1
|
Galán-Acedo C, Verde Arregoitia LD, Arasa-Gisbert R, Auliz-Ortiz D, Saldivar-Burrola LL, Gouveia SF, Correia I, Rosete-Vergés FA, Dinnage R, Villalobos F. Global primary predictors of extinction risk in primates. Proc Biol Sci 2024; 291:20241905. [PMID: 39353553 PMCID: PMC11444774 DOI: 10.1098/rspb.2024.1905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Identifying the main predictors of species' extinction risk while accounting for the effects of spatial and phylogenetic structures in the data is key to preventing species loss in tropical forests through adequate conservation practices. We recorded 22 705 precise geographical locations of primate occurrence across four major geographic realms (Neotropics, mainland Africa, Madagascar and Asia) to assess predictors of threat status using a novel Bayesian spatio-phylogenetic approach. We estimated the relative contributions of fixed factors (forest amount, body mass, home range, diel activity, locomotion, evolutionary distinctiveness and climatic instability) and random factors (space and phylogeny) to primate extinction risk. Precipitation instability increased the extinction risk in the Neotropics but decreased it in mainland Africa and Madagascar. Forest amount was negatively associated with extinction risk in all realms except Madagascar. Body mass increased the extinction risk in the Neotropics and Madagascar, whereas home range increased the extinction risk in mainland Africa and decreased it in Asia. Evolutionary distinctiveness negatively influenced extinction risk only in mainland Africa. Our findings highlight the importance of climate change mitigation and forest protection strategies. Increasing the protection of large primates and reducing hunting are also essential.
Collapse
Affiliation(s)
- Carmen Galán-Acedo
- Department of Biology, Geomatics and Landscape Ecology Laboratory, Carleton University, Ottawa, OntarioK1S 5B6, Canada
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Morelia, Michoacán37684, Mexico
| | - Luis Darcy Verde Arregoitia
- Red de Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz91073, Mexico
- Laboratorio de Conservación y Bienestar Humano, Instituto en Ecología y Biodiversidad, Concepción, Chile
| | - Ricard Arasa-Gisbert
- Instituto de Investigaciones Forestales, Universidad Veracruzana, Xalapa-Enríquez, Veracruz91070, Mexico
| | - Daniel Auliz-Ortiz
- Departament of Zoology, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México04510, Mexico
| | | | - Sidney F. Gouveia
- Department of Ecology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | - Isadora Correia
- Department of Ecology, Universidade Federal de Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Russell Dinnage
- Department of Biological Sciences, Florida International University, Miami, FL33199, USA
| | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A.C, Xalapa, Veracruz91073, Mexico
| |
Collapse
|
2
|
Popescu SM, Tigae C, Dobrițescu A, Ștefănescu DM. Exploring the Climatic Niche Evolution of the Genus Falco (Aves: Falconidae) in Europe. BIOLOGY 2024; 13:113. [PMID: 38392331 PMCID: PMC10886973 DOI: 10.3390/biology13020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024]
Abstract
By integrating species distribution modeling techniques, phylogenetic comparative methods, and climatic data, we analyzed how European falcon climatic niches have changed over evolutionary time in order to understand their tempo and mode of evolution and gain phylogenetic insights related to the ecological context of falcon evolution. For this purpose, we tested the relative contributions of niche conservatism, convergent evolution, and divergent evolution in the evolutionary history of this group of species in Europe. The occupation of climatic niche spaces by falcon species in Europe was not similar, considering that their climatic niche evolution was characterized by heterotachy, especially after ca. 4 Mya. Our results indicate that convergent evolution and niche divergence played an important role in the evolutionary history of these species, with no significant evidence of closely related species retaining their fundamental niche over time (phylogenetic niche conservatism). In most analyses, less closely related falcon species occupied similar climatic environments. We found that speciation in the European genus Falco was influenced by climatic niche differentiation, more prevalent in the last 4 million years, with the main climatic niche shifts occurring between closely related falcon species.
Collapse
Affiliation(s)
- Simona Mariana Popescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Cristian Tigae
- Faculty of Science, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Aurelian Dobrițescu
- Faculty of Science, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| | - Dragoș Mihail Ștefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I. Cuza, 13, 200585 Craiova, Romania
| |
Collapse
|
3
|
de Oliveira JV, Vasquez VL, Beltrão-Mendes R, Pinto MP. Climate change effects on the distribution of yellow-breasted capuchin monkey (Sapajus xanthosternos (Wied-Neuwied, 1826)). Am J Primatol 2023; 85:e23557. [PMID: 37812044 DOI: 10.1002/ajp.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/10/2023]
Abstract
The magnitude of recent climatic changes has no historical precedent and impacts biodiversity. Climatic changes may displace suitable habitats (areas with suitable climates), leading to global biodiversity decline. Primates are among the most affected groups. Most primates depend on forests and contribute to their maintenance. We evaluated the potential effects of climatic change on the distribution of Sapajus xanthosternos, a critically endangered primate whose geographical range encompasses three Brazilian biomes. We evaluated changes between baseline (1970-2000) and future (2081-2100) climates using multivariate analysis. Then, we compared current and future (2100) climatic suitability projections for the species. The climatic changes predicted throughout the S. xanthosternos range differed mostly longitudinally, with higher temperature increases in the west and higher precipitation reductions in the east. Climatic suitability for S. xanthosternos is predicted to decline in the future. Areas with highest current climatic suitability occur as a narrow strip in the eastern part of the geographic range throughout the latitudinal range. In the future, areas with highest values are projected to be located as an even narrower strip in the eastern part of the geographical range. A small portion of forest remnants larger than 150 ha located in the east has larger current and future suitability values. At this large scale, the spatial heterogeneity of the climate effects reinforce the importance of maintenance of current populations in different areas of the range. The possibility that phenotypic plasticity helps primates cope with reduced climatic suitability may be mediated by habitat availability, quality, and connectivity.
Collapse
Affiliation(s)
- Jéssica Vargas de Oliveira
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Vagner Lacerda Vasquez
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| | - Raone Beltrão-Mendes
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe (UFS), São Cristóvão, Brazil
| | - Míriam Plaza Pinto
- Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil
| |
Collapse
|
4
|
Yang L, Chen T, Shi KC, Zhang L, Lwin N, Fan PF. Effects of climate and land-cover change on the conservation status of gibbons. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e14045. [PMID: 36511895 DOI: 10.1111/cobi.14045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 06/17/2023]
Abstract
Species shift their distribution in response to climate and land-cover change, which may result in a spatial mismatch between currently protected areas (PAs) and priority conservation areas (PCAs). We examined the effects of climate and land-cover change on potential range of gibbons and sought to identify PCAs that would conserve them effectively. We collected global gibbon occurrence points and modeled (ecological niche model) their current and potential 2050s ranges under climate-change and different land-cover-change scenarios. We examined change in range and PA coverage between the current and future ranges of each gibbon species. We applied spatial conservation prioritization to identify the top 30% PCAs for each species. We then determined how much of the PCAs are conserved in each country within the global range of gibbons. On average, 31% (SD 22) of each species' current range was covered in PAs. PA coverage of the current range of 9 species was <30%. Nine species lost on average 46% (SD 29) of their potential range due to climate change. Under climate-change with an optimistic land-cover-change scenario (B1), 12 species lost 39% (SD 28) of their range. In a pessimistic land-cover-change scenario (A2), 15 species lost 36% (SD 28) of their range. Five species lost significantly more range under the A2 scenario than the B1 scenario (p = 0.01, SD 0.01), suggesting that gibbons will benefit from effective management of land cover. PA coverage of future range was <30% for 11 species. On average, 32% (SD 25) of PCAs were covered by PAs. Indonesia contained more species and PCAs and thus has the greatest responsibility for gibbon conservation. Indonesia, India, and Myanmar need to expand their PAs to fulfill their responsibility to gibbon conservation. Our results provide a baseline for global gibbon conservation, particularly for countries lacking gibbon research capacity.
Collapse
Affiliation(s)
- Li Yang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Tao Chen
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Kai-Chong Shi
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lu Zhang
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ngwe Lwin
- Myanmar Programme, Fauna and Flora International, Yangon, Myanmar
| | - Peng-Fei Fan
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
5
|
Pinto MP, Beltrão-Mendes R, Talebi M, de Lima AA. Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range. Sci Rep 2023; 13:641. [PMID: 36635347 PMCID: PMC9837198 DOI: 10.1038/s41598-022-26756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Global climate changes affect biodiversity and cause species distribution shifts, contractions, and expansions. Climate change and disease are emerging threats to primates, and approximately one-quarter of primates' ranges have temperatures over historical ones. How will climate changes influence Atlantic Forest primate ranges? We used habitat suitability models and measured potential changes in area and distributions shifts. Climate change expected in 2100 may change the distribution area of Atlantic Forest primates. Fourteen species (74%) are predicted to lose more than 50% of their distribution, and nine species (47%) are predicted to lose more than 75% of their distribution. The balance was negative, indicating a potential future loss, and the strength of the reduction in the distribution is related to the severity of climate change (SSP scenarios). Directional shifts were detected to the south. The projected mean centroid latitudinal shift is ~ 51 km to the south for 2100 SSP5-8.5 scenario. The possibility of dispersal will depend on suitable routes and landscape configuration. Greenhouse gas emissions should be urgently reduced. Our results also emphasize that no more forest loss is acceptable in Atlantic Forest, and restoration, canopy bridges, friendly agroecosystems, and monitoring of infrastructure projects are urgent to enable dealing with climate change.
Collapse
Affiliation(s)
- Míriam Plaza Pinto
- Departamento de Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil.
| | - Raone Beltrão-Mendes
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Sergipe (UFS), 49100-000, São Cristóvão, SE, Brasil
| | - Maurício Talebi
- Departamento de Ciências Ambientais, Universidade Federal de São Paulo (UNIFESP), 09972-270, Diadema, SP, Brasil
- Programa de Pós-Graduação em Análise Ambiental Integrada, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brasil
| | - Adriana Almeida de Lima
- Programa de Pós-Graduação em Ecologia, Centro de Biociências, Universidade Federal do Rio Grande do Norte (UFRN), 59072-970, Natal, RN, Brasil
| |
Collapse
|
6
|
Estrada A, Garber PA. Principal Drivers and Conservation Solutions to the Impending Primate Extinction Crisis: Introduction to the Special Issue. INT J PRIMATOL 2022; 43:1-14. [PMID: 35194270 PMCID: PMC8853428 DOI: 10.1007/s10764-022-00283-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/24/2022] [Indexed: 12/20/2022]
Abstract
Nonhuman primates are facing an impending extinction crisis with over 65% of species listed as Vulnerable, Endangered, or Critically Endangered, and 93% characterized by declining populations. Primary drivers of primate population decline include deforestation, principally for industrial agriculture and the production of food and nonfood commodities, much of which is exported to wealthy consumer nations, unsustainable bushmeat hunting, the illegal pet trade, the capture of primates for body parts, expanding road and rail networks, mining, dam building, oil and gas exploration, and the threat of emerging diseases. Over the next several decades, human population increase, agricultural expansion, and climate change are expected to contribute significantly to the loss of additional suitable habitat and a reduction in the viability of local primate populations. If we are to avoid this impending extinction crisis, primate researchers must prioritize projects designed to mitigate the effects of habitat change on ecosystems health and biodiversity, and play a greater role in conservation and environmental policy by educating global citizens and political leaders. In addition, the international community will need to work with governments in primate habitat countries to expand the number of protected areas that contain primate species (94 primate species have < 10% of their range in protected areas). In this special issue of the International Journal of Primatology, we bring together researchers from a wide range of disciplines to examine the current and future threats to primate population persistence, and present local, country, and regional solutions to protect primate species.
Collapse
Affiliation(s)
- Alejandro Estrada
- Institute of Biology, National Autonomous University of Mexico, Mexico, Mexico
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan China
| | - Paul A. Garber
- International Centre of Biodiversity and Primate Conservation, Dali University, Dali, Yunnan China
- Department of Anthropology and Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL USA
| |
Collapse
|