indexed: 12/28/2022] Open
Abstract
We present a paradigm, combining chemical profiling, absorbed components detection in plasma and network analysis, for investigating the pharmacology of combination drugs and complex formulae. On the one hand, the composition of the formula is investigated comprehensively via mass spectrometry analysis, followed by pharmacological studies of the fractions as well as the plasma concentration testing for the ingredients. On the other hand, both the candidate target proteins and the effective ingredients of the formula are predicted via analyzing the corresponding networks. The most probable active compounds can then be identified by combining the experimental results with the network analysis. In order to illustrate the performance of the paradigm, we apply it to the Danggui-Jianzhong formula (DJF) from traditional Chinese medicine (TCM) and predict 4 probably active ingredients, 3 of which are verified experimentally to display anti-platelet activity, i.e., (Z)-Ligustilide, Licochalcone A and Pentagalloylglucose. Moreover, the 3-compound formulae composed of these 3 chemicals show better anti-platelet activity than DJF. In addition, the paradigm predicts the association between these 3 compounds and COX-1, and our experimental validation further shows that such association comes from the inhibitory effects of the compounds on the activity of COX-1.
Collapse
Affiliation(s)
- Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Jinping Liu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Xi Chen
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Hua Yu
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Tenglong Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Congcong Li
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Yuefei Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Chunhua Wang
- Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| | - Zheng Li
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China.,Tianjin Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, PR China
| |
Collapse
|
17
|
Chang CW, Chen YM, Hsu YJ, Huang CC, Wu YT, Hsu MC. Protective effects of the roots of Angelica sinensis on strenuous exercise-induced sports anemia in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:169-178. [PMID: 27497636 DOI: 10.1016/j.jep.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 07/25/2016] [Accepted: 08/03/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sports anemia is a persistent and severe problem in athletes owing to strenuous exercise-induced oxidative stress and hepcidin upregulation. The roots of Angelica sinensis (AS), a familiar traditional Chinese medicine, has been used for replenishing blood since antiquity. AIM OF THE STUDY To evaluate the effects of ethanolic AS extract in a 4-week study on sports anemia in female Wistar rats. MATERIALS AND METHODS To induce anemia, a strenuous exercise protocol consisting of running and swimming was employed with increasing intensity. Animals were randomly assigned to the following groups: control group; strenuous exercise group; and strenuous exercise and AS extract-treated group (300mgkg-1d-1). After 4 weeks, rats underwent exhaustive swimming and forelimb grip strength test. The blood biochemical markers and hepatic antioxidant activities were determined. Hepatic interleukin-6 and muscle glycogen were observed through immunohistochemical and Periodic acid-Schiff staining, respectively. RESULTS AS extract (consisting of ferulic acid, Z-ligustilide, and n-butylidenephthalide) treatment improved forelimb grip strength and rescued exercise-induced anemia by significantly elevating the red blood cell counts and hemoglobin concentrations as well as hematocrit levels (p<0.05). AS modulated the iron metabolism through decreasing serum hepcidin-25 concentrations by 33.0% (p<0.05) and increasing serum iron levels by 34.3% (p<0.01). The hepatic injury marker serum alanine aminotransferase concentrations were also reduced, followed by increased antioxidant enzyme catalase expression in the liver (p<0.05). Furthermore, substantial attenuation of hepatic interleukin-6 expression and preservation of muscle glycogen content suggested the additional roles of AS acting on sports anemia and physical performance. CONCLUSION Our findings evidenced a novel and promising therapeutic approach for AS treatment for rescuing the anemic condition induced following 4 weeks of strenuous exercise.
Collapse
Affiliation(s)
- Chih-Wei Chang
- School of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd, Sanmin Dist., Kaohsiung 80708, Taiwan.
| | - Yi-Ming Chen
- Graduate Institute of Sports Science, National Taiwan Sport University, 250, Wen-Hua 1st Rd, Guishan Dist., Taoyuan 33301, Taiwan
| | - Yi-Ju Hsu
- Graduate Institute of Sports Science, National Taiwan Sport University, 250, Wen-Hua 1st Rd, Guishan Dist., Taoyuan 33301, Taiwan
| | - Chi-Chang Huang
- Graduate Institute of Sports Science, National Taiwan Sport University, 250, Wen-Hua 1st Rd, Guishan Dist., Taoyuan 33301, Taiwan
| | - Yu-Tse Wu
- School of Pharmacy, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd, Sanmin Dist., Kaohsiung 80708, Taiwan.
| | - Mei-Chich Hsu
- Department of Sports Medicine, Kaohsiung Medical University, 100, Shih-Chuan 1st Rd, Sanmin Dist., Kaohsiung 80708, Taiwan.
| |
Collapse
|
18
|
Danggui Buxue Tang Attenuates Tubulointerstitial Fibrosis via Suppressing NLRP3 Inflammasome in a Rat Model of Unilateral Ureteral Obstruction. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9368483. [PMID: 27872860 PMCID: PMC5107862 DOI: 10.1155/2016/9368483] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 02/22/2016] [Accepted: 04/17/2016] [Indexed: 12/27/2022]
Abstract
Inflammation significantly contributes to the progression of chronic kidney disease (CKD). This study aimed to characterize Danggui Buxue Tang (DBT) renoprotection and relationship with NOD-like receptors family pyrin domain-containing 3 (NLRP3) inflammasome expression in rats with unilateral ureteral obstruction (UUO). Sprague-Dawley rats were subjected to UUO and randomly assigned to untreated UUO, enalapril-treated (10 mg/kg/day), and DBT-treated (9 g/kg/day) groups. Sham-operated rats served as controls, with 8 rats in each group. All rats were sacrificed for blood and renal specimen collection at 14 days after UUO. Untreated UUO rats exhibited azotemia, intense tubulointerstitial collagen deposition, upregulations of tubulointerstitial injury index, augmentation levels of collagen I (Col I), α-smooth muscle actin (α-SMA), NLRP3, apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), pro-caspase-1, caspase-1, IL-1β, and pro-IL-1β. DBT treatment significantly attenuated interstitial collagen deposition and tubulointerstitial injury, lowering Col I and α-SMA levels. Synchronous expressions of NLRP3, ASC, pro-caspase-1, caspase-1, pro-IL-1β, and IL-1β decreased in renal tissue. In comparison to enalapril, DBT significantly reduced tubulointerstitial injury, interstitial collagen deposition, and expressions of Col I and IL-1β. Thus, DBT offers renoprotection in UUO rats, which was associated with suppressing NLRP3 inflammasome expression and following reduction of the secretion of cytokine IL-1β. The mechanisms of multitargets of traditional Chinese medicine can be better used for antifibrotic treatment.
Collapse
|
19
|
Del-Ángel M, Nieto A, Ramírez-Apan T, Delgado G. Anti-inflammatory effect of natural and semi-synthetic phthalides. Eur J Pharmacol 2015; 752:40-8. [DOI: 10.1016/j.ejphar.2015.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/13/2015] [Accepted: 01/15/2015] [Indexed: 11/27/2022]
|
20
|
Lim DW, Kim YT. Anti-osteoporotic effects of Angelica sinensis (Oliv.) Diels extract on ovariectomized rats and its oral toxicity in rats. Nutrients 2014; 6:4362-72. [PMID: 25325255 PMCID: PMC4210922 DOI: 10.3390/nu6104362] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 10/06/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Angelica sinensis root is one of the herbs most commonly used in China; it is also often included in dietary supplements for menopause in Europe and North America. In the present study, we examined the anti-osteoporotic effects of A. sinensis extract in an ovariectomized (OVX) rat model of osteoporosis as well as toxicity of the extract after repeated oral administration. The OVX rats were treated with 17β-estradiol (10 μg/kg i.p. once daily) or A. sinensis extract (30, 100, and 300 mg/kg, p.o. once daily) for four weeks. The bone (femur) mineral density (BMD) of rats treated with the extract (300 mg/kg) was significantly higher than that of the OVX-control, reaching BMD of the estradiol group. Markers of bone turnover in osteoporosis, serum alkaline phosphatase, collagen type I C-telopeptide and osteocalcin, were significantly decreased in the extract group. The body and uterus weight and serum estradiol concentration were not affected, and no treatment-related toxicity was observed during extract administration in rats. The results obtained indicate that A. sinensis extract can prevent the OVX-induced bone loss in rats via estrogen-independent mechanism.
Collapse
Affiliation(s)
- Dong Wook Lim
- Food Resource Research Center, Korea Food Research Institute, Seongnam 463-746, Korea.
| | - Yun Tai Kim
- Research Group of Food Functionality, Korea Food Research Institute, Seongnam 463-746, Korea.
| |
Collapse
|
21
|
He B, Wang J. Chitooligosaccharides prevent osteopenia by promoting bone formation and suppressing bone resorption in ovariectomised rats: possible involvement of COX-2. Nat Prod Res 2014; 29:359-62. [PMID: 25075626 DOI: 10.1080/14786419.2014.942301] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Chitooligosaccharides (CHOS) added in diet have been found as potent calcium fortifiers in conditions of Ca(2+) deficiency such as osteoporosis. In this study, we found that pharmaceutical intervention using CHOS prevented ovariectomy (OVX)-induced bone mineral density loss and the deterioration of trabecular microarchitecture in a dose-dependent manner (p < 0.05 or 0.01). CHOS (125, 250 mg/kg) suppressed the serum levels of bone resorption biomarkers CTx and TRACP5b induced by OVX (p < 0.05), but increased the levels of osteogenic markers ALP and OC by 11.3-11.6% and 10.7-15.2% of OVX group (p < 0.05), suggesting the exact pharmacological action of CHOS in the control of osteoporosis which may be the result of both promoting bone formation and suppressing bone resorption. Bone turnover-modulating effects of CHOS appear related to their anti-inflammatory capacity to down-regulate mRNA and protein expression of COX-2 (17.2-32.2% and 16.4-21.9% of OVX group, p < 0.05 or 0.01), a key mediator linking between inflammation and osteoporosis.
Collapse
Affiliation(s)
- Bingshu He
- a Department of Orthopedic Surgery , Hubei Woman and Child Hospital , Wuhan 430070 , China
| | | |
Collapse
|
22
|
Optimization of supercritical CO2 extraction of different anatomical parts of lovage (Levisticum officinale Koch.) using response surface methodology and evaluation of extracts composition. J Supercrit Fluids 2014. [DOI: 10.1016/j.supflu.2014.01.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Phytochemical and pharmacological review of da chuanxiong formula: a famous herb pair composed of chuanxiong rhizoma and gastrodiae rhizoma for headache. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:425369. [PMID: 24066012 PMCID: PMC3771465 DOI: 10.1155/2013/425369] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/04/2013] [Accepted: 06/24/2013] [Indexed: 02/02/2023]
Abstract
Chronic headache such as migraine and nervous headache has become one of the most common locations of pain and one of the most difficult diseases to recover due to its numerous causes and inconvenience to keep acesodyne administration for a long time. However, there are a series of treatment theories and herbal formulas for this disease in traditional Chinese medicine (TCM), in which Da Chuanxiong formula (DCXF), a herb pair composed of Chuanxiong Rhizoma (CR), Chuanxiong in Chinese, and Gastrodiae Rhizoma (GR) called as Tianma in China, is a greatly classic representative. This formula has been used for headaches via dispelling wind pathogen and dissipating blood stasis for many years in TCM. In recent years, the efficiency and representativeness of DCXF have garnered many researchers' attention. To reveal the compatibility mechanism and develop innovative Chinese herb, herein ethnopharmacological relevance, chemical characters, and pharmacological actions of DCXF are detailed. It is expected to give a comprehensive interpretation of DCXF, namely, Chuanxiong Tianma herb pair (CTHP), to inherit the essence of herb pair and innovate drug delivery system of this prescription.
Collapse
|