1
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Bos PD, Damaj MI, Kabbani N. Proteomic analysis of dorsal root ganglia in a mouse model of paclitaxel-induced neuropathic pain. PLoS One 2024; 19:e0306498. [PMID: 39331687 PMCID: PMC11432834 DOI: 10.1371/journal.pone.0306498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 09/29/2024] Open
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 50%) of chemotherapy induced peripheral neuropathy in patients. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Alexandru Graur
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Bryan D. Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Paula D. Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, United States of America
| | - M. Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
- School of Systems Biology, George Mason University, Fairfax, VA, United States of America
| |
Collapse
|
2
|
Zhu Z, Chen G, He J, Xu Y. The protective effects of orexin B in neuropathic pain by suppressing inflammatory response. Neuropeptides 2024; 108:102458. [PMID: 39255695 DOI: 10.1016/j.npep.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
Chronic pain induced by pathological insults to the sensorimotor system is a typical form of neuropathic pain (NP), and the underlying mechanism is complex. Currently, there are no successful therapeutic interventions for NP. Orexin B is a neuropeptide with a wide range of biological functions. However, the pharmacological function of orexin B in chronic neuropathic pain has been less studied. Here, we aim to examine the neuroprotective effects of orexin B in chronic constriction injury (CCI)- induced NP. Firstly, we found that orexin type 2 receptor (OX2R) but not orexin type 1 receptor (OX1R) was reduced in the spinal cord (SC) of CCI-treated rats. Mechanical withdrawal threshold and thermal withdrawal latency assays display that administration of orexin B clearly ameliorated CCI-evoked neuropathic pain dose-dependently. Notably, orexin B treatment also effectively prevented microglia activation by reducing the levels of IBA1. Additionally, orexin B was also found to suppress the inflammatory response in the SC tissue by reducing the levels of IL-6, TNF-α, iNOS, and COX-2 as well as the production of NO and PGE2 in CCI-treated rats. Furthermore, orexin B administration attenuated oxidative stress (OS) by increasing the activity of SOD and the levels of GSH. Mechanically, orexin B prevented activation of JNK/NF-κB signaling in the SC of CCI-treated rats. Based on these findings, we conclude that orexin B might have a promising role in ameliorating CCI-evoked neuropathic pain through the inhibition of microglial activation and inflammatory response.
Collapse
Affiliation(s)
- Zuqing Zhu
- Department of Anesthesiology, the First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Gang Chen
- Department of Anesthesiology, Shaoyifu Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, China
| | - Jiangtao He
- Department of Anesthesiology, the First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Yuanting Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China.
| |
Collapse
|
3
|
Sajjad Q, Khan AU, Khan A. Pharmacological investigation of genistein for its therapeutic potential against nitroglycerin-induced migraine headache. J Pharm Pharmacol 2024:rgae084. [PMID: 39010707 DOI: 10.1093/jpp/rgae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/15/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVES Migraine, typically occurs on one side of the head, lasts for hours to days. Trigemino-vascular system (TVS) plays a vital role in pain generation, with neurogenic inflammation and oxidative stress playing key roles in its pathophysiology. METHODS This study aimed to investigate genistein's potential as anti-inflammatory and anti-oxidant agent in mitigating migraine pain. Genistein (20 and 50 mg/kg) was administered intraperitoneally (IP) to nitroglycerin (NTG; 10 mg/kg)-induced migraine model in rats. Behavioral analysis, antioxidant assay, immunohistochemistry (IHC), histopathological examination, ELISA, and RT-PCR were conducted to evaluate the antimigraine potential of genistein. KEY FINDINGS In-silico analysis showed genestien's ACE values of -4.8 to -9.2 Kcal/mol against selected protein targets. Genistein significantly reversed mechanical and thermal nociception, light phobicity, and head scratching; increased the intensities of GST, GSH, catalase; and down regulated lipid peroxidase (LPO) in cortex and trigeminal nucleus caudalis (TNC). It also reduced Nrf2, NF-kB, and IL6 expression, analyzed through IHC, improved histopathological features, and increased COX-2 and decreased PPAR-γ expressions, while RT-PCR analysis revealed increased PPAR-γ expressions in genistein-treated rats. CONCLUSION Genistein exhibited potent antioxidant and anti-inflammatory properties in migraine treatment, acting through multifactorial mechanisms by modulating the expression of numerous proteins in the region cortex and TNC.
Collapse
Affiliation(s)
- Qirrat Sajjad
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Arif-Ullah Khan
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Aslam Khan
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| |
Collapse
|
4
|
Hanna R, Graur A, Sinclair P, Mckiver BD, Paula D Bos M, Imad Damaj M, Kabbani N. Proteomic Analysis of Dorsal Root Ganglia in a Mouse Model of Paclitaxel-Induced Neuropathic Pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599888. [PMID: 38979383 PMCID: PMC11230256 DOI: 10.1101/2024.06.20.599888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Paclitaxel is a chemotherapy drug widely used for the treatment of various cancers based on its ability to potently stabilize cellular microtubules and block division in cancer cells. Paclitaxel-based treatment, however, accumulates in peripheral system sensory neurons and leads to a high incidence rate (over 60%) of chemotherapy induced peripheral neuropathy. Using an established preclinical model of paclitaxel-induced peripheral neuropathy (PIPN), we examined proteomic changes in dorsal root ganglia (DRG) of adult male mice that were treated with paclitaxel (8 mg/kg, at 4 injections every other day) relative to vehicle-treated mice. High throughput proteomics based on liquid chromatography electrospray ionization mass spectrometry identified 165 significantly altered proteins in lumbar DRG. Gene ontology enrichment and bioinformatic analysis revealed an effect of paclitaxel on pathways for mitochondrial regulation, axonal function, and inflammatory purinergic signaling as well as microtubule activity. These findings provide insight into molecular mechanisms that can contribute to PIPN in patients.
Collapse
Affiliation(s)
- Rania Hanna
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Alexandru Graur
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| | - Bryan D Mckiver
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - M Paula D Bos
- Department of Pathology, Massey Comprehensive Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, VA, 23298
| | - M Imad Damaj
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA 22030, USA
| |
Collapse
|
5
|
Ino Y, Maruyama M, Shimizu M, Morita R, Sakamoto A, Suzuki H, Sakai A. TSLP in DRG neurons causes the development of neuropathic pain through T cells. J Neuroinflammation 2023; 20:200. [PMID: 37660072 PMCID: PMC10474733 DOI: 10.1186/s12974-023-02882-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Peripheral nerve injury to dorsal root ganglion (DRG) neurons develops intractable neuropathic pain via induction of neuroinflammation. However, neuropathic pain is rare in the early life of rodents. Here, we aimed to identify a novel therapeutic target for neuropathic pain in adults by comprehensively analyzing the difference of gene expression changes between infant and adult rats after nerve injury. METHODS A neuropathic pain model was produced in neonatal and young adult rats by spared nerve injury. Nerve injury-induced gene expression changes in the dorsal root ganglion (DRG) were examined using RNA sequencing. Thymic stromal lymphopoietin (TSLP) and its siRNA were intrathecally injected. T cells were examined using immunofluorescence and were reduced by systemic administration of FTY720. RESULTS Differences in changes in the transcriptome in injured DRG between infant and adult rats were most associated with immunological functions. Notably, TSLP was markedly upregulated in DRG neurons in adult rats, but not in infant rats. TSLP caused mechanical allodynia in adult rats, whereas TSLP knockdown suppressed the development of neuropathic pain. TSLP promoted the infiltration of T cells into the injured DRG and organized the expressions of multiple factors that regulate T cells. Accordingly, TSLP caused mechanical allodynia through T cells in the DRG. CONCLUSION This study demonstrated that TSLP is causally involved in the development of neuropathic pain through T cell recruitment.
Collapse
Affiliation(s)
- Yuka Ino
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Motoyo Maruyama
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
- Division of Laboratory Animal Science, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Masumi Shimizu
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Rimpei Morita
- Department of Microbiology and Immunology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsuhiro Sakamoto
- Department of Anesthesiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Hidenori Suzuki
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| | - Atsushi Sakai
- Department of Pharmacology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8602 Japan
| |
Collapse
|
6
|
Razee A, Banerjee S, Hong J, Magaki S, Fishbein G, Ajijola OA, Umar S. Thoracic Spinal Cord Neuroinflammation as a Novel Therapeutic Target in Pulmonary Hypertension. Hypertension 2023; 80:1297-1310. [PMID: 37092338 PMCID: PMC10192067 DOI: 10.1161/hypertensionaha.122.20782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/03/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is associated with aberrant sympathoexcitation leading to right ventricular failure (RVF), arrhythmias, and death. Microglial activation and neuroinflammation have been implicated in sympathoexcitation in experimental PH. We recently reported the first evidence of thoracic spinal cord (TSC) neuroinflammation in PH rats. Here, we hypothesize that PH is associated with increased cardiopulmonary afferent signaling leading to TSC-specific neuroinflammation and sympathoexcitation. Furthermore, inhibition of TSC neuroinflammation rescues experimental PH and RVF. METHODS We performed transcriptomic analysis and its validation on the TSC of monocrotaline (n=8) and Sugen hypoxia (n=8) rat models of severe PH-RVF. A group of monocrotaline rats received either daily intrathecal microglial activation inhibitor minocycline (200 μg/kg per day, n=5) or PBS (n=5) from day 14 through 28. Echocardiography and right ventricle-catheterization were performed terminally. Real-time quantitative reverse transcription PCR, immunolocalization, microglia+astrocyte quantification, and terminal deoxynucleotidyl transferase dUTP nick end labeling were assessed. Plasma catecholamines were measured by ELISA. Human spinal cord autopsy samples (Control n=3; pulmonary arterial hypertension n=3) were assessed to validate preclinical findings. RESULTS Increased cardiopulmonary afferent signaling was demonstrated in preclinical and clinical PH. Our findings delineated common dysregulated genes and pathways highlighting neuroinflammation and apoptosis in the remodeled TSC and highlighted increased sympathoexcitation in both rat models. Moreover, we validated significantly increased microglial and astrocytic activation and CX3CL1 expression in TSC of human pulmonary arterial hypertension. Finally, amelioration of TSC neuroinflammation by minocycline in monocrotaline rats inhibited microglial activation, decreased proinflammatory cytokines, sympathetic nervous system activation and significantly attenuated PH and RVF. CONCLUSIONS Targeting neuroinflammation and associated molecular pathways and genes in the TSC may yield novel therapeutic strategies for PH and RVF.
Collapse
Affiliation(s)
- Asif Razee
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Somanshu Banerjee
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Jason Hong
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Los Angeles, CA, USA
| | - Shino Magaki
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Greg Fishbein
- Department of Pathology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Olujimi A. Ajijola
- UCLA Cardiac Arrhythmia Center and Neurocardiology Research Program of Excellence, Los Angeles, CA, USA
| | - Soban Umar
- Department of Anesthesiology and Perioperative Medicine Division of Molecular Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
7
|
Starinets A, Tyrtyshnaia A, Manzhulo I. Anti-Inflammatory Activity of Synaptamide in the Peripheral Nervous System in a Model of Sciatic Nerve Injury. Int J Mol Sci 2023; 24:6273. [PMID: 37047247 PMCID: PMC10093792 DOI: 10.3390/ijms24076273] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/22/2023] [Accepted: 03/25/2023] [Indexed: 03/29/2023] Open
Abstract
N-docosahexaenoylethanolamine (DHEA), or synaptamide, is an endogenous metabolite of docosahexaenoic acid (DHA) that exhibits synaptogenic and neurogenic effects. In our previous studies, synaptamide administration inhibited the neuropathic pain-like behavior and reduced inflammation in the central nervous system following sciatic nerve injury. In the present study, we examine the effect of synaptamide on the peripheral nervous system in a neuropathic pain condition. The dynamics of ionized calcium-binding adapter molecule 1 (iba-1), CD68, CD163, myelin basic protein, and the production of interleukin 1β and 6 within the sciatic nerve, as well as the neuro-glial index and the activity of iba-1, CD163, glial fibrillary acidic protein (GFAP), neuronal NO synthase (nNOS), substance P (SP), activating transcription factor 3 (ATF3) in the dorsal root ganglia (DRG), are studied. According to our results, synaptamide treatment (4 mg/kg/day) (1) decreases the weight-bearing deficit after nerve trauma; (2) enhances the remyelination process in the sciatic nerve; (3) shows anti-inflammatory properties in the peripheral nervous system; (4) decreases the neuro-glial index and GFAP immunoreactivity in the DRG; (5) inhibits nNOS- and SP-ergic activity in the DRG, which might contribute to neuropathic pain attenuation. In general, the current study demonstrates the complex effect of synaptamide on nerve injury, which indicates its high potential for neuropathic pain management.
Collapse
Affiliation(s)
| | | | - Igor Manzhulo
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia; (A.S.); (A.T.)
| |
Collapse
|
8
|
Tufvesson H, Hamrefors V, Ohlsson B. Mechanisms behind diffuse idiopathic peripheral neuropathy in humans - a systematic review. Scand J Gastroenterol 2022; 58:572-582. [PMID: 36546668 DOI: 10.1080/00365521.2022.2160272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction: Diffuse peripheral neuropathy is a well-known complication of several conditions, whereas many patients have peripheral neuropathy of unknown etiology and pathophyisology. Increased knowledge of mechanisms may provide insight into enteric neuropathy with gastrointestinal dysmotility. The aim of the present systematic review was to identify mechanisms behind diffuse idiopathic peripheral neuropathies in humans.Methods: Searches were performed in PubMed, Embase, and Web of Science. Human original and review articles, written in English, describing mechanisms behind diffuse peripheral neuropathy verified by objective examinations were intended to be studied. Articles that described animal models, well-described hereditary diseases, drug-induced neuropathy, pain syndromes, malnutrition, and local neuropathy were excluded.Results: In total, 4712 articles were identified. After scrutinizing titles and abstracts, 633 remained and were studied in full text. After the removal of articles not fulfilling inclusion or exclusion criteria, 52 were finally included in this review. The most frequently described neuropathy was diabetic neuropathy, with a wide range of mechanisms involving mitochondrial dysfunction such as oxidative stress and inflammation. Microvascular changes in diabetes and vasculitis lead to ischemia and secondary oxidative stress with inflammation. Structural changes in neurons and glial cells are observed, with abnormalities in different neurotrophic factors. Neuropathy induced by autoantibodies or immunological mechanisms is described in infectious and systemic inflammatory diseases. Several ion channels may be involved in painful neuropathy. No study identified why some patients mainly develop large fiber neuropathy and others small fiber neuropathy.Conclusion: Metabolic and immunological factors and channelopathy may be considered in diffuse idiopathic peripheral neuropathy.
Collapse
Affiliation(s)
- Hanna Tufvesson
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Gastroenterology and Hepatology, Skåne University Hopsital, Malmö, Sweden
| | - Viktor Hamrefors
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Cardiology, Skåne University Hospital, Malmö, Sweden
| | - Bodil Ohlsson
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Department of Internal Medicine, Skåne University Hopsital, Malmö, Sweden
| |
Collapse
|
9
|
Varela ELP, Gomes ARQ, da Silva Barbosa dos Santos A, de Carvalho EP, Vale VV, Percário S. Potential Benefits of Lycopene Consumption: Rationale for Using It as an Adjuvant Treatment for Malaria Patients and in Several Diseases. Nutrients 2022; 14:5303. [PMID: 36558462 PMCID: PMC9787606 DOI: 10.3390/nu14245303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Malaria is a disease that affects thousands of people around the world every year. Its pathogenesis is associated with the production of reactive oxygen and nitrogen species (RONS) and lower levels of micronutrients and antioxidants. Patients under drug treatment have high levels of oxidative stress biomarkers in the body tissues, which limits the use of these drugs. Therefore, several studies have suggested that RONS inhibition may represent an adjuvant therapeutic strategy in the treatment of these patients by increasing the antioxidant capacity of the host. In this sense, supplementation with antioxidant compounds such as zinc, selenium, and vitamins A, C, and E has been suggested as part of the treatment. Among dietary antioxidants, lycopene is the most powerful antioxidant among the main carotenoids. This review aimed to describe the main mechanisms inducing oxidative stress during malaria, highlighting the production of RONS as a defense mechanism against the infection induced by the ischemia-reperfusion syndrome, the metabolism of the parasite, and the metabolism of antimalarial drugs. Furthermore, the effects of lycopene on several diseases in which oxidative stress is implicated as a cause are outlined, providing information about its mechanism of action, and providing an evidence-based justification for its supplementation in malaria.
Collapse
Affiliation(s)
- Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Antônio Rafael Quadros Gomes
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Aline da Silva Barbosa dos Santos
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutical Innovation, Federal University of Pará, Belém 66075-110, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil
- Post-Graduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Federal University of Pará, Belém 66075-110, Brazil
| |
Collapse
|
10
|
Semis HS, Kandemir FM, Caglayan C, Kaynar O, Genc A, Arıkan SM. Protective effect of naringin against oxaliplatin-induced peripheral neuropathy in rats: A behavioral and molecular study. J Biochem Mol Toxicol 2022; 36:e23121. [PMID: 35670529 DOI: 10.1002/jbt.23121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 05/29/2022] [Indexed: 11/11/2022]
Abstract
Oxaliplatin (OXL) is a chemotherapeutic drug used for metastatic and other types of cancer, but it causes peripheral neuropathy as a dose-limiting side effect. Herein, we used the rat model of OXL-induced peripheral neuropathy to demonstrate the protective effects of naringin (NRG) in this neuropathy. In this study, rats were injected with OXL (4 mg/kg, body weight, i.p.) in 5% glucose solution 30 min after oral administration of NRG (50 and 100 mg/kg, body weight) on the 1st, 2nd, 5th, and 6th days. OXL caused sensory and motor neuropathy (as revealed by the hot plate, tail flick, rota-rod, and cold hyperalgesia tests) in the sciatic nerve of rats. Coadministration of oral NRG alleviated OXL-induced sensory and motor neuropathy. Levels of superoxide dismutase, catalase, glutathione peroxidase, nuclear factor erythroid 2-related factor 2, Heme oxygenase-1, nuclear factor-κ B, tumor necrosis factor-α, interleukin-1β, Bax, Bcl-2, caspase-3, paraoxonase, mitogen-activated protein kinase 14, neuronal nitric oxide synthase (nNOS), acetylcholinesterase, and arginase 2 in the sciatic nerve tissues were assessed by real-time polymerase chain reaction. Moreover, the protein levels of caspase-3, Bax, Bcl-2, intercellular adhesion molecules-1, glial fibrillary acidic protein, and nNOS were examined by Western blot analysis. NRG treatment significantly improved all the above-mentioned parameters and reduced OXL-induced oxidative stress, inflammation, and apoptosis in the sciatic nerve tissue. In conclusion, this study demonstrated that NRG significantly attenuated OXL-induced peripheral neuropathy and might be considered as a new protective agent to prevent the OXL-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Halil S Semis
- Department of Orthopedics and Traumatology, Private Buhara Hospital, Erzurum, Turkey
| | - Fatih M Kandemir
- Department of Medical Biochemistry, Faculty of Medicine, Aksaray University, Aksaray, Turkey
| | - Cuneyt Caglayan
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Ozgur Kaynar
- Department of Biochemistry, Faculty of Veterinary Medicine, Kastamonu University, Kastamonu, Turkey
| | - Aydın Genc
- Department of Biochemistry, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Sefik M Arıkan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Ullah R, Badshah W, Ali G, Ullah A, Khan SU, Ahmad N, Shahid M, Naveed M, Ullah S, Bangash SA, Althobaiti YS. Cassia artemisiodes attenuates nociceptive and diabetes-induced neuropathic pain modalities apropos antioxidant and anti-inflammatory mechanisms. Biomed Pharmacother 2022; 149:112834. [PMID: 35339108 DOI: 10.1016/j.biopha.2022.112834] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 11/02/2022] Open
Abstract
Cassia plants have a considerable position in conventional systems of medicine. The possible anti-nociceptive, anti-inflammatory, and anti-neuropathic properties of Cassia artemisiodes (CAD) extract were tested using the standard animal models. In this study, in vitro antioxidant, cyclooxygenase (COX-1 and 2), and 5-lipoxygenase (5-LOX) inhibitory assays were performed. The anti-inflammatory activity was evaluated using carrageenan, histamine, and serotonin-induced paw edema models. Antipyretic activity, thermally and chemically-induced nociception, and naloxone antagonistic activities were carried out. The CAD extract was tested for anti-neuropathic activity in the streptozotocin-induced diabetic neuropathy model. Suppressing the effect of CAD extract on the mRNA level of inducible nitric oxide synthase (iNOS), COX-2, and pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) was determined by performing RT-PCR. The CAD extract inhibited COX-2 and 5-LOX enzymes, paw inflammation, and reduced nociceptive behaviors. The mRNA gene expression of iNOS, COX-2, and inflammatory cytokines was reduced significantly with increased DPPH scavenging activity. The extract significantly reduced the diabetes-induced neuropathic pain. In a nutshell, these results recommended that the CAD extract has anti-nociceptive and anti-neuropathic activities due to inhibition of inflammatory and oxidative signaling.
Collapse
Affiliation(s)
- Rahim Ullah
- Faculty of Life Science, Department of Pharmacy Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan; Department of Pharmacy, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Waseem Badshah
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan; The Ken and Ruth Davee Department of Neurology and Clinical Neurosciences Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715 300 East Superior St., Chicago IL 60611, USA.
| | - Aman Ullah
- College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan.
| | - Saleem Ullah Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, Khyber Pakhtunkhwa, Pakistan.
| | - Nisar Ahmad
- Faculty of Pharmacy, Grand Asian University Sialkot, Punjab, Pakistan.
| | - Muhammad Shahid
- Department of Pharmacy, Institute of Integrative Biosciences, CECOS University of IT and Emerging Sciences, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Muhammad Naveed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Sami Ullah
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Khyber Pakhtunkhwa, Pakistan.
| | - Sudhair Abbas Bangash
- Faculty of Life Science, Department of Pharmacy Sarhad University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
| | - Yusuf S Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| |
Collapse
|
12
|
Sarmah N, Nauli AM, Ally A, Nauli SM. Interactions among Endothelial Nitric Oxide Synthase, Cardiovascular System, and Nociception during Physiological and Pathophysiological States. Molecules 2022; 27:2835. [PMID: 35566185 PMCID: PMC9105107 DOI: 10.3390/molecules27092835] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/25/2022] Open
Abstract
Nitric oxide synthase (NOS) plays important roles within the cardiovascular system in physiological states as well as in pathophysiologic and specific cardiovascular (CV) disease states, such as hypertension (HTN), arteriosclerosis, and cerebrovascular accidents. This review discusses the roles of the endothelial NOS (eNOS) and its effect on cardiovascular responses that are induced by nociceptive stimuli. The roles of eNOS enzyme in modulating CV functions while experiencing pain will be discussed. Nociception, otherwise known as the subjective experience of pain through sensory receptors, termed "nociceptors", can be stimulated by various external or internal stimuli. In turn, events of various cascade pathways implicating eNOS contribute to a plethora of pathophysiological responses to the noxious pain stimuli. Nociception pathways involve various regions of the brain and spinal cord, including the dorsolateral periaqueductal gray matter (PAG), rostral ventrolateral medulla (RVLM), caudal ventrolateral medulla, and intermediolateral column of the spinal cord. These pathways can interrelate in nociceptive responses to pain stimuli. The alterations in CV responses that affect GABAergic and glutamatergic pathways will be discussed in relation to mechanical and thermal (heat and cold) stimuli. Overall, this paper will discuss the aggregate recent and past data regarding pain pathways and the CV system.
Collapse
Affiliation(s)
- Niribili Sarmah
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Andromeda M. Nauli
- Department of Biomedical Sciences, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI 49008, USA;
| | - Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR 72916, USA;
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, Chapman University, Irvine, CA 92618, USA
- Department of Medicine, University of California, Irvine, CA 92697, USA
| |
Collapse
|
13
|
Zhang X, Zhang N, Liu D, Ding J, Zhang Y, Zhu Z. Research advances in the clinical application of esketamine. IBRAIN 2022; 8:55-67. [PMID: 37786420 PMCID: PMC10528803 DOI: 10.1002/ibra.12019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 01/10/2022] [Indexed: 10/04/2023]
Abstract
Esketamine is dextrorotatory ketamine, which is an enantiomer of ketamine. Compared with ketamine, it has the advantages of a fast metabolism, fewer side effects, and strong pharmacological effects, so it is more suitable for clinical use. Esketamine has a powerful analgesic effect and has little effect on breathing. It has a wide range of applications in the fields of pediatric anesthesia, conscious sedation anesthesia, and emergency analgesia. In addition, it is also used for pain that is difficult to relieve with conventional drugs and to prevent postoperative pain. Various routes of administration are also suitable for patients who need short-term analgesia and sedation. As a drug, esketamine inevitably brings some side effects when it is used clinically. In this article, by introducing the mechanism of action and pharmacological characteristics of esketamine, its clinical application is reviewed, and it provides a reference for the more reasonable and safe clinical application of esketamine.
Collapse
Affiliation(s)
- Xiao‐Xi Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Nai‐Xin Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - De‐Xing Liu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Jun Ding
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Yi‐Nan Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| | - Zhao‐Qiong Zhu
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
14
|
Squillace S, Salvemini D. Nitroxidative stress in pain and opioid-induced adverse effects: therapeutic opportunities. Pain 2022; 163:205-213. [PMID: 34145168 DOI: 10.1097/j.pain.0000000000002347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Silvia Squillace
- Department of Pharmacology and Physiology, Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, St. Louis, MO, United States
| | | |
Collapse
|
15
|
Ghorbanzadeh H, Mohebkhodaei P, Nematizadeh M, Rahimi N, Rafeiean M, Ghasemi M, Dehpour AR. Analgesic and anti-inflammatory effects of modafinil in a mouse model of neuropathic pain: A role for nitrergic and serotonergic pathways. Neurol Res 2021; 44:390-402. [PMID: 34706635 DOI: 10.1080/01616412.2021.1992102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
OBJECTIVES To evaluate the effects of modafinil on neuropathic pain induced by sciatic nerve cuffing in mice, and possible contribution of nitrergic/inflammatory and serotonergic systems. METHODS Neuropathic pain was induced by applying a polyethylene cuff around the left sciatic nerve. Seven days later, mice received modafinil (50, 100, and 200 mg/kg; intraperitoneal [i.p.]) and morphine (10 mg/kg, i.p.) as control. Mice also received pretreatments of the nonselective nitric oxide (NO) synthase (NOS) inhibitor L-NAME, the selective neuronal NOS inhibitor 7-nitroindazole, the selective inducible NOS inhibitor aminoguanidine, and the selective serotonin reuptake inhibitor citalopram before modafinil (100 mg/kg). von Frey test was used to evaluate mechanical allodynia. Additionally, sciatic nerves were collected for histopathological analysis. Tissue levels of NO metabolites, tumor necrosis factor (TNF)-α, and interleukin (IL)-6 were assessed. RESULTS Animals whose sciatic nerves were cuffed had a significantly (P<0.001) decreased paw withdrawal threshold (PWT) compared with the sham-operated group. Modafinil (100 mg/kg) and morphine significantly reversed PWT (P<0.001). Pretreatments with L-NAME, 7-nitroindazole, aminoguanidine, and citalopram in different groups markedly reversed analgesic effects of modafinil. Tissue homogenates of Cuffed sciatic nerves showed significantly higher levels of NO metabolites, TNF-α and IL-6 (P<0.001). Modafinil lowered NO metabolites, TNF-α, and IL-6 levels (P<0.001). Histopathology illustrated marked axonal degeneration and shrinkage in the cuffed sciatic nerve, which were improved in the modafinil-treated group. CONCLUSIONS Modafinil exerts analgesic and neuroprotective effects in cuff-induced neuropathic mice via possible involvement of the nitrergic/inflammatory and serotonergic systems.
Collapse
Affiliation(s)
- Hossein Ghorbanzadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parastoo Mohebkhodaei
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehran Nematizadeh
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nastaran Rahimi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Rafeiean
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Ahmad R Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Subedi L, Gaire BP, Kim SY, Parveen A. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy. Int J Mol Sci 2021; 22:ijms22094771. [PMID: 33946349 PMCID: PMC8124914 DOI: 10.3390/ijms22094771] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.
Collapse
|
17
|
Bakare AO, Owoyele BV. Bromelain reduced pro-inflammatory mediators as a common pathway that mediate antinociceptive and anti-anxiety effects in sciatic nerve ligated Wistar rats. Sci Rep 2021; 11:289. [PMID: 33432004 PMCID: PMC7801445 DOI: 10.1038/s41598-020-79421-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/08/2020] [Indexed: 02/02/2023] Open
Abstract
The involvement of pro-inflammatory mediators complicates the complex mechanism in neuropathic pain (NP). This study investigated the roles of bromelain against pro-inflammatory mediators as a mechanism that underpins its antinociceptive and anti-anxiety effects in the peripheral model of NP. Sixty-four male Wistar rats randomly divided into eight groups, were used for the study. A chronic constriction injury model of peripheral neuropathy was used to induce NP. Tail-immersion and von Frey filaments tests were used to assess hyperalgesia while open field and elevated plus mazes were used to assess anxiety-like behaviour. NF-кB, iNOS, nitrate, and pro-inflammatory cytokines were investigated in the plasma, sciatic nerve, and brain tissues using ELISA, spectrophotometer, and immunohistochemistry techniques after twenty-one days of treatment. Bromelain significantly (p < 0.05) improved the cardinal signs of NP and inhibited anxiety-like behaviours in ligated Wistar rats. It mitigated the increases in cerebral cortex interleukin (IL) -1β, IL-6, and PGE2 levels. Bromelain reduced NF-кB, IL-1β, IL-6, TNF-α, PGE2, and nitrate concentrations as well as the expression of iNOS in the sciatic nerve. Hence, the antinociceptive and anxiolytic effects of bromelain in the sciatic nerve ligation model of NP is in part due to its ability to reduce nitrosative and inflammatory activities.
Collapse
Affiliation(s)
- Ahmed O Bakare
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - Bamidele V Owoyele
- Department of Physiology, Neuroscience and Inflammation Unit, Faculty of Basic Medical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria.
| |
Collapse
|
18
|
de Brito RN, Ludtke DD, de Oliveira BH, de Oliveira Galassi T, Fernandes PF, Van Den Berge S, Salgado ASI, Cidral-Filho FJ, Horewicz VV, Bobinski F, Martins DF. Balneotherapy decreases mechanical hyperalgesia by reversing BDNF and NOS2 immunocontent in spinal cord of mice with neuropathic pain. J Neuroimmunol 2020; 348:577360. [PMID: 32862113 DOI: 10.1016/j.jneuroim.2020.577360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 10/23/2022]
Abstract
In the last decades, balneotherapy or thermalism has been used for health promotion and in the treatment of inflammatory and chronic processes. We found that balneotherapy reduced mechanical hyperalgesia, as well the increase of BDNF and NOS2 levels in the spinal cord, while increased BDNF and NOS1 in the paw. The data presented herein demonstrated for the first time in a murine model of neuropathic pain, the analgesic effect of balneotherapy with the water from the natural springs of Santo Amaro da Imperatriz-Brazil. Nevertheless, future clinical trials should be conducted to test the effectiveness of balneotherapy in neuropathic pain patients.
Collapse
Affiliation(s)
- Rômulo Nolasco de Brito
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniela D Ludtke
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Bruna Hoffmann de Oliveira
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Taynah de Oliveira Galassi
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Paula Franson Fernandes
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Sarah Van Den Berge
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Afonso Shiguemi Inoue Salgado
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Integrative Physical therapy Residency, Centro Universitário Filadélfia, Londrina, Paraná, Brazil
| | - Francisco José Cidral-Filho
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Verônica Vargas Horewicz
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Franciane Bobinski
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil
| | - Daniel Fernandes Martins
- Experimental Neuroscience Laboratory (LaNEx), Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil; Postgraduate Program in Health Sciences, Universidade do Sul de Santa Catarina, Palhoça, Santa Catarina, Brazil.
| |
Collapse
|
19
|
Nitrate reductase-dependent nitric oxide plays a key role on MeJA-induced ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:10737-10753. [PMID: 33064185 DOI: 10.1007/s00253-020-10951-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Ganoderma lucidum, which contains numerous biologically active compounds, is known worldwide as a medicinal basidiomycete. Because of its application for the prevention and treatment of various diseases, most of artificially cultivated G. lucidum is output to many countries as food, tea, and dietary supplements for further processing. Methyl jasmonate (MeJA) has been reported as a compound that can induce ganoderic acid (GA) biosynthesis, an important secondary metabolite of G. lucidum. Herein, MeJA was found to increase the intracellular level of nitric oxide (NO). In addition, upregulation of GA biosynthesis in the presence of MeJA was abolished when NO was depleted from the culture. This result demonstrated that MeJA-regulated GA biosynthesis might occur via NO signaling. To elucidate the underlying mechanism, we used gene-silenced strains of nitrate reductase (NR) and the inhibitor of NR to illustrate the role of NO in MeJA induction. The results indicated that the increase in GA biosynthesis induced by MeJA was activated by NR-generated NO. Furthermore, the findings indicated that the reduction of NO could induce GA levels in the control group, but NO could also activate GA biosynthesis upon MeJA treatment. Further results indicated that NR silencing reversed the increased enzymatic activity of NOX to generate ROS due to MeJA induction. Importantly, our results highlight the NR-generated NO functions in signaling crosstalk between reactive oxygen species and MeJA. These results provide a good opportunity to determine the potential pathway linking NO to the ROS signaling pathway in fungi treated with MeJA. KEY POINTS: • MeJA increased the intracellular level of nitric oxide (NO) in G. lucidum. • The increase in GA biosynthesis induced by MeJA is activated by NR-generated NO. • NO acts as a signaling molecule between reactive oxygen species (ROS) and MeJA.
Collapse
|
20
|
Ally A, Powell I, Ally MM, Chaitoff K, Nauli SM. Role of neuronal nitric oxide synthase on cardiovascular functions in physiological and pathophysiological states. Nitric Oxide 2020; 102:52-73. [PMID: 32590118 DOI: 10.1016/j.niox.2020.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/15/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022]
Abstract
This review describes and summarizes the role of neuronal nitric oxide synthase (nNOS) on the central nervous system, particularly on brain regions such as the ventrolateral medulla (VLM) and the periaqueductal gray matter (PAG), and on blood vessels and the heart that are involved in the regulation and control of the cardiovascular system (CVS). Furthermore, we shall also review the functional aspects of nNOS during several physiological, pathophysiological, and clinical conditions such as exercise, pain, cerebral vascular accidents or stroke and hypertension. For example, during stroke, a cascade of molecular, neurochemical, and cellular changes occur that affect the nervous system as elicited by generation of free radicals and nitric oxide (NO) from vulnerable neurons, peroxide formation, superoxides, apoptosis, and the differential activation of three isoforms of nitric oxide synthases (NOSs), and can exert profound effects on the CVS. Neuronal NOS is one of the three isoforms of NOSs, the others being endothelial (eNOS) and inducible (iNOS) enzymes. Neuronal NOS is a critical homeostatic component of the CVS and plays an important role in regulation of different systems and disease process including nociception. The functional and physiological roles of NO and nNOS are described at the beginning of this review. We also elaborate the structure, gene, domain, and regulation of the nNOS protein. Both inhibitory and excitatory role of nNOS on the sympathetic autonomic nervous system (SANS) and parasympathetic autonomic nervous system (PANS) as mediated via different neurotransmitters/signal transduction processes will be explored, particularly its effects on the CVS. Because the VLM plays a crucial function in cardiovascular homeostatic mechanisms, the neuroanatomy and cardiovascular regulation of the VLM will be discussed in conjunction with the actions of nNOS. Thereafter, we shall discuss the up-to-date developments that are related to the interaction between nNOS and cardiovascular diseases such as hypertension and stroke. Finally, we shall focus on the role of nNOS, particularly within the PAG in cardiovascular regulation and neurotransmission during different types of pain stimulus. Overall, this review focuses on our current understanding of the nNOS protein, and provides further insights on how nNOS modulates, regulates, and controls cardiovascular function during both physiological activity such as exercise, and pathophysiological conditions such as stroke and hypertension.
Collapse
Affiliation(s)
- Ahmmed Ally
- Arkansas College of Osteopathic Medicine, Fort Smith, AR, USA.
| | - Isabella Powell
- All American Institute of Medical Sciences, Black River, Jamaica
| | | | - Kevin Chaitoff
- Interventional Rehabilitation of South Florida, West Palm Beach, FL, USA
| | - Surya M Nauli
- Chapman University and University of California, Irvine, CA, USA.
| |
Collapse
|
21
|
Kaswan NK, Mohd Suhaimi NS, Mohammed Izham NA, Tengku Mohamad TAS, Sulaiman MR, Perimal EK. Cardamonin inhibits nitric oxide production modulated through NMDA receptor in LPS-Induced SH-SY5Y cell in vitro model. LIFE SCIENCES, MEDICINE AND BIOMEDICINE 2020. [DOI: 10.28916/lsmb.4.9.2020.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
22
|
Effects of selective inhibition of nNOS and iNOS on neuropathic pain in rats. Mol Cell Neurosci 2020; 105:103497. [PMID: 32353527 DOI: 10.1016/j.mcn.2020.103497] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023] Open
Abstract
Various animal models have been employed to understand the pathogenic mechanism of neuropathic pain. Nitric oxide (NO) is an important molecule in nociceptive transmission and is involved in neuropathic pain. However, its mechanistic actions remain unclear. The aim of this study was to better understand the involvement of neuronal and inducible isoforms of nitric oxide synthase (nNOS and iNOS) in neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in rats. We evaluated pain sensitivity (mechanical withdrawal thresholds using Randall and Selitto, and von Frey tests, and thermal withdrawal thresholds using Hargreaves test) prior to CCI surgery, 14 days post CCI and after intrathecal injections of selective nNOS or iNOS inhibitors. We also evaluated the distribution of NOS isozymes in the spinal cord and dorsal root ganglia (DRG) by immunohistochemistry, synthesis of iNOS and nNOS by Western blot, and NO production using fluorescent probe DAF-2 DA (DA). Our results showed higher number of nNOS and iNOS-positive neurons in the spinal cord and DRG of CCI compared to sham rats, and their reduction in CCI rats after treatment with selective inhibitors compared to non-treated groups. Western blot results also indicated reduced expression of nNOS and iNOS after treatment with selective inhibitors. Furthermore, both inhibitors reduced CCI-evoked mechanical and thermal withdrawal thresholds but only nNOS inhibitor was able to efficiently lower mechanical withdrawal thresholds using von Frey test. In addition, we observed higher NO production in the spinal cord and DRG of injured rats compared to control group. Our study innovatively shows that nNOS may strongly modulate nociceptive transmission in rats with neuropathic pain, while iNOS may partially participate in the development of nociceptive responses. Thus, drugs targeting nNOS for neuropathic pain may represent a potential therapeutic strategy.
Collapse
|
23
|
Saffarpour S, Nasirinezhad F. Ascorbic acid eliminated pain-induced peripheral neuropathy by modulation of nitric oxide pathway in rats. ACTA ACUST UNITED AC 2019. [DOI: 10.1186/s41110-019-0098-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
24
|
Demir IE, Heinrich T, Carty DG, Saricaoglu ÖC, Klauss S, Teller S, Kehl T, Mota Reyes C, Tieftrunk E, Lazarou M, Bahceci DH, Gökcek B, Ucurum BE, Maak M, Diakopoulos KN, Lesina M, Schemann M, Erkan M, Krüger A, Algül H, Friess H, Ceyhan GO. Targeting nNOS ameliorates the severe neuropathic pain due to chronic pancreatitis. EBioMedicine 2019; 46:431-443. [PMID: 31401195 PMCID: PMC6711864 DOI: 10.1016/j.ebiom.2019.07.055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Pain due to pancreatic cancer/PCa or chronic pancreatitis/CP, is notoriously resistant to the strongest pain medications. Here, we aimed at deciphering the specific molecular mediators of pain at surgical-stage pancreatic disease and to discover novel translational targets. METHODS We performed a systematic, quantitative analysis of the neurotransmitter/neuroenzmye profile within intrapancreatic nerves of CP and PCa patients. Ex vivo neuronal cultures treated with human pancreatic extracts, conditional genetically engineered knockout mouse models of PCa and CP, and the cerulein-induced CP model were employed to explore the therapeutic potential of the identified targets. FINDINGS We identified a unique enrichment of neuronal nitric-oxide-synthase (nNOS) in the pancreatic nerves of CP patients with increasing pain severity. Employment of ex vivo neuronal cultures treated with pancreatic tissue extracts of CP patients, and brain-derived-neurotrophic-factor-deficient (BDNF+/-) mice revealed neuronal enrichment of nNOS to be a consequence of BDNF loss in the progressively destroyed pancreatic tissue. Mechanistically, nNOS upregulation in sensory neurons was induced by tryptase secreted from perineural mast cells. In a head-to-head comparison of several genetically induced, painless mouse models of PCa (KPC, KC mice) or CP (Ptf1a-Cre;Atg5fl/fl) against the hypersecretion/cerulein-induced, painful CP mouse model, we show that a similar nNOS enrichment is present in the painful cerulein-CP model, but absent in painless genetic models. Consequently, mice afflicted with painful cerulein-induced CP could be significantly relieved upon treatment with the specific nNOS inhibitor NPLA. INTERPRETATION We propose nNOS inhibition as a novel strategy to treat the unbearable pain in CP. FUND: Deutsche Forschungsgemeinschaft/DFG (DE2428/3-1 and 3-2).
Collapse
Affiliation(s)
- Ihsan Ekin Demir
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DKTK Munich site, Germany; SFB 1321, Germany.
| | - Tobias Heinrich
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Dominique G Carty
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ömer Cemil Saricaoglu
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarah Klauss
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Steffen Teller
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Timo Kehl
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carmen Mota Reyes
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Elke Tieftrunk
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Lazarou
- Human Biology, Technical University of Munich, Freising, Germany
| | - Dorukhan H Bahceci
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Betül Gökcek
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Bahar E Ucurum
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Matthias Maak
- Department of Surgery, University of Erlangen, Erlangen, Germany
| | - Kalliope N Diakopoulos
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Marina Lesina
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Michael Schemann
- Human Biology, Technical University of Munich, Freising, Germany
| | - Mert Erkan
- Department of Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Achim Krüger
- Institute for Molecular Immunology and Experimental Oncology, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hana Algül
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany; DKTK Munich site, Germany; SFB 1321, Germany
| |
Collapse
|
25
|
Sanna MD, Les F, Lopez V, Galeotti N. Lavender ( Lavandula angustifolia Mill.) Essential Oil Alleviates Neuropathic Pain in Mice With Spared Nerve Injury. Front Pharmacol 2019; 10:472. [PMID: 31143116 PMCID: PMC6521744 DOI: 10.3389/fphar.2019.00472] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
Low treatment efficacy represents an important unmet need in neuropathic pain patients and there is an urgent need to develop a more effective pharmacotherapy. An increasing number of patients choose complementary medicine to relieve pain. Lavender essential oil (LEO) is approved by the European Medicines Agency as herbal medicine to relieve anxiety and stress. However, the capability of LEO to relieve other nervous system disorders such as neuropathic pain has never been established. Our work aimed to evaluate the antineuropathic properties of lavender on a spared nerve injury (SNI) model of neuropathic pain in mice. An acute oral administration of LEO (100 mg/kg) alleviated SNI-induced mechanical allodynia, evaluated in the von Frey test, with an intensity comparable to the reference drug pregabalin. Investigations into the mechanism of action showed that LEO markedly decreased the phosphorylation of ERK1, ERK2, and JNK1, and decreased the levels of iNOS in the spinal cord; involvement of the endocannabinoid system was also detected using in vitro inhibition of the FAAH and MALG enzymes as well as in vivo experiments with the CB1 antagonist. Conversely, no effect on P38 phosphorylation and NF-kB activation was detected. These antihyperalgesic effects appeared at the same dose able to induce antidepressant-like, anxiolytic-like, and anorexic effects. In addition, gavage with LEO did not significantly alter animals' gross behavior, motor coordination, or locomotor activity, nor impaired memory functions. Oral administration of LEO could represent a therapeutic approach in the management of neuropathic pain states.
Collapse
Affiliation(s)
- Maria Domenica Sanna
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Victor Lopez
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2, CITA-Universidad de Zaragoza, Zaragoza, Spain
| | - Nicoletta Galeotti
- Section of Pharmacology, Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| |
Collapse
|
26
|
López-Valverde N, López-Valverde A, Gómez de Diego R, Cieza-Borrella C, Ramírez JM, González-Sarmiento R. Genetic study in patients operated dentally and anesthetized with articaine-epinephrine. J Pain Res 2019; 12:1371-1384. [PMID: 31118755 PMCID: PMC6499144 DOI: 10.2147/jpr.s193745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 03/26/2019] [Indexed: 12/01/2022] Open
Abstract
Aims: In this study we wanted to figure out if there was a correlation between OPRM1 N40D, TRPV1 I316M, TRPV1 I585V, NOS3 −786T>C and IL6 −174C>G polymorphisms and the response to locally applied articaine-epinephrine anesthetic. Methods: In this observational study, 114 oral cell samples of patients anesthetized with articaine-epinephrine (54 from men 60 from women), were collected from dental centers in Madrid (Spain). High molecular weight DNA was obtained from oral mucosa cells. The analysis of OPRM1 N40D (rs1799971), TRPV1 I316M (rs222747), TRPV1 I585V (rs8065080) and IL6 −174C>G polymorphism was performed through real-time PCR allelic discrimination using TaqMan probes. Polymorphism NOS3 −786T> C (rs2070744) was analyzed using RFLP-PCR. Results: The studied polymorphisms are involved neither in the response to the anesthetic, nor in the intensity of perceived dental pain. However, in a subset of female patients we found that TRPV1 I316M was associated with a delayed onset of anesthesia. Conclusions: There is no association among these polymorphisms and the time elapsed between the application of the anesthetic and the onset of its effect.
Collapse
Affiliation(s)
- Nansi López-Valverde
- Dental Clinic, Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Antonio López-Valverde
- Dental Clinic, Department of Surgery, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | | | - Clara Cieza-Borrella
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Juan M Ramírez
- Department of Morphological Sciences, School of Medicine, University of Córdoba, Córdoba, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit, Department of Medicine, Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
27
|
Farajzadeh A, Bathaie SZ, Arabkheradmand J, Ghodsi SM, Faghihzadeh S. Different Pain States of Trigeminal Neuralgia Make Significant Changes in the Plasma Proteome and Some Biochemical Parameters: a Preliminary Cohort Study. J Mol Neurosci 2018; 66:524-534. [DOI: 10.1007/s12031-018-1183-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 09/24/2018] [Indexed: 01/03/2023]
|
28
|
Lipopolysaccharide-mediated inflammatory priming potentiates painful post-traumatic trigeminal neuropathy. Physiol Behav 2018; 194:497-504. [DOI: 10.1016/j.physbeh.2018.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/11/2018] [Accepted: 06/14/2018] [Indexed: 01/15/2023]
|
29
|
Khan M, Dhammu TS, Singh I, Singh AK. Amelioration of spinal cord injury in rats by blocking peroxynitrite/calpain activity. BMC Neurosci 2018; 19:50. [PMID: 30103682 PMCID: PMC6090709 DOI: 10.1186/s12868-018-0450-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the leading causes of disability and chronic pain. In SCI-induced pathology, homeostasis of the nitric oxide (NO) metabolome is lost. Major NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite are reported to play pivotal roles in regulating the activities of key cysteine proteases, calpains. While peroxynitrite (a metabolite of NO and superoxide) up regulates the activities of calpains leading to neurodegeneration, GSNO (a metabolite of NO and glutathione) down regulates the activities of calpains leading to neuroprotection. In this study, effect of GSNO on locomotor function and pain threshold and their relationship with the levels of peroxynitrite and the activity of calpain in the injured spinal cord were investigated using a 2-week rat model of contusion SCI.
Results SCI animals were initially treated with GSNO at 2 h after the injury followed by a once daily dose of GSNO for 14 days. Locomotor function was evaluated by “Basso Beattie and Bresnahan (BBB) locomotor rating scale” and pain by mechanical allodynia. Peroxynitrite level, as expression of 3-nitrotyrosine (3-NT), calpain activity, as the degradation products of calpain substrate alpha II spectrin, and nNOS activity, as the expression phospho nNOS, were measured by western blot analysis. Treatment with GSNO improved locomotor function and mitigated pain. The treatment also reduced the levels of peroxynitrite (3-NT) and decreased activity of calpains. Reduced levels of peroxynitrite resulted from the GSNO-mediated inhibition of aberrant activity of neuronal nitric oxide synthase (nNOS). Conclusions The data indicates that higher levels of 3-NT and aberrant activities of nNOS and calpains correlated with SCI pathology and functional deficits. Treatment with GSNO improved locomotor function and mitigated mechanical allodynia acutely post-injury. Because GSNO shows potential to ameliorate experimental SCI, we discuss implications for GSNO therapy in clinical SCI research.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Inderjit Singh
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.,Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Avtar K Singh
- Ralph H Johnson VA Medical Center, Charleston, SC, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
30
|
Donertas B, Cengelli Unel C, Aydin S, Ulupinar E, Ozatik O, Kaygisiz B, Yildirim E, Erol K. Agmatine co-treatment attenuates allodynia and structural abnormalities in cisplatin-induced neuropathy in rats. Fundam Clin Pharmacol 2018; 32:288-296. [DOI: 10.1111/fcp.12351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/09/2018] [Accepted: 01/23/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Basak Donertas
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Cigdem Cengelli Unel
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Sule Aydin
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Emel Ulupinar
- Department of Anatomy; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Orhan Ozatik
- Department of Histology and Embryology; Faculty of Medicine; Dumlupinar University; Kutahya 43000 Turkey
| | - Bilgin Kaygisiz
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Engin Yildirim
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| | - Kevser Erol
- Department of Medical Pharmacology; Faculty of Medicine; Eskisehir Osmangazi University; Eskisehir 26480 Turkey
| |
Collapse
|
31
|
Rasmussen LE, Holm HA, Kristensen PW, Kjaersgaard-Andersen P. Tourniquet time in total knee arthroplasty. Knee 2018; 25:306-313. [PMID: 29395744 DOI: 10.1016/j.knee.2018.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/27/2017] [Accepted: 01/03/2018] [Indexed: 02/02/2023]
Abstract
BACKGROUND Whether the arterial tourniquet in total knee arthroplasty (TKA) is a friend or a foe is still debated. Longer ischemia causes hypoxic damage; yet short duration of a tourniquet may influence outcome. Understanding the time-dependent influence of the tourniquet in TKA patients could improve the overall outcome and safety. The purpose of the study was to measure the tourniquet-induced time-dependent alterations in skeletal muscle metabolism in TKA to establish a 'safe tourniquet time.' METHODS In the femoral quadriceps muscle of 12 patients undergoing a total knee arthroplasty with a tourniquet (TKA) we measured the ischemic response using microdialysis. Lactate, pyruvate, glucose and glycerol were measured in the muscle underneath the tourniquet, in the ischemic muscle distally to the tourniquet and in the opposite muscle as a reference. RESULTS Lactate pyruvate ratio (L/P ratio) increased time-dependently after 15min of ischemia. L/P ratio increased faster underneath the tourniquet compared to ischemic tissue distal to the tourniquet. Glycerol was elevated underneath the tourniquet compared to ischemic tissue distal to the tourniquet and correlated to the individual ischemic response. Only minor increases in creatine-kinase, asparagine-aminotransferase, and lactate-dehydrogenase were observed. Thirty minutes of reperfusion normalized lactate levels. CONCLUSIONS The muscle underneath the tourniquet suffered more from ischemia than the ischemic tissue distal to the tourniquet. Less than 15min of ischemia did not increase ischemic markers. If any muscle damage occurs from longer tourniquet time, it is likely reversible and occurs mainly underneath the tourniquet. Fifteen minutes of ischemia appears safe.
Collapse
|
32
|
Dias RG, Sampaio SC, Sant'Anna MB, Cunha FQ, Gutiérrez JM, Lomonte B, Cury Y, Picolo G. Articular inflammation induced by an enzymatically-inactive Lys49 phospholipase A 2: activation of endogenous phospholipases contributes to the pronociceptive effect. J Venom Anim Toxins Incl Trop Dis 2017; 23:18. [PMID: 28344594 PMCID: PMC5364601 DOI: 10.1186/s40409-017-0104-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 02/24/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Arthritis is a set of inflammatory conditions that induce aching, stiffness, swelling, pain and may cause functional disability with severe consequences to the patient's lives. These are multi-mediated pathologies that cannot be effectively protected and/or treated. Therefore, the aim of this study was to establish a new model of acute arthritis, using a Lys49-PLA2 (Bothrops asper myotoxin II; MT-II) to induce articular inflammation. METHODS The articular inflammation was induced by MT-II (10 μg/joint) injection into the left tibio-tarsal or femoral-tibial-patellar joints. Cellular influx was evaluated counting total and differential cells that migrated to the joint. The plasma extravasation was determined using Evans blue dye. The edematogenic response was evaluated measuring the joint thickness using a caliper. The articular hypernociception was determined by a dorsal flexion of the tibio-tarsal joint using an electronic pressure-meter test. The mediators involved in the articular hypernociception were evaluated using receptor antagonists and enzymatic inhibitors. RESULTS Plasma extravasation in the knee joints was observed 5 and 15 min after MT-II (10 μg/joint) injection. MT-II also induced a polymorphonuclear cell influx into the femoral-tibial-patellar joints observed 8 h after its injection, a period that coincided with the peak of the hyperalgesic effect. Hyperalgesia was inhibited by the pretreatment of the animals with cyclooxygenase inhibitor indomethacin, with type-2 cyclooxygenase inhibitor celecoxib, with AACOCF3 and PACOCF3, inhibitors of cytosolic and Ca2+-independent PLA2s, respectively, with bradykinin B2 receptor antagonist HOE 140, with antibodies against TNFα, IL-1β, IL-6 and CINC-1 and with selective ET-A (BQ-123) and ET-B (BQ-788) endothelin receptors antagonists. The MT-II-induced hyperalgesia was not altered by the lipoxygenase inhibitor zileuton, by the bradykinin B1 receptor antagonist Lys-(Des-Arg9,Leu8)-bradykinin, by the histamine and serotonin antagonists promethazine and methysergide, respectively, by the nitric oxide inhibitor LNMMA and by the inhibitor of matrix 1-, 2-, 3-, 8- and 9- metalloproteinases GM6001 (Ilomastat). CONCLUSION These results demonstrated the multi-mediated characteristic of the articular inflammation induced by MT-II, which demonstrates its relevance as a model for arthritis mechanisms and treatment evaluation.
Collapse
Affiliation(s)
- Renata Gonçalves Dias
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil.,Healthy Sciences Institute, Paulista University (UNIP), São Paulo, SP Brazil
| | - Sandra Coccuzzo Sampaio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP Brazil.,Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP Brazil
| | - Morena Brazil Sant'Anna
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP Brazil
| | - José María Gutiérrez
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Bruno Lomonte
- Clodomiro Picado Institute, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | - Yara Cury
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| | - Gisele Picolo
- Special Laboratory of Pain and Signaling, Butantan Institute, Av. Vital Brazil, 1500, São Paulo, SP CEP 05503-900 Brazil
| |
Collapse
|
33
|
Abstract
SIGNIFICANCE Reactive oxygen species (ROS) reactive nitrogen species (RNS) and redox processes are of key importance in obesity- and diabetes-related kidney disease; however, there remains significant controversy in the field. RECENT ADVANCES New data from imaging and in vivo models of obesity and diabetic kidney disease have shed new insights into this field. In the setting of obesity- and diabetes-related kidney injury, there is a growing recognition that the major moieties of ROS and RNS are hydrogen peroxide and peroxynitrite with the enzymatic sources being NADPH oxidases and nitric oxide synthase, respectively. However, the role of mitochondrial superoxide as a driver of renal complications remains unclear. CRITICAL ISSUES Several key issues that are often not discussed are the specific ROS and RNS molecules, the source of generation, the location of production, and downstream targets. FUTURE DIRECTIONS Further understanding of the role of ROS/RNS/redox and their relationship with key signaling and metabolic pathways such as AMP-activated protein kinase (AMPK) and hypoxia-inducible factor 1-α (HIF1α) will be critical to a new understanding of kidney complications of caloric challenges and new therapeutic approaches. Antioxid. Redox Signal. 25, 208-216.
Collapse
Affiliation(s)
- Kumar Sharma
- 1 Center for Renal Translational Medicine, Institute of Metabolomic Medicine, University of California San Diego , La Jolla, California.,2 Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System , La Jolla, California
| |
Collapse
|
34
|
Witzel II, Jelinek HF, Khalaf K, Lee S, Khandoker AH, Alsafar H. Identifying Common Genetic Risk Factors of Diabetic Neuropathies. Front Endocrinol (Lausanne) 2015; 6:88. [PMID: 26074879 PMCID: PMC4447004 DOI: 10.3389/fendo.2015.00088] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a global public health problem of epidemic proportions, with 60-70% of affected individuals suffering from associated neurovascular complications that act on multiple organ systems. The most common and clinically significant neuropathies of T2DM include uremic neuropathy, peripheral neuropathy, and cardiac autonomic neuropathy. These conditions seriously impact an individual's quality of life and significantly increase the risk of morbidity and mortality. Although advances in gene sequencing technologies have identified several genetic variants that may regulate the development and progression of T2DM, little is known about whether or not the variants are involved in disease progression and how these genetic variants are associated with diabetic neuropathy specifically. Significant missing heritability data and complex disease etiologies remain to be explained. This article is the first to provide a review of the genetic risk variants implicated in the diabetic neuropathies and to highlight potential commonalities. We thereby aim to contribute to the creation of a genetic-metabolic model that will help to elucidate the cause of diabetic neuropathies, evaluate a patient's risk profile, and ultimately facilitate preventative and targeted treatment for the individual.
Collapse
Affiliation(s)
- Ini-Isabée Witzel
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Herbert F. Jelinek
- Australian School of Advanced Medicine, Macquarie University, Sydney, NSW, Australia
- Centre for Research in Complex Systems, School of Community Health, Charles Sturt University, Albury, NSW, Australia
| | - Kinda Khalaf
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Sungmun Lee
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| | - Ahsan H. Khandoker
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
- Electrical and Electronic Engineering Department, The University of Melbourne, Parkville, VIC, Australia
| | - Habiba Alsafar
- Biomedical Engineering Department, Khalifa University of Science, Technology and Research, Abu Dhabi, United Arab Emirates
| |
Collapse
|
35
|
Yaksh TL, Woller SA, Ramachandran R, Sorkin LS. The search for novel analgesics: targets and mechanisms. F1000PRIME REPORTS 2015; 7:56. [PMID: 26097729 PMCID: PMC4447049 DOI: 10.12703/p7-56] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The management of the pain state is of great therapeutic relevance to virtually every medical specialty. Failure to manage its expression has deleterious consequence to the well-being of the organism. An understanding of the complex biology of the mechanisms underlying the processing of nociceptive information provides an important pathway towards development of novel and robust therapeutics. Importantly, preclinical models have been of considerable use in determining the linkage between mechanism and the associated behaviorally defined pain state. This review seeks to provide an overview of current thinking targeting pain biology, the use of preclinical models and the development of novel pain therapeutics. Issues pertinent to the strengths and weaknesses of current development strategies for analgesics are considered.
Collapse
|