1
|
Carneiro PH, Jimenez-Posada EV, Lopes E, Mohana-Borges R, Biering SB, Harris E. The ApoA1-mimetic peptide 4F blocks flavivirus NS1-triggered endothelial dysfunction and protects against lethal dengue virus challenge. Antiviral Res 2024; 231:106002. [PMID: 39260777 DOI: 10.1016/j.antiviral.2024.106002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/11/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Flavivirus infections result in a variety of outcomes, from clinically inapparent infections to severe, sometimes fatal cases characterized by hemorrhagic manifestations and vascular leakage leading to shock (dengue), meningomyeloencephalitis (West Nile), and congenital abnormalities (Zika). Although there are approved vaccines against several flaviviruses, potentially enhancing cross-reactive immune responses have complicated the development and implementation of vaccines against dengue and Zika viruses, and no specific therapeutics currently exist. The flavivirus nonstructural protein 1 (NS1) is a promising antiviral target because it is a conserved multifunctional virulence factor that directly triggers vascular leak. We previously showed that interactions between NS1 and the ApoA1 lipoprotein modulate DENV infection. Here, we evaluated the potential of the ApoA1-mimetic peptide, 4F, to interfere with endothelial dysfunction mediated by the NS1 protein of dengue, Zika, and West Nile flaviviruses. In an in vitro model consisting of human endothelial cell monolayers, 4F inhibited NS1-induced hyperpermeability, as measured by a transendothelial electrical resistance assay, and prevented NS1-triggered disruption of the endothelial glycocalyx layer. We also demonstrate that treatment with 4F inhibited NS1 interaction with endothelial cells. Finally, we show that 4F protects against lethal DENV challenge in a mouse model, reducing morbidity and mortality in a dose-dependent manner. Our data demonstrate the potential of 4F to inhibit flavivirus NS1-mediated pathology and severe dengue disease in mice and suggest that 4F can also serve as a molecular tool to probe different NS1 functions in vitro and in vivo.
Collapse
Affiliation(s)
- Pedro H Carneiro
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - E Vanessa Jimenez-Posada
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Eduarda Lopes
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Ronaldo Mohana-Borges
- Laboratório de Biotecnologia e Bioengenharia Estrutural, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Scott B Biering
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA; Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
2
|
Rani A, Stadler JT, Marsche G. HDL-based therapeutics: A promising frontier in combating viral and bacterial infections. Pharmacol Ther 2024; 260:108684. [PMID: 38964560 DOI: 10.1016/j.pharmthera.2024.108684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/03/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Low levels of high-density lipoprotein (HDL) and impaired HDL functionality have been consistently associated with increased susceptibility to infection and its serious consequences. This has been attributed to the critical role of HDL in maintaining cellular lipid homeostasis, which is essential for the proper functioning of immune and structural cells. HDL, a multifunctional particle, exerts pleiotropic effects in host defense against pathogens. It functions as a natural nanoparticle, capable of sequestering and neutralizing potentially harmful substances like bacterial lipopolysaccharides. HDL possesses antiviral activity, preventing viruses from entering or fusing with host cells, thereby halting their replication cycle. Understanding the complex relationship between HDL and the immune system may reveal innovative targets for developing new treatments to combat infectious diseases and improve patient outcomes. This review aims to emphasize the role of HDL in influencing the course of bacterial and viral infections and its and its therapeutic potential.
Collapse
Affiliation(s)
- Alankrita Rani
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Julia T Stadler
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria
| | - Gunther Marsche
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Styria, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Styria, Austria.
| |
Collapse
|
3
|
Zeng Y, Zeng Q, Wen Y, Li J, Xiao H, Yang C, Luo R, Liu W. Apolipoprotein A-I inhibited group II innate lymphoid cell response mediated by microRNA-155 in allergic rhinitis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100212. [PMID: 38371899 PMCID: PMC10869247 DOI: 10.1016/j.jacig.2024.100212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/18/2023] [Accepted: 12/04/2023] [Indexed: 02/20/2024]
Abstract
Background Group 2 innate lymphoid cells (ILC2s) have been found to take part in type 2 inflammation by secreting TH2 cytokines. Apolipoprotein A-I (Apo-AI), a major structural and functional protein of high-density lipoproteins, has anti-inflammatory effects on neutrophils, monocytes, macrophages, and eosinophils. However, its effects on ILC2s are not well characterized. Objective We aimed to investigate the effect of Apo-AI on the proliferation and function of ILC2s as well as its possible mechanism. Methods The protein expression of Apo-AI and the percentage of ILC2s in peripheral blood between 20 allergic rhinitis patients and 20 controls were detected by ELISA and flow cytometry. The effect of Apo-AI and miR-155 on ILC2 proliferation and function was detected by tritiated thymidine incorporation and ELISA. Anima models were adopted to verify the effect of Apo-AI in vivo. Results Elevated expression of Apo-AI was observed in allergic rhinitis patients. Apo-AI promotes ABCA1 expression by ILC2s, which can be inhibited by anti-Apo-AI. Apo-AI decreased ILC2 proliferation and the microRNA levels of GATA3 and RORα from ILC2s. The miR-155 overexpression promoted the upregulation of GATA3 and type II cytokines from ILC2s, while the addition of Apo-AI or miR-155 inhibitor significantly inhibited expression of GATA3 and type II cytokines by ILC2s. Apo-AI-/- mice showed as enhanced allergen-induced airway inflammation. The miR-155 inhibitor can reverse the enhanced allergen-induced airway inflammation in Apo-AI-/- mice, while miR-155 mimics can reverse the decreased allergen-induced airway inflammation in Apo-AI-treated mice. Conclusion Apo-AI suppressed the proliferation and function of ILC2s through miR-155 in allergic rhinitis. Our data provide new insights into the mechanism of allergen-induced airway inflammation.
Collapse
Affiliation(s)
- Yinhui Zeng
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Qingxiang Zeng
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Yueqiang Wen
- Department of Nephrology, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jinyuan Li
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Haiqing Xiao
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Chao Yang
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Renzhong Luo
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Wenlong Liu
- Department of Otolaryngology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| |
Collapse
|
4
|
Viana GDA, da Costa MDR, da Silva ME, Duque BR, de Siqueira EA, Martins AMC, Alves RDS, de Menezes RRPPB, de Queiroz MGR, Sampaio TL. Serum il-18 and rs187238 single nucleotide polymorphism are associated with high-density lipoprotein changes in covid-19 outpatients. Int Immunopharmacol 2023; 122:110645. [PMID: 37453156 DOI: 10.1016/j.intimp.2023.110645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
AIM COVID-19 is an inflammatory disease and its prognosis is associated with cardiovascular risk, which can be associated with changes in lipoprotein metabolism. The single nucleotide polymorphism (SNP) rs187238 of Interleukin (IL)-18 is extensively reported in association with worsening inflammatory and cardiovascular disease (CVD). This study evaluated the association of IL-18 levels and its SNP rs187238 with lipoprotein profile changes in COVID-19 outpatients. METHODS Observational, analytical, cross-sectional study that evaluated 250 patients with respiratory syndrome, 36% (n = 90) with COVID-19. Serum total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), low-density lipoprotein cholesterol (LDL-c), triglycerides (TG), apolipoproteins A-I and B (Apo A-I and Apo B) and IL-18 levels were determined. Polymorphism genotyping was done by real-time polymerase chain reaction (qPCR). The significance level was p < 0.05. RESULTS Patients with COVID-19 showed a reduction in TC and HDL-c, without difference in IL-18. HDL-c and LDL-c had a high frequency outside the reference values. There was a negative correlation of IL-18 with HDL-c and a positive correlation with Apo B/Apo A-I ratio. The frequencies of the C (wild) and G (polymorphic) alleles between patients with and without COVID-19 followed the Hardy-Weinberg equilibrium. However, COVID-19 was associated with reduced HDL-c and Apo A-I values in patients with the CC genotype. CONCLUSION IL-18 levels and its SNP rs187238 were associated with decreased HDL-c and Apo A-I in COVID-19 outpatients.
Collapse
Affiliation(s)
- Glautemberg de Almeida Viana
- Program in Pharmaceutical Sciences; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | | | - Mateus Edson da Silva
- Program in Pharmaceutical Sciences; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Bruna Ribeiro Duque
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Erlânia Alves de Siqueira
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Alice Maria Costa Martins
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | - Renata de Sousa Alves
- Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil
| | | | | | - Tiago Lima Sampaio
- Program in Pharmaceutical Sciences; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil; Department of Clinical and Toxicological Analysis; Faculty of Pharmacy, Dentistry and Nursing; Federal University of Ceará, Brazil.
| |
Collapse
|
5
|
Role of Short Chain Fatty Acids and Apolipoproteins in the Regulation of Eosinophilia-Associated Diseases. Int J Mol Sci 2021; 22:ijms22094377. [PMID: 33922158 PMCID: PMC8122716 DOI: 10.3390/ijms22094377] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Eosinophils are key components of our host defense and potent effectors in allergic and inflammatory diseases. Once recruited to the inflammatory site, eosinophils release their cytotoxic granule proteins as well as cytokines and lipid mediators, contributing to parasite clearance but also to exacerbation of inflammation and tissue damage. However, eosinophils have recently been shown to play an important homeostatic role in different tissues under steady state. Despite the tremendous progress in the treatment of eosinophilic disorders with the implementation of biologics, there is an unmet need for novel therapies that specifically target the cytotoxic effector functions of eosinophils without completely depleting this multifunctional immune cell type. Recent studies have uncovered several endogenous molecules that decrease eosinophil migration and activation. These include short chain fatty acids (SCFAs) such as butyrate, which are produced in large quantities in the gastrointestinal tract by commensal bacteria and enter the systemic circulation. In addition, high-density lipoprotein-associated anti-inflammatory apolipoproteins have recently been shown to attenuate eosinophil migration and activation. Here, we focus on the anti-pathogenic properties of SCFAs and apolipoproteins on eosinophil effector function and provide insights into the potential use of SCFAs and apolipoproteins (and their mimetics) as effective agents to combat eosinophilic inflammation.
Collapse
|
6
|
Hamid T, Ismahil MA, Bansal SS, Patel B, Goel M, White CR, Anantharamaiah GM, Prabhu SD. The Apolipoprotein A-I Mimetic L-4F Attenuates Monocyte Activation and Adverse Cardiac Remodeling after Myocardial Infarction. Int J Mol Sci 2020; 21:ijms21103519. [PMID: 32429244 PMCID: PMC7279031 DOI: 10.3390/ijms21103519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/01/2023] Open
Abstract
Excessive inflammation after myocardial infarction (MI) can promote infarct expansion and adverse left ventricular (LV) remodeling. L-4F, a mimetic peptide of apolipoprotein A-I (apoA-I), exhibits anti-inflammatory and anti-atherogenic properties; however, whether L-4F imparts beneficial effects after myocardial infarction (MI) is unknown. Here we demonstrate that L-4F suppresses the expansion of blood, splenic, and myocardial pro-inflammatory monocytes and macrophages in a mouse model of reperfused MI. Changes in immune cell profiles were accompanied by alleviation of post-MI LV remodeling and dysfunction. In vitro, L-4F also inhibited pro-inflammatory and glycolytic gene expression in macrophages. In summary, L-4F treatment prevents prolonged and excessive inflammation after MI, in part through modulation of pro-inflammatory monocytes and macrophages, and improves post-MI LV remodeling. These data suggest that L-4F could be a used as a therapeutic adjunct in humans with MI to limit inflammation and alleviate the progression to heart failure.
Collapse
Affiliation(s)
- Tariq Hamid
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
- Correspondence: (T.H.); (S.D.P.)
| | - Mohamed Ameen Ismahil
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
| | - Shyam S. Bansal
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
| | - Bindiya Patel
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
| | - Mehak Goel
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
| | - C. Roger White
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
| | - G. M. Anantharamaiah
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA;
| | - Sumanth D. Prabhu
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (M.A.I.); (S.S.B.); (B.P.); (M.G.); (C.R.W.)
- Medical Service, Birmingham VAMC Birmingham, Birmingham, AL 35233, USA
- Correspondence: (T.H.); (S.D.P.)
| |
Collapse
|
7
|
Peng M, Zhang Q, Liu Y, Guo X, Ju J, Xu L, Gao Y, Chen D, Mu D, Zhang R. Apolipoprotein A-I Mimetic Peptide L-4F Suppresses Granulocytic-Myeloid-Derived Suppressor Cells in Mouse Pancreatic Cancer. Front Pharmacol 2020; 11:576. [PMID: 32425796 PMCID: PMC7204910 DOI: 10.3389/fphar.2020.00576] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/15/2020] [Indexed: 01/04/2023] Open
Abstract
L-4F is an apolipoprotein A-I (ApoA-I) mimetic peptide, it was engineered to imitate the anti-inflammatory and anti-oxidative activity of ApoA-I. In this paper, H7 cell was used to construct a mouse model of pancreatic cancer in situ, and the mice were treated with L-4F. Then, the development of pancreatic cancer and myeloid-derived suppressor cells (MDSCs) infiltration were investigated in vivo. After L-4F treatment, the differentiation, proliferation and apoptosis of MDSCs were detected in vitro. Moreover, we test its effects on the immunosuppressive function of MDSCs ex vivo. The results show that L-4F significantly reduced the tumorigenicity of H7 cells. L-4F suppressed granulocytic myeloid-derived suppressor cells (PMN-MDSCs) differentiation and inhibited the accumulation of PMN-MDSCs in the mouse spleen and tumor tissue. L-4F weakened the immunosuppressive function of MDSCs, resulting in decreased production of ROS and H2O2 by MDSCs, and increased T cell proliferation, interferon γ and tumor necrosis factor β secretion, and CD3+CD4+ T and CD3+CD8+ T cell infiltration into the mouse spleen and pancreatic cancer tissue. Furthermore, L-4F significantly down regulated the STAT3 signaling pathway in PMN-MDSCs. These results indicated that L-4F exerts an effective anti-tumor and immunomodulatory effect in pancreatic cancer by inhibiting PMN-MDSCs.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Qi Zhang
- Tianjin Key Laboratory of Acute Abdomen Disease Associated Organ Injury and ITCWM Repair, Institute of Acute Abdominal Diseases, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqing Liu
- Department of Breast Surgery, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Hormones and Development (Ministry of Health), Tianjin Medical University, Tianjin, China
| | - Jiyu Ju
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Lingzhi Xu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Yuanyuan Gao
- Department of Pharmaceutics, School of Pharmacy, Weifang Medical University, Weifang, China
| | - Daquan Chen
- School of Pharmacy, Yantai University, Yantai, China
| | - Dongzhen Mu
- Department of Immunology, School of Basic Medical Sciences, Weifang Medical University, Weifang, China
| | - Rongxin Zhang
- Guangdong Province Key Laboratory for Biotechnology Drug Candidates, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
8
|
Meloni BP, Mastaglia FL, Knuckey NW. Cationic Arginine-Rich Peptides (CARPs): A Novel Class of Neuroprotective Agents With a Multimodal Mechanism of Action. Front Neurol 2020; 11:108. [PMID: 32158425 PMCID: PMC7052017 DOI: 10.3389/fneur.2020.00108] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 01/30/2020] [Indexed: 12/17/2022] Open
Abstract
There are virtually no clinically available neuroprotective drugs for the treatment of acute and chronic neurological disorders, hence there is an urgent need for the development of new neuroprotective molecules. Cationic arginine-rich peptides (CARPs) are an expanding and relatively novel class of compounds, which possess intrinsic neuroprotective properties. Intriguingly, CARPs possess a combination of biological properties unprecedented for a neuroprotective agent including the ability to traverse cell membranes and enter the CNS, antagonize calcium influx, target mitochondria, stabilize proteins, inhibit proteolytic enzymes, induce pro-survival signaling, scavenge toxic molecules, and reduce oxidative stress as well as, having a range of anti-inflammatory, analgesic, anti-microbial, and anti-cancer actions. CARPs have also been used as carrier molecules for the delivery of other putative neuroprotective agents across the blood-brain barrier and blood-spinal cord barrier. However, there is increasing evidence that the neuroprotective efficacy of many, if not all these other agents delivered using a cationic arginine-rich cell-penetrating peptide (CCPPs) carrier (e.g., TAT) may actually be mediated largely by the properties of the carrier molecule, with overall efficacy further enhanced according to the amino acid composition of the cargo peptide, in particular its arginine content. Therefore, in reviewing the neuroprotective mechanisms of action of CARPs we also consider studies using CCPPs fused to a putative neuroprotective peptide. We review the history of CARPs in neuroprotection and discuss in detail the intrinsic biological properties that may contribute to their cytoprotective effects and their usefulness as a broad-acting class of neuroprotective drugs.
Collapse
Affiliation(s)
- Bruno P Meloni
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Frank L Mastaglia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| | - Neville W Knuckey
- Department of Neurosurgery, QEII Medical Centre, Sir Charles Gairdner Hospital, Nedlands, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia.,Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
9
|
Guirgis FW, Dodani S, Leeuwenburgh C, Moldawer L, Bowman J, Kalynych C, Grijalva V, Reddy ST, Jones AE, Moore FA. HDL inflammatory index correlates with and predicts severity of organ failure in patients with sepsis and septic shock. PLoS One 2018; 13:e0203813. [PMID: 30216360 PMCID: PMC6138388 DOI: 10.1371/journal.pone.0203813] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
Objective High density lipoprotein (HDL) is important for defense against sepsis but becomes dysfunctional (Dys-HDL) during inflammation. We hypothesize that Dys-HDL correlates with organ dysfunction (sequential organ failure assessment (SOFA) score) early sepsis. Methods A prospective cohort study of adult ED sepsis patients enrolled within 24 hours. Results Eighty eight patients were analyzed. Dys-HDL (expressed as HDL inflammatory index (HII)) correlated with SOFA at enrollment (r = 0.23, p = 0.024) and at 48 hours (r = 0.24, p = 0.026) but HII change over the first 48 hours did not correlate with change in SOFA (r = 0.06, p = 0.56). Enrollment HII was significantly different in patients with most severe organ failure (2.31, IQR 1.33–5.2) compared to less severe organ failure (1.81, IQR 1.23–2.64, p = 0.043). Change in HII over 48 hours was significantly different for in-hospital non-survivors (-0.45, IQR-2.6, -0.14 p = 0.015) and for 28-day non-survivors (-1.12, IQR -1.52, 0.12, p = 0.044). In a multivariable linear regression equation (R2 = 0.13), for each unit HII increase, 48-hour SOFA increased by 0.72 (p = 0.009). Conclusion HII correlated with SOFA and predicted 48-hour SOFA score in early sepsis. Future studies are needed to delineate potential mechanisms. Trial registration NCT02370186. Registered February 24, 2015.
Collapse
Affiliation(s)
- Faheem W. Guirgis
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States of America
- * E-mail:
| | - Sunita Dodani
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, United States of America
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatrics, University of Florida, College of Medicine, Gainesville, FL, United States of America
| | - Lyle Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| | - Jennifer Bowman
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States of America
| | - Colleen Kalynych
- Department of Emergency Medicine, University of Florida College of Medicine-Jacksonville, Jacksonville, FL, United States of America
| | - Victor Grijalva
- Department of Medicine, Molecular & Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Srinivasa T. Reddy
- Department of Medicine, Molecular & Medical Pharmacology, UCLA School of Medicine, Los Angeles, CA, United States of America
| | - Alan E. Jones
- Department of Emergency Medicine, University of Mississippi College of Medicine, Jackson, MS, United States of America
| | - Frederick A. Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States of America
| |
Collapse
|
10
|
Milani D, Bakeberg MC, Cross JL, Clark VW, Anderton RS, Blacker DJ, Knuckey NW, Meloni BP. Comparison of neuroprotective efficacy of poly-arginine R18 and R18D (D-enantiomer) peptides following permanent middle cerebral artery occlusion in the Wistar rat and in vitro toxicity studies. PLoS One 2018. [PMID: 29513757 PMCID: PMC5841795 DOI: 10.1371/journal.pone.0193884] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have previously demonstrated that arginine-rich and poly-arginine peptides possess potent neuroprotective properties, with poly-arginine peptide R18 identified as being highly effective at reducing infarct volume following middle cerebral artery occlusion (MCAO) in the Sprague Dawley rat. Since peptides synthesised using D-isoform amino acids have greater stability than L-isoform peptides due to increased resistance to proteolytic degradation, they represent potentially more effective peptide therapeutics. Therefore we compared the neuroprotective efficacy of R18 and its D-enantiomer R18D following permanent MCAO in the Wistar rat. Furthermore, as increased peptide stability may also increase peptide toxicity, we examined the effects of R18 and R18D on cultured cortical neurons, astrocytes, brain endothelial cells (bEND.3), and embryonic kidney cells (HEK293) following a 10-minute or 24-hour peptide exposure duration. The in vivo studies demonstrated that R18D resulted in a greater reduction in mean infarct volume compared to R18 (33%, p = 0.004 vs 12%, p = 0.27) after intravenous administration at 300 nmol/kg 30 minutes after MCAO. Both R18D and R18 reduced cerebral hemisphere swelling to a comparable degree (27%, p = 0.03 and 30%, p = 0.02), and improved neurological assessment scores (1.5, p = 0.02 and 2, p = 0.058 vs 3 for vehicle). No abnormal histological findings specific to peptide treatments were observed in hematoxylin and eosin stained sections of kidney, liver, spleen, lung and heart. In vitro studies demonstrated that R18 and R18D were most toxic to neurons, followed by astrocytes, HEK293 and bEND.3 cells, but only at high concentrations and/or following 24-hour exposure. These findings further highlight the neuroprotective properties of poly-arginine peptides, and indicate that R18D at the dose examined is more potent than R18 in Wistar rats, and justify continued investigation of the R18 peptide as a novel neuroprotective agent for stroke.
Collapse
Affiliation(s)
- Diego Milani
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Megan C. Bakeberg
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
| | - Jane L. Cross
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - Vince W. Clark
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - Ryan S. Anderton
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- School of Heath Sciences and Institute for Health Research, The University Notre Dame Australia, Fremantle, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - David J. Blacker
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- Department of Neurology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Neville W. Knuckey
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
| | - Bruno P. Meloni
- Perron Institute for Neurological and Translational Sciences, Nedlands, Australia, Western Australia, Nedlands, Western Australia, Australia
- Department of Neurosurgery, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
- Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, Australia
- * E-mail:
| |
Collapse
|
11
|
Peng M, Zhang Q, Cheng Y, Fu S, Yang H, Guo X, Zhang J, Wang L, Zhang L, Xue Z, Li Y, Da Y, Yao Z, Qiao L, Zhang R. Apolipoprotein A-I mimetic peptide 4F suppresses tumor-associated macrophages and pancreatic cancer progression. Oncotarget 2017; 8:99693-99706. [PMID: 29245934 PMCID: PMC5725125 DOI: 10.18632/oncotarget.21157] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 09/08/2017] [Indexed: 01/07/2023] Open
Abstract
Pancreatic cancer is an aggressive malignancy that is unresponsive to conventional radiation and chemotherapy. Therefore, development of novel immune therapeutic strategies is urgently needed. L-4F, an Apolipoprotein A-I (ApoA-I) mimetic peptide, is engineered to mimic the anti-inflammatory and anti-oxidative functionalities of ApoA-I. In this work, H7 cells were orthotopically implanted in C57BL/6 mice and treated with L-4F. Then, pancreatic cancer progression and the inflammatory microenvironment were investigated in vivo. The cytotoxicity of L-4F toward H7 cells was assessed in vitro. Furthermore, we investigated the effects of L-4F on macrophage polarization by analyzing the polarization and genes of mouse bone marrow-derived macrophages in vitro. The results show that L-4F substantially reduced the tumorigenicity of H7 cells. L-4F inhibited inflammation by reducing the accumulation of inflammatory cells, such as IL-17A-, IL-4-, GM-CSF-, IL-1β-, and IL-6-producing cells and Th1 and Th17. Notably, L-4F also decreased the percentage of macrophages in tumor tissues, especially M2 macrophages (CD11b+F4/80+CD206+), which was also confirmed in vitro. Additionally, the expression of the M2 marker genes Arg1, MRC1, and CCL22 and the inflammatory genes IL-6, iNOS, and IL-12 was decreased by L-4F, indicating that L-4F prevents M2 type macrophage polarization. However, L-4F could not directly attenuate H7 cell invasion or proliferation and did not induce apoptosis. In addition, L-4F potently down-regulated STAT3, JNK and ERK signaling pathways but not affects the phosphorylation of p38 in RAW 264.7 cells. These results suggest that L-4F exhibits an effective therapeutic effect on pancreatic cancer progression by inhibiting tumor-associated macrophages and inflammation.
Collapse
Affiliation(s)
- Meiyu Peng
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang, China.,Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Institute of Integrative Medicines for Acute Abdominal Diseases, Nankai Hospital, Tianjin, China.,Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yingnan Cheng
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Shuyu Fu
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China.,Institute of Human Virology, Sun Yat-Sen University, Guangzhou, China
| | - Huipeng Yang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Xiangdong Guo
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Jieyou Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Department of Immunology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Lijuan Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhenyi Xue
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yan Li
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Yurong Da
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Zhi Yao
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China
| | - Liang Qiao
- Storr Liver Unit, Westmead Institute for Medical Research, the University of Sydney and Westmead Hospital, Westmead, New South Wales, Australia
| | - Rongxin Zhang
- Laboratory of Immunology and Inflammation, Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases of Educational Ministry of China, Tianjin Key Laboratory of Molecular and Cellular Immunology, Tianjin Medical University, Tianjin, China.,Laboratory of Immunology and Inflammation, School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
12
|
Nowacki TM, Remaley AT, Bettenworth D, Eisenblätter M, Vowinkel T, Becker F, Vogl T, Roth J, Tietge UJ, Lügering A, Heidemann J, Nofer JR. The 5A apolipoprotein A-I (apoA-I) mimetic peptide ameliorates experimental colitis by regulating monocyte infiltration. Br J Pharmacol 2016; 173:2780-92. [PMID: 27425846 DOI: 10.1111/bph.13556] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/15/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE New therapies for inflammatory bowel disease (IBD) are highly desirable. As apolipoprotein (apo)A-I mimetic peptides are beneficial in several animal models of inflammation, we hypothesized that they might be effective at inhibiting murine colitis. EXPERIMENTAL APPROACH Daily injections of 5A peptide, a synthetic bihelical apoA-I mimetic dissolved in PBS, or PBS alone were administered to C57BL/6 mice fed 3% (w v(-1) ) dextran sodium sulfate (DSS) in drinking water or healthy controls. KEY RESULTS Daily treatment with 5A peptide potently restricted DSS-induced inflammation, as indicated by improved disease activity indices and colon histology, as well as decreased intestinal tissue myeloperoxidase levels and plasma TNFα and IL-6 concentrations. Additionally, plasma levels of monocyte chemoattractant protein-1 and the monocyte expression of adhesion-mediating molecule CD11b were down-regulated, pro-inflammatory CD11b(+) /Ly6c(high) monocytes were decreased, and the number of intestinal monocytes was reduced in 5A peptide-treated animals as determined by intravital macrophage-related peptide-8/14-directed fluorescence-mediated tomography and post-mortem immunhistochemical F4/80 staining. Intravital fluorescence microscopy of colonic microvasculature demonstrated inhibitory effects of 5A peptide on leukocyte adhesion accompanied by reduced plasma levels of the soluble adhesion molecule sICAM-1. In vitro 5A peptide reduced monocyte adhesion and transmigration in TNFα-stimulated monolayers of human intestinal microvascular endothelial cells. Increased susceptibility to DSS-induced inflammation was noted in apoA-I(-/-) mice. CONCLUSIONS AND IMPLICATIONS The 5A peptide is effective at ameliorating murine colitis by preventing intestinal monocyte infiltration and activation. These findings point to apoA-I mimetics as a potential treatment approach for IBD.
Collapse
Affiliation(s)
- Tobias M Nowacki
- Department of Medicine B, University Hospital Münster, Münster, Germany
| | - Alan T Remaley
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | | | - Michel Eisenblätter
- Translational Research Imaging Center, Department of Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Thorsten Vowinkel
- Department of General and Visceral Surgery, University Hospital Münster, Münster, Germany
| | - Felix Becker
- Department of General and Visceral Surgery, University Hospital Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University Hospital Münster, Münster, Germany
| | - Uwe J Tietge
- Department of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, GZ Groningen, The Netherlands
| | | | - Jan Heidemann
- Department of Medicine B, University Hospital Münster, Münster, Germany.,Department of Gastroenterology, Klinikum Bielefeld, Bielefeld, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Münster, Münster, Germany
| |
Collapse
|