1
|
Zhang FL, Chen YL, Luo ZY, Song ZB, Chen Z, Zhang JX, Zheng ZZ, Tan XM. Huashi baidu granule alleviates inflammation and lung edema by suppressing the NLRP3/caspase-1/GSDMD-N pathway and promoting fluid clearance in a porcine reproductive and respiratory syndrome (PRRS) model. JOURNAL OF ETHNOPHARMACOLOGY 2024; 340:119207. [PMID: 39653102 DOI: 10.1016/j.jep.2024.119207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Huashi Baidu Granule (HSBDG), a traditional Chinese medicine (TCM), is used for treating coronavirus disease 2019 (COVID-19). Porcine reproductive and respiratory syndrome (PRRS) is considered the "COVID-19" for swine. According to the TCM theory, "dampness" is the main pathogenic factor in COVID-19 and PRRS, and "Huashi" means that this formula is good at removing "dampness". Studies have demonstrated that HSBDG's effect in COVID-19; but the mechanism of removing "dampness" remains elusive. AIM OF THE STUDY We aimed to assess the effect of HSBDG on PRRS, and elucidate its potential mechanism in removing "dampness". MATERIALS AND METHODS We established a PRRS-virus (PRRSV)-infected Marc-145 cells model, and performed qRT-PCR, Western blot analysis, and indirect immunofluorescence assay to examine the anti-PRRSV effects of HSBDG in vitro. PRRSV-infected pig model was established and used to investigate HSBDG's effect in PRRS and explore underlying mechanisms in removing "dampness" using ELISA and immunohistochemistry assay methods. RESULTS HSBDG exhibited anti-PRRSV activity and suppressed the viral replication and release phases. HSBDG treatment alleviated PRRS, lowered rectal temperature, reduced histopathological changes and viral load in lung tissues, and ameliorated organ lesions. Moreover, IL-1β, IL-6, IL-8, and TNF-α expressions were decreased in lung tissues. Mechanistically, HSBDG inhibited the NLRP3/Caspase-1/GSDMD-N pathway to reduce the inflammatory response and upregulated AQP1, AQP5, α-ENaC, and Na-K-ATPase expressions to promote lung fluid clearance. CONCLUSION HSBDG exerted anti-PRRSV effects and could attenuate PRRS. HSBDG potentially removes "dampness" by attenuating inflammation by suppressing the NLRP3/Caspase-1/GSDMD-N pathway and inhibiting pulmonary edema by upregulating the expression of AQP1, AQP5, α-ENaC, and Na-K-ATPase.
Collapse
Affiliation(s)
- Feng-Lin Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Yi-Lin Chen
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhen-Ye Luo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Bu Song
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Zhe Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Jia-Xuan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| | - Ze-Zhong Zheng
- South China Agricultural University College of Veterinary Medicine, Guangzhou, 510640, China.
| | - Xiao-Mei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Engineering Laboratory of Chinese Medicine Preparation Technology, Guangzhou, 510515, China.
| |
Collapse
|
2
|
Guo X, Zhang M, Feng Y, Liu X, Wang C, Zhang Y, Wang Z, Zhang D, Guo Y. Transcriptome analysis of salivary glands of rabies-virus-infected mice. Front Microbiol 2024; 15:1354936. [PMID: 38380102 PMCID: PMC10877373 DOI: 10.3389/fmicb.2024.1354936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Rabies is a fatal zoonotic disease that poses a threat to public health. Rabies virus (RABV) is excreted in the saliva of infected animals, and is primarily transmitted by bite. The role of the salivary glands in virus propagation is significant, but has been less studied in the pathogenic mechanisms of RABV. To identify functionally important genes in the salivary glands, we used RNA sequencing (RNA-seq) to establish and analyze mRNA expression profiles in parotid tissue infected with two RABV strains, CVS-11 and PB4. The biological functions of differentially expressed genes (DEGs) were determined by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, which revealed 3,764 DEGs (678 up-regulated and 3,086 down-regulated) in the CVS-11 infected group and 4,557 DEGs (874 up-regulated and 3,683 down-regulated) in the PB4 infected group. Various biological processes are involved, including the salivary secretion pathway and the phosphatidylinositol 3-kinase-Akt (PI3K-Akt) signaling pathway. This study provides the first mapping of the transcriptome changes in response to RABV infection in parotid tissue, offering new insights into the study of RABV-affected salivary gland function and RABV pathogenic mechanisms in parotid tissue. The salivary gland-enriched transcripts may be potential targets of interest for rabies disease control.
Collapse
Affiliation(s)
- Xin Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Maolin Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ye Feng
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaomin Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chongyang Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yannan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zichen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Danwei Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yidi Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
3
|
Hervás-Rivero C, Srihi H, López-Carbonell D, Casellas J, Ibáñez-Escriche N, Negro S, Varona L. Genomic Scanning of Inbreeding Depression for Litter Size in Two Varieties of Iberian Pigs. Genes (Basel) 2023; 14:1941. [PMID: 37895290 PMCID: PMC10606707 DOI: 10.3390/genes14101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
Inbreeding depression is expected to be more pronounced in fitness-related traits, such as pig litter size. Recent studies have suggested that the genetic determinism of inbreeding depression may be heterogeneous across the genome. Therefore, the objective of this study was to conduct a genomic scan of the whole pig autosomal genome to detect the genomic regions that control inbreeding depression for litter size in two varieties of Iberian pigs (Entrepelado and Retinto). The datasets consisted of 2069 (338 sows) and 2028 (327 sows) records of litter size (Total Number Born and Number Born Alive) for the Entrepelado and Retinto varieties. All sows were genotyped using the Geneseek GGP PorcineHD 70 K chip. We employed the Unfavorable Haplotype Finder software to extract runs of homozygosity (ROHs) and conducted a mixed-model analysis to identify highly significant differences between homozygous and heterozygous sows for each specific ROH. A total of eight genomic regions located on SSC2, SSC5, SSC7, SSC8, and SSC13 were significantly associated with inbreeding depression, housing some relevant genes such as FSHR, LHCGR, CORIN, AQP6, and CEP120.
Collapse
Affiliation(s)
- Carlos Hervás-Rivero
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| | - Houssemeddine Srihi
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| | - David López-Carbonell
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| | - Joaquim Casellas
- Department Ciència Animal i dels Aliments, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Noelia Ibáñez-Escriche
- Instituto Universitario de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sara Negro
- Programa de Mejora Genética “Castua”, INGA FOOD S. A. (Nutreco), 06200 Almendralejo, Spain
| | - Luis Varona
- Instituto Agroalimentario de Aragón (IA2), Universidad de Zaragoza, 50013 Zaragoza, Spain; (C.H.-R.); (D.L.-C.)
| |
Collapse
|
4
|
Zong HF, Guo G, Liu J, Yang CZ, Bao LL. Influence of Alveolar Fluid on Aquaporins and Na+/K+-ATPase and Its Possible Theoretical or Clinical Significance. Am J Perinatol 2022; 29:1586-1595. [PMID: 33611784 DOI: 10.1055/s-0041-1724001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Pulmonary edema is the most common pathophysiological change in pulmonary disease. Aquaporins (AQPs) and Na+/K+-ATPase play pivotal roles in alveolar fluid clearance. This study aimed to explore the influence of increased alveolar fluid on the absorption of lung fluid. STUDY DESIGN Eighty New Zealand rabbits were randomly divided into eight groups (n = 10 in each group), and models of different alveolar fluid contents were established by the infusion of different volumes of normal saline (NS) via the endotracheal tube. Five animals in each group were sacrificed immediately after infusion to determine the wet/dry ratio, while the remaining animals in each group were killed 4 hours later to determine the wet/dry ratio at 4 hours. Additionally, lung specimens were collected from each group, and quantitative real-time PCR (qRT-PCR), western blot, and immunohistochemical (IHC) analyses of AQPs and Na+/K+-ATPase were performed. RESULTS The qRT-PCR analysis and western blot studies showed markedly decreased mRNA and protein levels of AQP1 and Na+/K+-ATPase when the alveolar fluid volume was ≥6 mL/kg, and the mRNA level of AQP5 was significantly reduced when the alveolar fluid volume was ≥4 mL/kg. In addition, IHC analysis showed the same results. At 4 hours, the lung wet/dry ratio was significantly increased when the alveolar fluid volume was ≥6 mL/kg; however, compared with 0 hours after NS infusion, there was still a significant absorption of alveolar fluid for a period of 4 hours. CONCLUSION The results of this study suggest that increased alveolar fluid may induce the downregulation of the mRNA and protein expression of AQPs and Na+/K+-ATPase, which appear to affect alveolar fluid clearance in rabbit lungs. Early intervention is required to avoid excessive alveolar fluid accumulation. KEY POINTS · The expression levels of AQPs and Na+/K+--ATPase were significantly decreased as alveolar fluid increased.. · At 4 hours, wet/dry ratio was significantly increased when infusion volume was ≥ 6 mL/kg.. · Early intervention is required to avoid excessive alveolar fluid accumulation..
Collapse
Affiliation(s)
- Hai-Feng Zong
- Neonatal Intensive Care Unit, Southern Medical University, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Guo Guo
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, China
- Department of Pediatrics, Medical School of Chinese PLA, Beijing, China
- Department of Neonatology, The Fifth Medical Center of the PLA General Hospital, Beijing, China
| | - Jing Liu
- Department of Neonatology and NICU, Beijing Chaoyang District Maternal and Child Healthcare Hospital, Beijing, China
| | - Chuan-Zhong Yang
- Neonatal Intensive Care Unit, Southern Medical University, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Shenzhen, China
| | - Lin-Lin Bao
- Department of Dermatology, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
5
|
Bhattacharya SS, Yadav B, Yadav E, Hus A, Yadav N, Kaur P, Rosen L, Jandarov R, Yadav JS. Differential modulation of lung aquaporins among other pathophysiological markers in acute (Cl2 gas) and chronic (carbon nanoparticles, cigarette smoke) respiratory toxicity mouse models. Front Physiol 2022; 13:880815. [PMID: 36246134 PMCID: PMC9554232 DOI: 10.3389/fphys.2022.880815] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
Inhaled toxic chemicals and particulates are known to disrupt lung homeostasis causing pulmonary toxicity and tissue injury. However, biomarkers of such exposures and their underlying mechanisms are poorly understood, especially for emerging toxicants such as engineered nanoparticles and chemical threat agents such as chlorine gas (Cl2). Aquaporins (AQPs), commonly referred to as water channels, are known to play roles in lung homeostasis and pathophysiology. However, little is known on their regulation in toxicant-induced lung injuries. Here, we compared four lung toxicity models namely, acute chemical exposure (Cl2)-, chronic particulate exposure (carbon nanotubes/CNT)-, chronic chemical exposure (cigarette smoke extract/CSE)-, and a chronic co-exposure (CNT + CSE)- model, for modulation of lung aquaporins (AQPs 1, 3, 4, and 5) in relation to other pathophysiological endpoints. These included markers of compromised state of lung mucosal lining [mucin 5b (MUC5B) and surfactant protein A (SP-A)] and lung-blood barrier [protein content in bronchoalveolar lavage (BAL) fluid and, cell tight junction proteins occludin and zona-occludens]. The results showed toxicity model-specific regulation of AQPs measured in terms of mRNA abundance. A differential upregulation was observed for AQP1 in acute Cl2 exposure model (14.71-fold; p = 0.002) and AQP3 in chronic CNT exposure model (3.83-fold; p = 0.044). In contrast, AQP4 was downregulated in chronic CSE model whereas AQP5 showed no significant change in any of the models. SP-A and MUC5B expression showed a decreasing pattern across all toxicity models except the acute Cl2 toxicity model, which showed a highly significant upregulation of MUC5B (25.95-fold; p = 0.003). This was consistent with other significant pathophysiological changes observed in this acute model, particularly a compromised lung epithelial-endothelial barrier indicated by significantly increased protein infiltration and expression of tight junction proteins, and more severe histopathological (structural and immunological) changes. To our knowledge, this is the first report on lung AQPs as molecular targets of the study toxicants. The differentially regulated AQPs, AQP1 in acute Cl2 exposure versus AQP3 in chronic CNT nanoparticle exposure, in conjunction with the corresponding differentially impacted pathophysiological endpoints (particularly MUC5B) could potentially serve as predictive markers of toxicant type-specific pulmonary injury and as candidates for future investigation for clinical intervention.
Collapse
Affiliation(s)
- Sukanta S. Bhattacharya
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Brijesh Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Ekta Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Niket Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Perminder Kaur
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Lauren Rosen
- Department of Pathology and Laboratory Medicine, University of Cincinnati, UC Health University Hospital Laboratory Medicine Building, Cincinnati, OH, United States
| | - Roman Jandarov
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Jagjit S. Yadav
- Pulmonary Pathogenesis and Immunotoxicology Laboratory, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Jagjit S. Yadav,
| |
Collapse
|
6
|
Paidas MJ, Sampath N, Schindler EA, Cosio DS, Ndubizu CO, Shamaladevi N, Kwal J, Rodriguez S, Ahmad A, Kenyon NS, Jayakumar AR. Mechanism of Multi-Organ Injury in Experimental COVID-19 and Its Inhibition by a Small Molecule Peptide. Front Pharmacol 2022; 13:864798. [PMID: 35712703 PMCID: PMC9196045 DOI: 10.3389/fphar.2022.864798] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/20/2022] [Indexed: 12/11/2022] Open
Abstract
Severe disease from SARS-CoV-2 infection often progresses to multi-organ failure and results in an increased mortality rate amongst these patients. However, underlying mechanisms of SARS- CoV-2-induced multi-organ failure and subsequent death are still largely unknown. Cytokine storm, increased levels of inflammatory mediators, endothelial dysfunction, coagulation abnormalities, and infiltration of inflammatory cells into the organs contribute to the pathogenesis of COVID-19. One potential consequence of immune/inflammatory events is the acute progression of generalized edema, which may lead to death. We, therefore, examined the involvement of water channels in the development of edema in multiple organs and their contribution to organ dysfunction in a Murine Hepatitis Virus-1 (MHV-1) mouse model of COVID-19. Using this model, we recently reported multi-organ pathological abnormalities and animal death similar to that reported in humans with SARS-CoV-2 infection. We now identified an alteration in protein levels of AQPs 1, 4, 5, and 8 and associated oxidative stress, along with various degrees of tissue edema in multiple organs, which correlate well with animal survival post-MHV-1 infection. Furthermore, our newly created drug (a 15 amino acid synthetic peptide, known as SPIKENET) that was designed to prevent the binding of spike glycoproteins with their receptor(s), angiotensin- converting enzyme 2 (ACE2), and carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) (SARS-CoV-2 and MHV-1, respectively), ameliorated animal death and reversed altered levels of AQPs and oxidative stress post-MHV-1 infection. Collectively, our findings suggest the possible involvement of altered aquaporins and the subsequent edema, likely mediated by the virus-induced inflammatory and oxidative stress response, in the pathogenesis of COVID- 19 and the potential of SPIKENET as a therapeutic option.
Collapse
Affiliation(s)
- Michael J. Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Michael J. Paidas, ; Arumugam R. Jayakumar,
| | - Natarajan Sampath
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, India
| | - Emma A. Schindler
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Daniela S. Cosio
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Chima Obianuju Ndubizu
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Jaclyn Kwal
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suset Rodriguez
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Anis Ahmad
- Department of Radiation Oncology, Sylvester Cancer Center, University of Miami School of Medicine, Miami, FL, United States
| | - Norma Sue Kenyon
- Microbiology & Immunology and Biomedical Engineering, Diabetes Research Institute, University of Miami, Miami, FL, United States
| | - Arumugam R. Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
- *Correspondence: Michael J. Paidas, ; Arumugam R. Jayakumar,
| |
Collapse
|
7
|
Schmidt H, Gutjahr L, Sauter A, Zech F, Nchioua R, Stenger S, Frick M, Kirchhoff F, Dietl P, Wittekindt OH. Serially passaged, conditionally reprogrammed nasal epithelial cells as a model to study epithelial functions and SARS-CoV-2 infection. Am J Physiol Cell Physiol 2022; 322:C591-C604. [PMID: 35196166 PMCID: PMC8977148 DOI: 10.1152/ajpcell.00363.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.
Collapse
Affiliation(s)
- Hanna Schmidt
- Department of Pediatric and Adolescent Medicine, Ulm University Medical Cente, Ulm, Germany.,Institute of General Physiology, Ulm University, Ulm, Germany
| | - Lara Gutjahr
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | | - Fabian Zech
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Manfred Frick
- Institute of General Physiology, Ulm University, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Paul Dietl
- Institute of General Physiology, Ulm University, Ulm, Germany
| | | |
Collapse
|
8
|
Villandre J, White V, Lear TB, Chen Y, Tuncer F, Vaiz E, Tuncer B, Lockwood K, Camarco D, Liu Y, Chen BB, Evankovich J. A Repurposed Drug Screen for Compounds Regulating Aquaporin 5 Stability in Lung Epithelial Cells. Front Pharmacol 2022; 13:828643. [PMID: 35145418 PMCID: PMC8821664 DOI: 10.3389/fphar.2022.828643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
Aquaporin 5 (AQP5) is expressed in several cell types in the lung and regulates water transport, which contributes to barrier function during injury and the composition of glandular secretions. Reduced AQP5 expression is associated with barrier dysfunction during acute lung injury, and strategies to enhance its expression are associated with favorable phenotypes. Thus, pharmacologically enhancing AQP5 expression could be beneficial. Here, we optimized a high-throughput assay designed to detect AQP5 abundance using a cell line stably expressing bioluminescent-tagged AQP5. We then screened a library of 1153 compounds composed of FDA-approved drugs for their effects on AQP5 abundance. We show compounds Niclosamide, Panobinostat, and Candesartan Celexitil increased AQP5 abundance, and show that Niclosamide has favorable cellular toxicity profiles. We determine that AQP5 levels are regulated in part by ubiquitination and proteasomal degradation in lung epithelial cells, and mechanistically Niclosamide increases AQP5 levels by reducing AQP5 ubiquitination and proteasomal degradation. Functionally, Niclosamide stabilized AQP5 levels in response to hypotonic stress, a stimulus known to reduce AQP5 levels. In complementary assays, Niclosamide increased endogenous AQP5 in both A549 cells and in primary, polarized human bronchial epithelial cells compared to control-treated cells. Further, we measured rapid cell volume changes in A549 cells in response to osmotic stress, an effect controlled by aquaporin channels. Niclosamide-treated A549 cell volume changes occurred more rapidly compared to control-treated cells, suggesting that increased Niclosamide-mediated increases in AQP5 expression affects functional water transport. Taken together, we describe a strategy to identify repurposed compounds for their effect on AQP5 protein abundance. We validated the effects of Niclosamide on endogenous AQP5 levels and in regulating cell-volume changes in response to tonicity changes. Our findings highlight a unique approach to screen for drug effects on protein abundance, and our workflow can be applied broadly to study compound effects on protein abundance in lung epithelial cells.
Collapse
Affiliation(s)
- John Villandre
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Virginia White
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Travis B. Lear
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yanwen Chen
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ferhan Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Emily Vaiz
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Beyza Tuncer
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Karina Lockwood
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Dan Camarco
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yuan Liu
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bill B. Chen
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| | - John Evankovich
- Department of Medicine, Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA, United States
- Aging Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
9
|
Ba G, Tang R, Mao S, Li Z, Ye H, Lin H, Zhang W. The Expression and Regulation of Na+-K+-ATPase in Nasal Epithelial Cells of Chronic Rhinosinusitis with Nasal Polyps. ORL J Otorhinolaryngol Relat Spec 2021; 84:139-146. [PMID: 34551419 DOI: 10.1159/000517101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/04/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Na+-K+-ATPase (NKA) is essential in maintaining cell permeability, reserving potential energy, and preventing cellular edema. Nevertheless, how NKA expression is altered and regulated in chronic rhinosinusitis with nasal polyps (CRSwNPs) remain uncertain. Therefore, the present study aimed to explore the expression and regulation of NKA in CRSwNP. METHODS NKA immunolabeling was assessed by the immunohistochemistry method, NKA protein levels were detected with the Western blotting method, and mRNA levels of NKA and aquaporin-5 (AQP5) were assayed by real-time PCR in nasal tissues from CRSwNP and control subjects. The co-localization of NKA with inflammatory cells was evaluated by immunofluorescence staining. In addition, human nasal epithelial cells (HNECs) were cultured and stimulated using various stimulators to evaluate the regulation of NKA. RESULTS We found significantly decreased NKA positive cells, NKA protein levels, and mRNA levels of NKA and AQP5 in nasal tissues from CRSwNP patients compared to control subjects, especially in eosinophilic CRSwNP. Furthermore, NKA mRNA levels in HNECs were downregulated by staphylococcal enterotoxin B (SEB), lipopolysaccharides (LPSs), inflammatory cytokine (IFN)-γ, IL-4, IL-13, and IL-1β. CONCLUSION NKA and AQP5 expressions were decreased in CRSwNP. NKA in HNECs could be suppressed by SEB, LPS, IFN-γ, IL-4, IL-13, and IL-1β. Impairment of NKA may contribute to the genesis and development of CRSwNP via inducing AQP5 downregulation and edema.
Collapse
Affiliation(s)
- Guangyi Ba
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Ru Tang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Song Mao
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhipeng Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Haibo Ye
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hai Lin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Weitian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngological Institute, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| |
Collapse
|
10
|
Duan E, Zhang B, Liang X, Jing H, Liu C, Zhang F, Huang J, Su L, Wang J. Effects of glycyrrhizin on the growth cycle and ATPase activity of PRRSV-2-infected MARC-145 cells. Res Vet Sci 2021; 138:30-38. [PMID: 34091227 DOI: 10.1016/j.rvsc.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/10/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a viral infectious disease caused by the porcine reproductive and respiratory syndrome virus (PRRSV) and is devastating the swine industry. MARC-145 cells, an African green monkey kidney cell line, are sensitive to PRRSV-2, and are often used for in vitro studies on PRRSV-2. Preliminary research has shown that glycyrrhizin, an important active component extracted from traditional Chinese medicinal licorice, significantly inhibits the proliferation of PRRSV-2 in MARC-145 cells; however, the in-depth molecular mechanism remains unclear. By determining the cell growth cycle, this study found that PRRSV-2 infection first increased the content of G1-phase MARC-145 cells and then decreased the content of G1-phase cells. Moreover, glycyrrhizin affected the role of PRRSV-2 in regulating the cell cycle. Furthermore, PRRSV-2 had the highest proliferation titer in G0/G1-phase MARC-145 cells, and glycyrrhizin reduced the content of PRRSV-2 in synchronized MARC-145 cells. According to the results of ATPase detection, PRRSV-2 infection weakened the Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities in MARC-145 cells, while glycyrrhizin significantly enhanced their activities in PRRSV-2-infected MARC-145 cells. The above results provide theoretical support toward clarifying the mechanism by which glycyrrhizin inhibits the proliferation of PRRSV-2 in MARC-145 cells. Moreover, these results offer references for the development and use of glycyrrhizin and the clinical treatment of PRRSV-2 infection.
Collapse
Affiliation(s)
- Erzhen Duan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Beibei Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Xiaoqing Liang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| | - Cen Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Fenghua Zhang
- Kaifeng Center for Animal Disease Control and Prevention, Kaifeng, Henan, China
| | - Jin Huang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Lanli Su
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Jinrong Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan 450001, China.
| |
Collapse
|
11
|
Souza E Souza KFC, Moraes BPT, Paixão ICNDP, Burth P, Silva AR, Gonçalves-de-Albuquerque CF. Na +/K +-ATPase as a Target of Cardiac Glycosides for the Treatment of SARS-CoV-2 Infection. Front Pharmacol 2021; 12:624704. [PMID: 33935717 PMCID: PMC8085498 DOI: 10.3389/fphar.2021.624704] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), identified for the first time in Wuhan, China, causes coronavirus disease 2019 (COVID-19), which moved from epidemic status to becoming a pandemic. Since its discovery in December 2019, there have been countless cases of mortality and morbidity due to this virus. Several compounds such as chloroquine, hydroxychloroquine, lopinavir-ritonavir, and remdesivir have been tested as potential therapies; however, no effective treatment is currently recommended by regulatory agencies. Some studies on respiratory non-enveloped viruses such as adenoviruses and rhinovirus and some respiratory enveloped viruses including human respiratory syncytial viruses, influenza A, parainfluenza, SARS-CoV, and SARS-CoV-2 have shown the antiviral activity of cardiac glycosides, correlating their effect with Na+/K+-ATPase (NKA) modulation. Cardiac glycosides are secondary metabolites used to treat patients with cardiac insufficiency because they are the most potent inotropic agents. The effects of cardiac glycosides on NKA are dependent on cell type, exposure time, and drug concentration. They may also cause blockage of Na+ and K+ ionic transport or trigger signaling pathways. The antiviral activity of cardiac glycosides is related to cell signaling activation through NKA inhibition. Nuclear factor kappa B (NFκB) seems to be an essential transcription factor for SARS-CoV-2 infection. NFκB inhibition by cardiac glycosides interferes directly with SARS-CoV-2 yield and inflammatory cytokine production. Interestingly, the antiviral effect of cardiac glycosides is associated with tyrosine kinase (Src) activation, and NFκB appears to be regulated by Src. Src is one of the main signaling targets of the NKA α-subunit, modulating other signaling factors that may also impair viral infection. These data suggest that Src-NFκB signaling modulated by NKA plays a crucial role in the inhibition of SARS-CoV-2 infection. Herein, we discuss the antiviral effects of cardiac glycosides on different respiratory viruses, SARS-CoV-2 pathology, cell signaling pathways, and NKA as a possible molecular target for the treatment of COVID-19.
Collapse
Affiliation(s)
- Kauê Francisco Corrêa Souza E Souza
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bianca Portugal Tavares Moraes
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Izabel Christina Nunes de Palmer Paixão
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Neûrologia/Neurociências, Hospital Antônio Pedro Universidade Federal Fluminense, Niterói, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Departamento de Bioquímica, Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, FIOCRUZ, Rio de Janeiro, Brazil.,Programa de Pós-Graduação Em Neurociências (PPGNEURO), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Ciências e Biotecnologia (PPBI), Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil.,Programa de Pós-Graduação Em Biologia Celular e Molecular (PPGBMC), Universidade Federal Do Estado Do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Early Peritoneal Dialysis Ameliorates Blast Lung Injury by Alleviating Pulmonary Edema and Inflammation. Shock 2021; 53:95-102. [PMID: 30741852 DOI: 10.1097/shk.0000000000001325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND Blast lung injury is a high-energy trauma with high mortality for explosion victims. A treatment for blast lung injury is still lacking. The aim of this study was to observe the efficacy and mechanism of peritoneal dialysis combined with glucocorticoids (GC) in the treatment of blast lung injury in rats. METHODS Rats were randomly divided into five groups: control, sham, GC, peritoneal dialysis (dialysis for short), and dialysis + GC groups. All rats were injured by a biological shock tube-I. RESULTS The lung water levels in the dialysis group and dialysis + GC group were significantly lower than that in the control group at 6 and 24 h after blast injury. The oxygenation index, forced vital capacity, maximum midexpiratory flow, and functional residual capacity of rats in the dialysis and dialysis + GC groups were significantly higher than those in the control group. The serum levels of interleukin (IL)-1β, IL-6, tumor necrosis factor- α, monocyte chemoattractant protein-1, C-reactive protein, and IL-10 in the dialysis and dialysis + GC groups were significantly lower than those in the control group. Genome-wide mRNA microarray results showed that the aquaporin 1 level in the lung tissue of the dialysis group was 6.67 times higher than that in the control group. CONCLUSION Early peritoneal dialysis can attenuate pulmonary edema and inflammation, and protect acute lung injury after blast injury.
Collapse
|
13
|
Yadav E, Yadav N, Hus A, Yadav JS. Aquaporins in lung health and disease: Emerging roles, regulation, and clinical implications. Respir Med 2020; 174:106193. [PMID: 33096317 DOI: 10.1016/j.rmed.2020.106193] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/17/2020] [Accepted: 10/13/2020] [Indexed: 12/16/2022]
Abstract
Aquaporins (AQPs) aka water channels are a family of conserved transmembrane proteins (~30 kDa monomers) expressed in various organ systems. Of the 13 AQPs (AQP0 through AQP12) in the human body, four (AQPs 1, 3, 4, and 5) are expressed in the respiratory system. These channels are conventionally known for mediating transcellular fluid movements. Certain AQPs (aquaglyceroporins) have the capability to transport glycerol and potentially other solutes. There is an emerging body of literature unveiling the non-conventional roles of AQPs such as in cell proliferation and migration, gas permeation, signal potentiation, etc. Initial gene knock-out studies established a physiological role for lung AQPs, particularly AQP5, in maintaining homeostasis, by mediating fluid secretion from submucosal glands onto the airway surface liquid (ASL) lining. Subsequent studies have highlighted the functional significance of AQPs, particularly AQP1 and AQP5 in lung pathophysiology and diseases, including but not limited to chronic and acute lung injury, chronic obstructive pulmonary disease (COPD), other inflammatory lung conditions, and lung cancer. AQP1 has been suggested as a potential prognostic marker for malignant mesothelioma. Recent efforts are directed toward exploiting AQPs as targets for diagnosis, prevention, intervention, and/or treatment of various lung conditions. Emerging information on regulatory pathways and directed mechanistic research are posited to unravel novel strategies for these clinical implications. Future considerations should focus on development of AQP inhibitors, blockers, and modulators for therapeutic needs, and better understanding the role of lung-specific AQPs in inter-individual susceptibility to chronic lung diseases such as COPD and cancer.
Collapse
Affiliation(s)
- Ekta Yadav
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Niket Yadav
- Medical Scientist Training Program, University of Virginia School of Medicine, Charlottesville, VA, 22908-0738, USA
| | - Ariel Hus
- Department of Biology, University of Miami, Coral Gables, Florida, 33146, USA
| | - Jagjit S Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA.
| |
Collapse
|
14
|
Sevoflurane modulates AQPs (1,5) expression and endoplasmic reticulum stress in mice lung with allergic airway inflammation. Biosci Rep 2020; 39:221068. [PMID: 31710085 PMCID: PMC6879378 DOI: 10.1042/bsr20193282] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/29/2019] [Accepted: 11/08/2019] [Indexed: 02/07/2023] Open
Abstract
Sevoflurane was found to show protective roles in mice with asthma, however, the mechanism of which needs further exploring. Aquaporins (AQPs) have been demonstrated to be involved in the pathogenesis of asthma, while endoplasmic reticulum stress has been reported to be related to many inflammatory diseases and involved in protein processing, including AQPs. The present study aimed to determine the role of sevoflurane in AQPs (AQP1,3,4,5) expression in mice with allergic airway inflammation and the probable mechanism. The increased number of inflammatory cells infiltrating the lung tissue, and the elevated levels of tumor necrosis factor-α (TNF-α) and interleukin (IL) 13 (IL-13) were all decreased after sevoflurane treatment (all P<0.05). Meanwhile, mRNA levels of AQP1 and AQP5 but not AQP3 and AQP4 were decreased in ovalbumin (OVA)-induced allergic mice lung. Both the decreased mRNA expression and protein levels of AQP1 and AQP5 in allergic lung tissues were reversed by sevoflurane treatment. Furthermore, we established that sevoflurane inhibited the OVA-induced protein increase in the endoplasmic reticulum (ER) stress markers BiP and C/EBP homologous protein (CHOP). Collectively, these findings suggested that sevoflurane modulated the expression and protein level of AOPs (AQP1, AQP5) as well as inhibited ER stress response in OVA-induced allergic airway inflammation of mice.
Collapse
|
15
|
Li P, Yang Z, Ma S, Hu G, Dong H, Zhang T. Susceptibility of porcine pulmonary microvascular endothelial cells to porcine reproductive and respiratory syndrome virus. J Vet Med Sci 2020; 82:1404-1409. [PMID: 32830156 PMCID: PMC7538327 DOI: 10.1292/jvms.20-0324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microvascular endothelial cells possess versatile functions and their roles in a variety of viral infections have been documented. Porcine reproductive and
respiratory syndrome virus (PRRSV) infection induces severe lung inflammatory lesions in piglets, which is manifested as pulmonary endothelial dysfunction.
However, the underlying mechanism of PRRSV affecting porcine pulmonary microvascular endothelial cells (PMECs) remains unknown. This study aimed to evaluate the
susceptibility of PMECs to PRRSV. Primary PMECs were isolated and purified from piglet lungs, and the expression of three PRRSV receptors was characterized
using immunofluorescence. Overt cytopathic effects of the PRRSV strain HN in PMECs were observed at day five post-infection, and PRRSV antigens in PMECs were
determined at both RNA and protein levels using immunofluorescence and quantitative RT-PCR assays. The viral antigen significantly increased at 96 hr
post-infection, and infectious virus was recovered from the supernatant of the infected PMECs. The results show that PMECs can be infected with the PRRSV strain
HN, and that their receptor expression pattern is different from that of alveolar macrophages. The results of this study shed light on the potential roles of
PMECs in PRRSV infection and provide a comprehensive understanding of the pathogenesis underlying its severe manifestation.
Collapse
Affiliation(s)
- Peishan Li
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Zhongjin Yang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China.,Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Beijing, 100000, P.R. China
| | - Shun Ma
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Ge Hu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| | - Tao Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, 102206, P.R. China
| |
Collapse
|
16
|
Zhang J, Li S, Liu J, Li L, Deng F, Baikeli B, Li L, Ma X, Liu G. Higher expression levels of aquaporin (AQP)1 and AQP5 in the lungs of arid-desert living Lepus yarkandensis. J Anim Physiol Anim Nutr (Berl) 2019; 104:1186-1195. [PMID: 31828851 DOI: 10.1111/jpn.13272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/10/2019] [Accepted: 11/19/2019] [Indexed: 12/01/2022]
Abstract
Water transport across epithelial cells that line the airways and alveoli is a crucial component of lung physiology. Aquaporins (AQPs) facilitate water transport across the air space-capillary barrier in the distal lung. However, the roles of lung AQPs in desert animal adaptation to dry airstream environments are still unclear. A hare (Lepus yarkandensis) only lives in the Tarim Basin, and its living environment is an arid climate with rare precipitation. We studied cellular localization and expression levels of AQP1, AQP3, AQP4 and AQP5 in L. yarkandensis lungs by immunohistochemistry, quantitative real-time polymerase chain reaction and Western blot. The lung of rabbits (Oryctolagus cuniculus) that inhabit in mesic environment was similarly studied. Obtained results in two species of animals were compared to investigate whether AQPs in the lung altered expression in the animal living in arid region. AQP1 was localized to the endothelial cells in capillaries and venules surrounding terminal bronchioles and alveoli. AQP5 was localized to the ciliated columnar cells in terminal bronchioles and the alveolar type I cells in the alveolus. Quantitative real-time PCR analysis showed higher AQP1 and AQP5 mRNA levels in L. yarkandensis compared to O. cuniculus. Similar results were obtained by Western blot. These results revealed that the higher expression levels of AQP1 and AQP5 played a significant role in water transport in the lungs of arid-desert living L. yarkandensis and might accelerate water transport from capillary compartments to the airspace.
Collapse
Affiliation(s)
- Jianping Zhang
- College of Life Science, Tarim University, Alar, China.,Key Lab of Biological Resources Protection and Utilization in Tarim Basin, Tarim University, Alar, China.,Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Shuwei Li
- College of Life Science, Tarim University, Alar, China.,Key Lab of Biological Resources Protection and Utilization in Tarim Basin, Tarim University, Alar, China
| | - Jie Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Lexing Li
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China
| | - Fang Deng
- College of Life Science, Tarim University, Alar, China
| | | | - Linrui Li
- Department of Basic Veterinary Medicine, Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xuanye Ma
- Department of Basic Veterinary Medicine, Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, China.,Department of Basic Veterinary Medicine, Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Zhang J, Li S, Deng F, Baikeli B, Yu W, Liu G. Distribution of aquaporins and sodium transporters in the gastrointestinal tract of a desert hare, Lepus yarkandensis. Sci Rep 2019; 9:16639. [PMID: 31719660 PMCID: PMC6851143 DOI: 10.1038/s41598-019-53291-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 10/30/2019] [Indexed: 01/16/2023] Open
Abstract
Lepus yarkandensis is a desert hare of the Tarim Basin in western China, and it has strong adaptability to arid environments. Aquaporins (AQPs) are a family of water channel proteins that facilitate transmembrane water transport. Gastrointestinal tract AQPs are involved in fluid absorption in the small intestine and colon. This study aimed to determine the distribution of AQPs and sodium transporters in the gastrointestinal tract of L. yarkandensis and to compare the expression of these proteins with that in Oryctolagus cuniculus. Immunohistochemistry was performed to analyse the cellular distribution of these proteins, and the acquired images were analysed with IpWin32 software. Our results revealed that AQP1 was located in the colonic epithelium, central lacteal cells, fundic gland parietal cells, and capillary endothelial cells; AQP3 was located in the colonic epithelium, small intestinal villus epithelium, gastric pit and fundic gland; AQP4 was located in the fundic gland, small intestinal gland and colonic epithelium; and epithelial sodium channel (ENaC) and Na+-K+-ATPase were located in the epithelial cells, respectively. The higher expression levels of AQP1, AQP3, ENaC and Na+-K+-ATPase in the colon of L. yarkandensis compared to those in O. cuniculus suggested that L. yarkandensis has a higher capacity for faecal dehydration.
Collapse
Affiliation(s)
- Jianping Zhang
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China.
- Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China.
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu, Anhui Province, 233030, People's Republic of China.
| | - Shuwei Li
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
- Key Laboratory of Biological Resources Protection and Utilization in Tarim Basin, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Fang Deng
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Buheliqihan Baikeli
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Weijiang Yu
- College of Life Science, Tarim University Alar, Xinjiang Province, 843300, People's Republic of China
| | - Guoquan Liu
- Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, and Anhui Province Key Laboratory of Translational Cancer Research Bengbu Medical College Bengbu, Anhui Province, 233030, People's Republic of China.
- Department of Basic Veterinary Medicine, and Key Lab of Swine Genetics and Breeding and Agricultural Animal Breeding and Reproduction, College of Animal Science and Veterinary Medicine Huazhong Agricultural University Wuhan, Hubei Province, 430070, People's Republic of China.
| |
Collapse
|
18
|
Hwang S, Kang JY, Kim MJ, Shin DM, Hong JH. Carbonic anhydrase 12 mutation modulates membrane stability and volume regulation of aquaporin 5. J Enzyme Inhib Med Chem 2018; 34:179-188. [PMID: 30451023 PMCID: PMC6249555 DOI: 10.1080/14756366.2018.1540475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Patients carrying the carbonic anhydrase12 E143K mutation showed the dry mouth phenotype. The mechanism underlying the modulation of aquaporin 5 and function in the salivary glands by carbonic anhydrase12 remains unknown. In this study, we identified the mislocalised aquaporin 5 in the salivary glands carrying the E143K. The intracellular pH of E143K cells was more acidic than that of the cells carrying wild type. To evaluate the role of carbonic anhydrase12 on the volume regulation of aquaporin 5, the submandibular gland cells were subjected to hypotonic stimuli. E143K enhanced the extent of swelling of cells on hypotonicity. Aquaporin 5 modulates water influx through ion transporters to prevent osmotic imbalance. These results suggest that the carbonic anhydrase12 E143K, including acidification or inflammation, mediates volume dysregulation by the loss of aquaporin 5. Thus, carbonic anhydrase12 may determine sensible effects on the cellular osmotic regulation by modulating aquaporin 5.
Collapse
Affiliation(s)
- Soyoung Hwang
- a Department of Physiology , College of Medicine, Gachon University , Incheon , Republic of Korea
| | - Jung Yun Kang
- b Department of Oral Biology , BK21 PLUS Project, College of Dentistry, Yonsei University , Seoul , Republic of Korea
| | - Min Jae Kim
- b Department of Oral Biology , BK21 PLUS Project, College of Dentistry, Yonsei University , Seoul , Republic of Korea
| | - Dong Min Shin
- b Department of Oral Biology , BK21 PLUS Project, College of Dentistry, Yonsei University , Seoul , Republic of Korea
| | - Jeong Hee Hong
- a Department of Physiology , College of Medicine, Gachon University , Incheon , Republic of Korea.,c Department of Health Sciences and Technology, GAIHST, Gachon University , Incheon , Republic of Korea
| |
Collapse
|