1
|
An D, He P, Liu H, Wang R, Yu X, Chen N, Guo X, Li X, Feng M. Enhanced chemoimmunotherapy of breast cancer in mice by apolipoprotein A1-modified doxorubicin liposomes combined with interleukin-21. J Drug Target 2023; 31:1098-1110. [PMID: 37909691 DOI: 10.1080/1061186x.2023.2276664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
Backgroud: Breast cancer is a prevalent malignancy among women, with triple-negative breast cancer (TNBC) comprising approximately 15-20% of all cases, possessing high invasiveness, drug resistance and poor prognosis. Chemotherapy, the main treatment for TNBC, is limited by toxicity and drug resistance. Apolipoprotein A1 modified doxorubicin liposome (ApoA1-lip/Dox) was constructed in our previous study, with promising anti-tumour effect and improved safety been proved. However, during long-term administration, the problem of cumulative toxicity and insufficient tumour inhibition is still inevitable. Interleukin-21 is a small molecule protein secreted by T cells with various immune regulatory functions. IL-21 has significantly curative effects in numerous solid tumours, but it has the disadvantages of low response rate and short half-life. The combination of chemotherapy and immunotherapy has received increasing attention.Purpose: In this study, ApoA1 drug loading system and long-acting IL-21 are innovatively combined for tumour treatment.Methods: We combined ApoA1-lip/Dox and IL-21 for treatment and evaluated their impact on tumor-infiltrating lymphocytes and CD8+ T and NK cell cytotoxicity.Results: Combined administration significantly improved the tumour-infiltrating lymphocytes and enhanced the cytotoxicity of CD8+ T and NK cells. The combination of ApoA1-lip/Dox and IL-21 exhibits significantly enhanced anti-tumour efficacy with lower toxicity of ApoA1-lip/Dox, providing a new strategy for TNBC treatment with enhanced anti-tumour response and reduced toxicity.
Collapse
Affiliation(s)
- Duopeng An
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Peng He
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Hongchuan Liu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Rui Wang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaochen Yu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Nanye Chen
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiaohan Guo
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| | - Xiang Li
- Department of Biological Medicines Shanghai Engineering Research Center of Immunotherapeutics, Minhang Hospital & School of Pharmacy, Fudan University, Shanghai, China
| | - Meiqing Feng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, Fudan University School of Pharmacy, Shanghai, China
| |
Collapse
|
2
|
Takeda Y, Kato T, Sabrina S, Naito S, Ito H, Emi N, Kuboki Y, Takai Y, Fukuhara H, Ushijima M, Narisawa T, Yagi M, Kanno H, Sakurai T, Nishida H, Araki A, Shimotai Y, Nagashima M, Nouchi Y, Saitoh S, Nara H, Tsuchiya N, Asao H. Intracellular Major Histocompatibility Complex Class II and C-X-C Motif Chemokine Ligand 10-Expressing Neutrophils Indicate the State of Anti-Tumor Activity Induced by Bacillus Calmette-Guérin. Biomedicines 2023; 11:3062. [PMID: 38002062 PMCID: PMC10669614 DOI: 10.3390/biomedicines11113062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Inflammatory responses induce the formation of both anti-tumor and pro-tumor neutrophils known as myeloid-derived suppressor cells (MDSCs). Intermittent intravesical infusion of Bacillus Calmette-Guérin (BCG) is an established cancer immunotherapy for non-muscle-invasive bladder cancer (NMIBC). However, the types of neutrophils induced via the inflammatory response to both tumor-bearing and BCG remain unclear. (2) Methods: We therefore analyzed neutrophil dynamics in the peripheral blood and urine of patients with NMIBC who received BCG therapy. Further, we analyzed the effects of BCG in a mouse intraperitoneal tumor model. (3) Results: BCG therapy induced the formation of CXCL10 and MHC class II-positive neutrophils in the urine of patients with NMIBC but did not induce MDSC formation. CXCL10- and MHC class II-expressing neutrophils were detected in peritoneal exudate cells formed after BCG administration. Partial neutrophil depletion using an anti-Ly6G antibody suppressed the upregulation of CXCL10 and MHC class II in neutrophils and reversed the anti-tumor activity of BCG in mouse models. (4) Conclusions: These results indicated that intracellular MHC class II- and CXCL10-expressing neutrophils indicate the state of anti-tumor activity induced via BCG. The status of neutrophils in mixed inflammation of immunosuppressive and anti-tumor responses may therefore be useful for evaluating immunological systemic conditions.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Naoto Emi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yuya Kuboki
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiroki Fukuhara
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Mayu Yagi
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hayato Nishida
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Mikako Nagashima
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yusuke Nouchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Hidetoshi Nara
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Miyagi 986-8580, Japan;
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| |
Collapse
|
3
|
Sabrina S, Takeda Y, Kato T, Naito S, Ito H, Takai Y, Ushijima M, Narisawa T, Kanno H, Sakurai T, Saitoh S, Araki A, Tsuchiya N, Asao H. Initial Myeloid Cell Status Is Associated with Clinical Outcomes of Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051296. [PMID: 37238964 DOI: 10.3390/biomedicines11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The therapeutic outcome of immune checkpoint inhibition (ICI) can be improved through combination treatments with ICI therapy. Myeloid-derived suppressor cells (MDSCs) strongly suppress tumor immunity. MDSCs are a heterogeneous cell population, originating from the unusual differentiation of neutrophils/monocytes induced by environmental factors such as inflammation. The myeloid cell population consists of an indistinguishable mixture of various types of MDSCs and activated neutrophils/monocytes. In this study, we investigated whether the clinical outcomes of ICI therapy could be predicted by estimating the status of the myeloid cells, including MDSCs. Several MDSC indexes, such as glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80), CD16, and latency-associated peptide-1 (LAP-1; transforming growth factor-β1 precursor), were analyzed via flow cytometry using peripheral blood derived from patients with advanced renal cell carcinoma (n = 51) immediately before and during the therapy. Elevated CD16 and LAP-1 expressions after the first treatment were associated with a poor response to ICI therapy. Immediately before ICI therapy, GPI-80 expression in neutrophils was significantly higher in patients with a complete response than in those with disease progression. This is the first study to demonstrate a relationship between the status of the myeloid cells during the initial phase of ICI therapy and clinical outcomes.
Collapse
Affiliation(s)
- Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
4
|
GPI-80 Augments NF-κB Activation in Tumor Cells. Int J Mol Sci 2021; 22:ijms222112027. [PMID: 34769456 PMCID: PMC8584666 DOI: 10.3390/ijms222112027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022] Open
Abstract
Recent studies have discovered a relationship between glycosylphosphatidylinositol (GPI)-anchored protein 80 (GPI-80)/VNN2 (80 kDa GPI-anchored protein) and malignant tumors. GPI-80 is known to regulate neutrophil adhesion; however, the action of GPI-80 on tumors is still obscure. In this study, although the expression of GPI-80 mRNA was detectable in several tumor cell lines, the levels of GPI-80 protein were significantly lower than that in neutrophils. To clarify the function of GPI-80 in tumor cells, GPI-80-expressing cells and GPI-80/VNN2 gene-deleted cells were established using PC3 prostate cancer cells. In GPI-80-expressing cells, GPI-80 was mainly detected in vesicles. Furthermore, soluble GPI-80 in the conditioned medium was associated with the exosome marker CD63 and was also detected in the plasma obtained from prostate cancer patients. Unexpectedly, cell adhesion and migration of GPI-80-expressing PC3 cells were not modulated by anti-GPI-80 antibody treatment. However, similar to the GPI-80 family molecule, VNN1, the pantetheinase activity and oxidative state were augmented in GPI-80-expressing cells. GPI-80-expressing cells facilitated non-adhesive proliferation, slow cell proliferation, NF-κB activation and IL-1β production. These phenomena are known to be induced by physiological elevation of the oxidative state. Thus, these observations indicated that GPI-80 affects various tumor responses related to oxidation.
Collapse
|
5
|
Yu C, Zhang P, Li XP, Sun L. Japanese flounder Paralichthys olivaceus interleukin 21 induces inflammatory response and plays a vital role in the immune defense against bacterial pathogen. FISH & SHELLFISH IMMUNOLOGY 2020; 98:364-373. [PMID: 31991231 DOI: 10.1016/j.fsi.2020.01.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/20/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Interleukin (IL)-21 is a pleiotropic cytokine and plays a vital role in immunity. In the current study, we examined the immune function of Japanese flounder Paralichthys olivaceus IL-21 (PoIL-21). PoIL-21 shares moderate (25.17%-46.25%) sequence identities with other teleost IL-21. PoIL-21 expression occurred in multiple tissues, especially intestine, and was regulated by bacterial infection in a time dependent manner. PoIL-21 was secreted by peripheral blood leukocytes (PBL) upon LPS stimulation. Recombinant PoIL-21 (rPoIL-21) bound to a wide range of Gram-negative and Gram-positive bacteria and inhibited the growth of the fish bacterial pathogen Streptococcus iniae. rPoIL-21 also interacted with PBL, resulting in enhanced cell proliferation, ROS production, and expression of IL-1β, TNF-α, CD8β, T-bet, PoIL-21, PoIL-21 receptor, and STAT. Consequently, the presence of rPoIL-21 significantly reduced bacterial infection in PBL. In vivo study showed that rPoIL-21 upregulated the expression of inflammatory cytokines and PoIL-21. Taken together, these results indicate that PoIL-21 is an inducible, secreted cytokine with a broad range of binding capacities and plays an important role in the regulation of anti-bacterial immunity.
Collapse
Affiliation(s)
- Chao Yu
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Peng Zhang
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xue-Peng Li
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, CAS Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
6
|
Kato T, Takeda Y, Ito H, Kurota Y, Yamagishi A, Sakurai T, Naito S, Araki A, Nara H, Asao H, Tsuchiya N. GPI-80 as a Useful Index for Myeloid Cell Heterogeneity and a Potential Prognostic Biomarker for Metastatic Renal Cell Carcinoma. TOHOKU J EXP MED 2019; 249:203-212. [PMID: 31776298 DOI: 10.1620/tjem.249.203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs), which include neutrophilic MDSCs and monocytic MDSCs, exhibit high immunosuppressive activity. Glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80) is selectively expressed on mature neutrophils in healthy individuals. Increased GPI-80 expression on monocytes and variations in GPI-80 expression on neutrophils indicate the appearance of MDSCs in the peripheral blood of cancer patients. However, it is still unclear whether GPI-80 expression on myeloid cells, neutrophilic MDSCs and monocytic MDSCs, is correlated with the clinical outcomes of patients with cancer. In this study, we investigated the characteristics of myeloid cells expressing GPI-80 and the implication of GPI-80 expression in the clinical outcomes of patients with metastatic renal cell carcinoma (mRCC), in which primary renal cell carcinoma spreads from the kidney to other organs. The study included 20 patients with mRCC (a mean age of 66.0 years) and 16 healthy volunteers (a mean age of 47.8 years). To determine the heterogeneity of myeloid cells in peripheral blood samples, we performed the three-dimensional principal component analysis using the combination of GPI-80, CD16, and latency-associated peptide-1 (LAP), derived from the N-terminal region of transforming growth factor-β1 precursor. The results showed that myeloid cells in mRCC patients were widely distributed and clearly distinguishable from those in the healthy volunteers. The survival analysis revealed that GPI-80 expression on neutrophils and monocytes was correlated with poor prognostic outcomes of patients with mRCC. In conclusion, the expression of GPI-80 on myeloid cells, a useful index for the heterogeneity of MDSCs, serves as a potential prognostic biomarker for mRCC.
Collapse
Affiliation(s)
- Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine
| | - Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hiromi Ito
- Department of Urology, Yamagata University Faculty of Medicine
| | - Yuta Kurota
- Department of Urology, Yamagata University Faculty of Medicine
| | | | | | - Sei Naito
- Department of Urology, Yamagata University Faculty of Medicine
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hidetoshi Nara
- Department of Immunology, Yamagata University Faculty of Medicine
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine
| | | |
Collapse
|
7
|
Homma T, Takeda Y, Sakahara S, Ishii N, Kobayashi S, Abe H, Asao H, Fujii J. Heterozygous SOD1 deficiency in mice with an NZW background causes male infertility and an aberrant immune phenotype. Free Radic Res 2019; 53:1060-1072. [DOI: 10.1080/10715762.2019.1677901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Satoshi Sakahara
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Sho Kobayashi
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| | - Hiroyuki Abe
- Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, Yamagata, Japan
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, Yamagata, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, Japan
| |
Collapse
|
8
|
Spolski R, West EE, Li P, Veenbergen S, Yung S, Kazemian M, Oh J, Yu ZX, Freeman AF, Holland SM, Murphy PM, Leonard WJ. IL-21/type I interferon interplay regulates neutrophil-dependent innate immune responses to Staphylococcus aureus. eLife 2019; 8:45501. [PMID: 30969166 PMCID: PMC6504231 DOI: 10.7554/elife.45501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a major hospital- and community-acquired pathogen, but the mechanisms underlying host-defense to MRSA remain poorly understood. Here, we investigated the role of IL-21 in this process. When administered intra-tracheally into wild-type mice, IL-21 induced granzymes and augmented clearance of pulmonary MRSA but not when neutrophils were depleted or a granzyme B inhibitor was added. Correspondingly, IL-21 induced MRSA killing by human peripheral blood neutrophils. Unexpectedly, however, basal MRSA clearance was also enhanced when IL-21 signaling was blocked, both in Il21r KO mice and in wild-type mice injected with IL-21R-Fc fusion-protein. This correlated with increased type I interferon and an IFN-related gene signature, and indeed anti-IFNAR1 treatment diminished MRSA clearance in these animals. Moreover, we found that IFNβ induced granzyme B and promoted MRSA clearance in a granzyme B-dependent fashion. These results reveal an interplay between IL-21 and type I IFN in the innate immune response to MRSA.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Erin E West
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Peng Li
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sharon Veenbergen
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Sunny Yung
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Majid Kazemian
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jangsuk Oh
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zu-Xi Yu
- The Pathology Core, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Stephen M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, United States
| | - Warren J Leonard
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States.,Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
9
|
IL-21 Attenuates FITC-Induced Contact Hypersensitivity Response via Regulation of Dendritic Cell Function. J Invest Dermatol 2018; 138:2174-2184. [DOI: 10.1016/j.jid.2018.03.1508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 03/01/2018] [Accepted: 03/11/2018] [Indexed: 01/03/2023]
|
10
|
Takeda Y, Kato T, Nemoto N, Araki A, Gazi MY, Nara H, Asao H. Augmentation of the expression of the eotaxin receptor on duodenal neutrophils by IL-21. Cytokine 2018; 110:194-203. [PMID: 29778007 DOI: 10.1016/j.cyto.2018.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/04/2023]
Abstract
Inflammation can occur via different mechanisms, such as via acute and chronic responses, on numerous occasions and function accordingly through various roles. There are more than five subsets of neutrophils; neutrophilic heterogeneity is modulated by the inflammatory condition. To understand the characteristics of inflammation, identification of atypical neutrophils is important. In this study, we found that the expression of eotaxin receptor (CD193) on atypical neutrophils in the duodenum is augmented in IL-21 isoform transgenic (Tg) mice. In a series of studies, we have established a Tg mouse strain to further investigate the functions of IL-21 in vivo. Interestingly, Tg mice immunized with ovalbumin (OVA) were more sensitive to OVA-induced systemic anaphylaxis as compared with wild type mice with duodenal and splenic gross congestion. Further analysis conducted in the duodenum of Tg mice revealed that only the number of neutrophils migrating into the duodenum was significantly increased prior to immunization. Previous studies have shown that the gastrointestinal compartment and the spleen constantly produce eotaxin, which regulates basal levels of tissue eosinophils. Therefore, we analyzed CD193 expression on neutrophils and eosinophils. As expected, its expression by duodenal neutrophils was upregulated in Tg mice. Furthermore, the addition of IL-21 into bone marrow cell culture increased the number of CD193+ neutrophils, which easily migrated into the duodenum. These observations suggested that CD193+ neutrophils increase in number under inflammatory conditions due to chronic IL-21 production.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Nobuhito Nemoto
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; Department of Orthopaedics, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Mohammad Yeashin Gazi
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hidetoshi Nara
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Yamagata University Faculty of Medicine, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan.
| |
Collapse
|
11
|
Wang K, Wen S, Jiao J, Tang T, Zhao X, Zhang M, Lv B, Lu Y, Zhou X, Li J, Nie S, Liao Y, Wang Q, Tu X, Mallat Z, Xia N, Cheng X. IL-21 promotes myocardial ischaemia/reperfusion injury through the modulation of neutrophil infiltration. Br J Pharmacol 2017; 175:1329-1343. [PMID: 28294304 DOI: 10.1111/bph.13781] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/07/2017] [Accepted: 03/03/2017] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The immune system plays an important role in driving the acute inflammatory response following myocardial ischaemia/reperfusion injury (MIRI). IL-21 is a pleiotropic cytokine with multiple immunomodulatory effects, but its role in MIRI is not known. EXPERIMENTAL APPROACH Myocardial injury, neutrophil infiltration and the expression of neutrophil chemokines KC (CXCL1) and MIP-2 (CXCL2) were studied in a mouse model of MIRI. Effects of IL-21 on the expression of KC and MIP-2 in neonatal mouse cardiomyocytes (CMs) and cardiac fibroblasts (CFs) were determined by real-time PCR and ELISA. The signalling mechanisms underlying these effects were explored by western blot analysis. KEY RESULTS IL-21 was elevated within the acute phase of murine MIRI. Neutralization of IL-21 attenuated myocardial injury, as illustrated by reduced infarct size, decreased cardiac troponin T levels and improved cardiac function, whereas exogenous IL-21 administration exerted opposite effects. IL-21 increased the infiltration of neutrophils and increased the expression of KC and MIP-2 in myocardial tissue following MIRI. Moreover, neutrophil depletion attenuated the IL-21-induced myocardial injury. Mechanistically, IL-21 increased the production of KC and MIP-2 in neonatal CMs and CFs, and enhanced neutrophil migration, as revealed by the migration assay. Furthermore, we demonstrated that this IL-21-mediated increase in chemokine expression involved the activation of Akt/NF-κB signalling in CMs and p38 MAPK/NF-κB signalling in CFs. CONCLUSIONS AND IMPLICATIONS Our data provide novel evidence that IL-21 plays a pathogenic role in MIRI, most likely by promoting cardiac neutrophil infiltration. Therefore, targeting IL-21 may have therapeutic potential as a treatment for MIRI. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Kejing Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuang Wen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bingjie Lv
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xingdi Zhou
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyong Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center of Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of Education Ministry and Hubei Province, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Halwani R, Sultana A, Vazquez-Tello A, Jamhawi A, Al-Masri AA, Al-Muhsen S. Th-17 regulatory cytokines IL-21, IL-23, and IL-6 enhance neutrophil production of IL-17 cytokines during asthma. J Asthma 2017. [PMID: 28635548 DOI: 10.1080/02770903.2017.1283696] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND In a subset of severe asthma patients, chronic airway inflammation is associated with infiltration of neutrophils, Th-17 cells and elevated expression of Th-17-derived cytokines (e.g., interleukin [IL]-17, IL-21, IL-22). Peripheral neutrophils from allergic asthmatics are known to express higher IL-17 cytokine levels than those from healthy subjects, but the regulatory mechanisms involved are not well understood. We hypothesize that Th-17 regulatory cytokines could modulate IL-17 expression in neutrophils. METHODS Peripheral blood neutrophils isolated from asthmatics were stimulated with IL-21, IL-23, and IL-6 cytokines and their ability to produce IL-17A and IL-17F was determined relative to healthy controls. Signal transducer and activator of transcription 3 (STAT3) phosphorylation levels were measured in stimulated neutrophil using flow cytometry. The requirement for STAT3 phosphorylation was determined by blocking its activation using a specific chemical inhibitor. RESULTS Stimulating asthmatic neutrophils with IL-21, 23, and 6 enhanced the production of IL-17A and IL-17F at significantly higher levels comparatively to healthy controls. Stimulating neutrophils with IL-21, IL-23, and IL-6 cytokines enhanced STAT3 phosphorylation, in all cases. Interestingly, inhibiting STAT3 phosphorylation using a specific chemical inhibitor dramatically blocked the ability of neutrophils to produce IL-17, demonstrating that STAT3 activation is the major factor mediating IL-17 gene expression. CONCLUSIONS These findings suggest that neutrophil infiltration in lungs of severe asthmatics may represent an important source of pro-inflammatory IL-17A and -F cytokines, a production enhanced by Th-17 regulatory cytokines, and thus providing a feedback mechanism that sustains inflammation. Our results suggest that STAT3 pathway could be a potential target for regulating neutrophilic inflammation during severe asthma.
Collapse
Affiliation(s)
- Rabih Halwani
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Asma Sultana
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia.,b Prince Naif Health Research Center , King Saud University , Riyadh , Saudi Arabia
| | - Alejandro Vazquez-Tello
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Amer Jamhawi
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Abeer A Al-Masri
- c Department of Physiology , Faculty of Medicine, King Saud University , Riyadh , Saudi Arabia
| | - Saleh Al-Muhsen
- a Department of Pediatrics, Prince Naif Center for Immunology Research, Asthma Research Chair , College of Medicine, King Saud University , Riyadh , Saudi Arabia
| |
Collapse
|
13
|
Takeda Y, Shimomura T, Asao H, Wakabayashi I. Relationship between Immunological Abnormalities in Rat Models of Diabetes Mellitus and the Amplification Circuits for Diabetes. J Diabetes Res 2017; 2017:4275851. [PMID: 28299342 PMCID: PMC5337356 DOI: 10.1155/2017/4275851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/12/2022] Open
Abstract
A better understanding of pathogenic mechanisms is required in order to treat diseases. However, the mechanisms of diabetes mellitus and diabetic complications are extremely complex. Immune reactions are involved in the pathogenesis of diabetes and its complications, while diabetes influences immune reactions. Furthermore, both diabetes and immune reactions are influenced by genetic and environmental factors. To address these issues, animal models are useful tools. So far, various animal models of diabetes have been developed in rats, which have advantages over mice models in terms of the larger volume of tissue samples and the variety of type 2 diabetes models. In this review, we introduce rat models of diabetes and summarize the immune reactions in diabetic rat models. Finally, we speculate on the relationship between immune reactions and diabetic episodes. For example, diabetes-prone Biobreeding rats, type 1 diabetes model rats, exhibit increased autoreactive cellular and inflammatory immune reactions, while Goto-Kakizaki rats, type 2 diabetes model rats, exhibit increased Th2 reactions and attenuation of phagocytic activity. Investigation of immunological abnormalities in various diabetic rat models is useful for elucidating complicated mechanisms in the pathophysiology of diabetes. Studying immunological alterations, such as predominance of Th1/17 or Th2 cells, humoral immunity, and innate immune reactions, may improve understanding the structure of amplification circuits for diabetes in future studies.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
- *Yuji Takeda:
| | - Tomoko Shimomura
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Japan
| |
Collapse
|
14
|
Takeda Y, Kato T, Ito H, Kurota Y, Yamagishi A, Sakurai T, Araki A, Nara H, Tsuchiya N, Asao H. The pattern of GPI-80 expression is a useful marker for unusual myeloid maturation in peripheral blood. Clin Exp Immunol 2016; 186:373-386. [PMID: 27569996 DOI: 10.1111/cei.12859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2016] [Indexed: 02/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have a wide spectrum of immunosuppressive activity; control of these cells is a new target for improving clinical outcomes in cancer patients. MDSCs originate from unusual differentiation of neutrophils or monocytes induced by inflammatory cytokines, including granulocyte-colony stimulating factor (G-CSF) and granulocyte-macrophage (GM)-CSF. However, MDSCs are difficult to detect in neutrophil or monocyte populations because they are not uniform cells, resembling both neutrophils and monocytes; thus, they exist in a heterogeneous population. In this study, we investigated GPI-80, a known regulator of Mac-1 (CD11b/CD18) and associated closely with neutrophil maturation, to clarify this unusual differentiation. First, we demonstrated that the mean fluorescence intensity (MFI) of GPI-80 and coefficient of variation (CV) of GPI-80 were increased by treatment with G-CSF and GM-CSF, respectively, using a human promyelocytic leukaemia (HL60) cell differentiation model. To confirm the value of GPI-80 as a marker of unusual differentiation, we measured GPI-80 expression and MDSC functions using peripheral blood cells from metastatic renal cell carcinoma patients. The GPI-80 CV was augmented significantly in the CD16hi neutrophil cell population, and GPI-80 MFI was increased significantly in the CD33hi monocyte cell population. Furthermore, the GPI-80 CV in the CD16hi population was correlated inversely with the proliferative ability of T cells and the GPI-80 MFI of the CD33hi population was correlated with reactive oxygen species production. These results led us to propose that the pattern of GPI-80 expression in these populations is a simple and useful marker for unusual differentiation, which is related to MDSC functions.
Collapse
Affiliation(s)
- Y Takeda
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - T Kato
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Ito
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Y Kurota
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - A Yamagishi
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - T Sakurai
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - A Araki
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Nara
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - N Tsuchiya
- Department of Urology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - H Asao
- Department of Immunology, Yamagata University, Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
15
|
Takeda Y, Marumo M, Nara H, Feng ZG, Asao H, Wakabayashi I. Selective induction of anti-inflammatory monocyte-platelet aggregates in a model of pulsatile blood flow at low shear rates. Platelets 2016; 27:583-92. [PMID: 27078265 DOI: 10.3109/09537104.2016.1153616] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In patients with cardiovascular abnormalities or immunological disorders, an increased number of circulating leukocyte-platelet aggregates is observed. Leukocyte-platelet aggregates play an essential role in linking the hemostatic and immune systems. High shear stress and pro-coagulant and pro-inflammatory stimulants are known to activate platelets and promote the formation of aggregates. Pulsatile blood flow under low shear stress can also induce platelet activation in comparatively mild conditions. However, the effect of such events on leukocyte-platelet aggregates has not yet been investigated. To determine whether low shear stress affects the formation of aggregates, we established a simple "inverting rotation" method of inducing periodic changes in the direction of blood flow in combination with low shear stress. We demonstrated that after the inverting rotation treatment for 10-20 min more than 70% of monocytes selectively aggregated with platelets. The formation of monocyte-platelet complexes was inhibited by an anti-CD162 (PSGL-1) monoclonal antibody or a Ca(2+) chelator. The phagocytic activity of monocytes was augmented by inverting rotation, whereas phagocytosis mediated by granulocytes remained unaffected. Interestingly, the formation of monocyte-platelet complexes suppressed the production of pro-inflammatory cytokines such as interleukin (IL)-1β. At the same time, monocyte-platelet complexes augmented the expression of the anti-inflammatory cytokine IL-10. Our results suggest that platelet-bound monocytes show an anti-inflammatory phenotype under low shear stress conditions. Thus, our method provided new insights into the mechanisms of monocyte-platelet aggregate formation and regulation.
Collapse
Affiliation(s)
- Yuji Takeda
- a Department of Environmental and Preventive Medicine , Hyogo College of Medicine , Nishinomiya , Japan.,b Department of Immunology, Faculty of Medicine , Yamagata University , Yamagata , Japan
| | - Mikio Marumo
- a Department of Environmental and Preventive Medicine , Hyogo College of Medicine , Nishinomiya , Japan
| | - Hidetoshi Nara
- b Department of Immunology, Faculty of Medicine , Yamagata University , Yamagata , Japan
| | - Zhong-Gang Feng
- c Department of Bio-Systems Engineering , Graduate School of Science and Engineering, Yamagata University , Yamagata , Japan
| | - Hironobu Asao
- b Department of Immunology, Faculty of Medicine , Yamagata University , Yamagata , Japan
| | - Ichiro Wakabayashi
- a Department of Environmental and Preventive Medicine , Hyogo College of Medicine , Nishinomiya , Japan
| |
Collapse
|