1
|
Chen Q, Zhang YL, Shi YQ, Zheng L. Mesalazine alleviated the symptoms of spontaneous colitis in interleukin-10 knockout mice by regulating the STAT3/NF-κB signaling pathway. World J Gastroenterol 2025; 31:96459. [PMID: 39991681 PMCID: PMC11755248 DOI: 10.3748/wjg.v31.i7.96459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/01/2024] [Accepted: 12/27/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND Excessive endoplasmic reticulum (ER) stress in intestinal epithelial cells can lead to damage to the intestinal mucosal barrier, activate the signal transducer and activator of transcription 3 (STAT3)/nuclear factor kappa B (NF-κB) signaling pathway, and exacerbate the inflammatory response, thus participating in the pathogenesis of ulcerative colitis (UC). Mesalazine is a commonly used drug in the clinical treatment of UC. However, further studies are needed to determine whether mesalazine regulates the ER stress of intestinal epithelial cells, down-regulates the STAT3/NF-κB pathway to play a role in the treatment of UC. AIM To study the therapeutic effects of mesalazine on spontaneous colitis in interleukin-10 (IL-10)-/- mice. METHODS The 24-week-old IL-10-/- mice with spontaneous colitis were divided into the model group and the 5-amino salicylic acid group. Littermates of wild-type mice of the same age group served as the control. There were eight mice in each group, four males and four females. The severity of symptoms of spontaneous colitis in IL-10-/- mice was assessed using disease activity index scores. On day 15, the mice were sacrificed. The colon length was measured, and the histopathological changes and ultrastructure of colonic epithelial cells were detected. The protein expressions of STAT3, p-STAT3, NF-κB, IκB, p-IκB, and glucose-regulated protein 78 were identified using Western blotting. The STAT3 and NF-κB mRNA expressions were identified using real-time polymerase chain reaction. The glucose-regulated protein 78 and C/EBP homologous protein expressions in colon sections were detected using immunofluorescence. RESULTS Mesalazine reduced the symptoms of spontaneous colitis in IL-10 knockout mice and the histopathological damage of colonic tissues, and alleviated the ER stress in epithelial cells of colitis mice. Western blotting and quantitative real-time polymerase chain reaction results showed that the STAT3/NF-κB pathway in the colon tissue of model mice was activated, suggesting that this pathway was involved in the pathogenesis of UC and might become a potential therapeutic target. Mesalazine could down-regulate the protein expressions of p-STAT3, NF-κB and p-IκB, and down-regulate the mRNA expression of STAT3 and NF-κB. CONCLUSION Mesalazine may play a protective role in UC by reducing ER stress by regulating the STAT3/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Qian Chen
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ya-Li Zhang
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yong-Quan Shi
- Department of Gastroenterology, Xijing Hospital affiliated to Air Force Medical University, Xi’an 710032, Shaanxi Province, China
| | - Lie Zheng
- Department of Gastroenterology, Traditional Chinese Medicine Hospital of Shaanxi Province, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
2
|
Zeng YX, Li NR, Deng BY, Gu YF, Lu SF, Liu Y. Coix Seed Oil Alleviates DSS-Induced Ulcerative Colitis via Intestinal Barrier Repair and Ferroptosis Regulation. J Inflamm Res 2025; 18:2557-2581. [PMID: 39995826 PMCID: PMC11849537 DOI: 10.2147/jir.s501745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025] Open
Abstract
Background Ulcerative colitis is a chronic intestinal disease linked to intestinal barrier damage, ferroptosis and dysbiosis. Coix lacryma-jobi is a natural food with food-medicine homology, whose seed-derived oil (Coix seed oil, CSO) has been shown anti-inflammatory activity in vitro. Here, the effects and mechanisms of CSO on ulcerative colitis (UC) in vivo are systematically investigated. Methods Firstly, the UC mice was replicated by 3% DSS, and assessed the efficacy of CSO by observing the fecal occult blood, colon length, DAI score and pathological histomorphological changes of colon tissues. The anti-inflammatory and barrier-protective effects of CSO were observed by AB staining and qRT-PCR. Secondly, the biological targets of CSO were obtained from TCMSP database and Swiss Target Prediction database, ferroptosis targets were downloaded from FerrDb platform, and UC-related disease targets were obtained from GEO database, and the intersection of the above three was taken to obtain "CSO-UC-Ferroptosis" intersection targets, which were analysed by GO and KEGG enrichment, GSEA analysis, and immune cell infiltration and validation. Finally, the core genes of "CSO-UC-Ferroptosis" were molecular docking with the potential active components of CSO. In order to further verify the effect of CSO on ferroptosis, the GPX4 agonist RSL-3 was used to stimulate mice in vivo, and the levels of Iron, MDA and SOD were measured, and immunohistochemistry was used to detect the effects of tight junction proteins and the "CSO-UC-Ferroptosis" core protein in mice. Besides, the effect of CSO was further evaluated by observing the intercellular junctions of the colon tissues of each group under electron microscope. In addition, 16sRNA sequencing was performed on the intestinal contents of the mice to observe the effects of CSO on the intestinal flora of UC mice. Results CSO improved physiological parameters, reduced inflammation response and intestinal barrier damage, regulated ferroptosis, and restored gut microbiota balance in UC mice. Bioinformatics results showed that G6PD, ABCC1 were core targets at the intersection of CSO, UC and ferroptosis, which also demonstrated the similar expression of the core genes in DSS-induced UC mice models in vivo. Conclusion Our findings demonstrate for the first time that CSO ameliorated UC by regulating intestinal barrier damage, ferroptosis and the gut microbiota in DSS-induced mice, suggesting that CSO as a promising candidate for UC treatment and warranting further investigation.
Collapse
Affiliation(s)
- Yi-Xuan Zeng
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Ni-Ren Li
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Bing-Ying Deng
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yu-Feng Gu
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Si-Fan Lu
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| | - Yi Liu
- Traditional Chinese Pharmacological Laboratory, Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, People’s Republic of China
| |
Collapse
|
3
|
Ma Y, Tu Y, Chen Y, Chen X, Pan X, Sun M, Fu X, Zou J, Gao F. An Oral H 2S Responsive Cu 5.4O Nanozyme Platform with Strong ROS/H 2S Scavenging Capacity for the Treatment of Colitis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:617-631. [PMID: 39722133 DOI: 10.1021/acsami.4c17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Inflammatory bowel disease involves excess reactive oxygen species (ROS) and hydrogen sulfide (H2S) at inflammatory sites. Nanozyme-mediated ROS and H2S scavenging therapy is promising for colitis treatment. Here, we synthesized a multiple ROS scavenging Cu5.4O nanoparticle and first explored its H2S scavenging capacity. Chitosan oligosaccharide modified with alpha-lipoic acid was coated on the nanoparticles to further enhance the H2S scavenging capacity. Furthermore, calcium alginate was coated on the surface to develop an oral nanoplatform (Cu5.4O@SAG) possessing dual-pH/H2S-responsive release characteristics. Importantly, Cu5.4O@SAG exhibited enrichment at the colonic inflammation site and relieved the inflammatory index, containing the recovery of colon length, spleen index, liver index, and body weight, as well as inflammatory cell infiltration. In vivo and in vitro experiments revealed the dual ROS and H2S scavenging capacities of the nanoplatform. Additionally, Cu5.4O@SAG regulated tight junctions, mucus layers, and gut microbiota, which was accompanied by the downregulation of inflammatory cytokines. Notably, Cu5.4O@SAG also had excellent biocompatibility. In conclusion, this oral multiple-scavenging nanozyme platform provides a new and safe paradigm for the development of nanozymes for colitis treatment.
Collapse
Affiliation(s)
- Ying Ma
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yixing Tu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Yang Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xinyi Chen
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xier Pan
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Mingyue Sun
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiuzhi Fu
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiafeng Zou
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontier Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Qiu Z, Xiang L, Han Y, Zhang B, Qiao X, Zheng Z, Xiao H. Structure-anti-inflammatory activity relationship of garlic fructans in mice with dextran sulfate sodium-induced colitis: Impact of chain length. Carbohydr Polym 2024; 346:122582. [PMID: 39245481 DOI: 10.1016/j.carbpol.2024.122582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/18/2024] [Accepted: 08/04/2024] [Indexed: 09/10/2024]
Abstract
The present study identified the protective effects of garlic oligo/poly-saccharides of different chain lengths against dextran sulfate sodium (DSS)-induced colitis in mice and elucidated the structure-function relationships. The results showed that oral intake of garlic oligo/poly-saccharides decreased disease activity index, reduced colon shortening and spleen enlargement, and ameliorated pathological damage in the mouse colon. The dysregulation of colonic pro/anti-inflammatory cytokines was significantly alleviated, accompanied by up-regulated antioxidant enzymes, blocked TLR4-MyD88-NF-κB signaling pathway, enhanced intestinal barrier integrity, and restored SCFA production. Garlic oligo/poly-saccharides also reversed gut microbiota dysbiosis in colitic mice by expanding beneficial bacteria and suppressing the growth of harmful bacteria. High-molecular-weight polysaccharides exhibited stronger alleviating effects on DSS-induced colitic symptoms in mice than low-molecular-weight oligo/poly-saccharides did, probably due to their greater ability to be fermented in the colon. Taken together, this study demonstrated the anti-inflammatory effects of garlic oligo/poly-saccharides and revealed that high-molecular-weight polysaccharide fractions were more effective in alleviating DSS-induced colitis.
Collapse
Affiliation(s)
- Zhichang Qiu
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Lu Xiang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Yanhui Han
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| | - Bin Zhang
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Xuguang Qiao
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Zhenjia Zheng
- Key Laboratory of Food Nutrition and Health in Universities of Shandong, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
5
|
Meneguin AB, Roque-Borda CA, Piperas ABG, Pollini MFO, Cardoso VMB, Primo LMDG, Alemi F, Pavan FR, Chorilli M. Nanofiber-boosted retrograded starch/pectin microparticles for targeted 5-Aminosalicylic acid delivery in inflammatory bowel disease: In vitro and in vivo non-toxicity evaluation. Carbohydr Polym 2024; 346:122647. [PMID: 39245532 DOI: 10.1016/j.carbpol.2024.122647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
Incorporating 5-aminosalicylic acid (5-ASA) into a colon-specific carrier is crucial for treating inflammatory bowel diseases (IBD), as it enhances therapeutic efficacy, targets the affected regions directly, and minimizes side effects. This study evaluated the impact of incorporating cellulose nanofibers (CNF) on the in vitro and in vivo biological performance of retrograded starch/pectin (RS/P) microparticles (MPs) containing 5-ASA. Using Fourier Transform Infrared (FTIR) Spectroscopy, shifts in the spectra of retrograded samples containing CNF were observed with increasing CNF proportions, suggesting the establishment of new supramolecular interactions. Liquid absorption exhibited pH-dependent behaviors, with reduced absorption in simulated gastric fluid (∼269 %) and increased absorption in simulated colonic fluid (∼662 %). Increasing CNF concentrations enhanced mucoadhesion in porcine colonic sections, with a maximum force of 3.4 N at 50 % CNF. Caco-2 cell viability tests showed biocompatibility across all tested concentrations (0.0625-2.0000 mg/mL). Evaluation of intestinal permeability in Caco-2 cell monolayers demonstrated up to a tenfold increase in 5-ASA permeation, ranging from 29 % to 48 %. An in vivo study using Galleria mellonella larvae, with inflammation induced by LPS, showed reduction of inflammation. Given the scalability of spray-drying, these findings suggest the potential of CNF-incorporated RS/P microparticles for targeted 5-ASA delivery in IBD.
Collapse
Affiliation(s)
- Andréia Bagliotti Meneguin
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil.
| | - Cesar Augusto Roque-Borda
- Vicerrectorado de Investigación, Universidad Católica de Santa María de Arequipa, Arequipa 04000, Peru
| | - Ana Beatriz Grotto Piperas
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Maria Fernanda Ortolani Pollini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Vinicius Martinho Borges Cardoso
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| | - Laura Maria Duran Gleriani Primo
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Forogh Alemi
- School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Fernando Rogério Pavan
- Department of Biological Sciences, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-900, SP, Brazil
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil
| |
Collapse
|
6
|
Gu Y, Dong Z, Gu Y, Gao Y, Li D, Zhang Y, Zhang X. Paeoniae radix alba improved intestinal mucosal microcirculation disturbance by regulating lncRNA MALAT1/HIF-1α pathway in the treatment of ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156037. [PMID: 39303508 DOI: 10.1016/j.phymed.2024.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Microcirculatory problems in the intestinal mucosa are the primary cause of ulcerative colitis (UC). Although UC is commonly treated with paeoniae radix alba (PRA), its exact mechanism of action is unclear. PURPOSE To examine how PRA affects UC induced by dextran sulfate sodium (DSS) and the mechanism of its effects. METHODS The primary active components of PRA were identified using high-performance liquid chromatography (HPLC), and network pharmacology techniques were used to predict the possible targets of action and signaling pathways in treatment for UC. A model of UC was established in vivo using rats, and a PRA intervention was performed. The amounts of cytokines in the colonic tissues and serum were measured using enzyme-linked immunosorbent assay (ELISA). The permeability of the intestinal mucosa was measured using a fluorescein isothiocyanate (FITC)-dextran assay and western blot. A PeriCam PSI system was used to view the microcirculation of the intestinal mucosa, and immunohistochemistry and immunofluorescence stains were used to detect angiogenesis. An electron microscope was used to observe the damage to the endothelium of the colon. Western blot and immunohistochemistry analyses were used to evaluate the protein expression of hypoxia-inducible factor-1 alpha (HIF-1α) in colon tissues, and qRT-PCR was used to assess the lncRNA expression of MALAT1. RESULTS HPLC identified 10 main active components of PRA, and the network pharmacology results showed that the treatment of UC with PRA was associated with the HIF-1 signaling pathway. The results of animal experiments revealed that PRA significantly improved the pathological damage to the colon and the microcirculatory issues in the intestinal mucosa. PRA also inhibited colonic endothelial cell damage and angiogenesis, which may be related to the inhibition of the increased expression of lncRNA MALAT1 and HIF-1α in colon tissues. CONCLUSIONS The anti-UC effect of PRA by improving intestinal mucosal microcirculatory disorders was first reported in this study. PRA deactivated the lncRNA MALAT1/HIF-1α pathway, inhibited endothelial angiogenesis, restored intestinal mucosal microvascular homeostasis, improved microcirculatory disorders, and alleviated the symptoms of DSS-induced UC in rats.
Collapse
Affiliation(s)
- Yaru Gu
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Zhikuo Dong
- School of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Ying Gu
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Ya Gao
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Dantong Li
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China
| | - Yixin Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China.
| | - Xiaoying Zhang
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050091, PR China; International Joint Research Center on Resource Utilization and Quality Evaluation of Traditional Chinese Medicine of Hebei Province, Shijiazhuang 050091, PR China.
| |
Collapse
|
7
|
Garg A, Lavania K. Recent opportunities and application of gellan gum based drug delivery system for intranasal route. Daru 2024; 32:947-965. [PMID: 39361194 PMCID: PMC11555193 DOI: 10.1007/s40199-024-00543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/24/2024] [Indexed: 11/12/2024] Open
Abstract
OBJECTIVES In the recent years, in-situ hydrogel based on gellan gum has been investigated for delivery of various drug molecules particularly to treat neurological disorders via intranasal route. The major objective of the present manuscript is to review the recent research studies exploring gellan gum as ionic triggered in-situ gel for intranasal administration to enhance absorption of drugs and to increase their therapeutic efficacy. METHODS This review include literature from 1982 to 2023 and were collected from various scientific electronic databases like Scopus, PubMed and Google Scholar to review source, chemistry, ionotropic gelation mechanism, and recent research studies for gellan gum based in-situ hydrogel for intransasl administration.Keywords such as gellan gum, in-situ hydrogel, intranasal administration and brain targeting were used to search literature. The present review included the research studies which explored gellan gum based in-situ gel for intranasal drug delivery. RESULTS The findings have shown enhanced biavailability of various drugs upon intranasal administration using gellan-gum based in-situ hydrogel.Moreover, the review indicated that intranasal administration of in-situ hydrogel facilitate to overcome blood brain barrier effectively. Hence, significantly higher drug concentration was found to be achieved in brain tissues upon intranasal administration than that of other routes like oral and intravenous. CONCLUSION The present work conducted a comprehensive review for gellan gum based in-situ hydrogel particularly for intransal administration to overcome BBB. The study concluded that gellan gum based in-situ hydrogel could be potential promising delivery system for intranasal administration to improve bioavailability and efficacy of drugs specifically to treat neurological disorders.
Collapse
Affiliation(s)
- Anuj Garg
- Institute of Pharmaceutical Research, GLA University, NH-2 Mathura Delhi Road P.O- Chaumuhan, Mathura, 281406, U.P, India.
| | - Khushboo Lavania
- College of Pharmacy, BSA College of Engineering and Technology, Mathura, India
| |
Collapse
|
8
|
Lee KR, Gulnaz A, Chae YJ. Drug Interaction-Informed Approaches to Inflammatory Bowel Disease Management. Pharmaceutics 2024; 16:1431. [PMID: 39598554 PMCID: PMC11597736 DOI: 10.3390/pharmaceutics16111431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a complex and chronic condition that requires the use of various pharmacological agents for its management. Despite advancements in IBD research, the multifaceted mechanisms involved continue to pose significant challenges for strategic prevention. Therefore, it is crucial to prioritize safe and effective treatment strategies using the currently available pharmacological agents. Given that patients with IBD often require multiple medications due to combination therapy or other underlying conditions, a comprehensive understanding of drug interactions is essential for optimizing treatment regimens. In this review, we examined the pharmacological treatment options recommended in the current IBD management guidelines and provided a comprehensive analysis of the known pharmacokinetic interactions associated with these medications. In particular, this review includes recent research results for the impact of anti-drug antibodies (ADAs) on the concentrations of biological agents used in IBD treatment. By leveraging detailed interaction data and employing personalized dosing strategies, healthcare providers can improve therapeutic outcomes and minimize adverse effects, ultimately improving the quality of care for patients with IBD.
Collapse
Affiliation(s)
- Kyeong-Ryoon Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Bioscience, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
| | - Yoon-Jee Chae
- College of Pharmacy, Woosuk University, Wanju 55338, Republic of Korea
- Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju 55338, Republic of Korea
| |
Collapse
|
9
|
Bhat MA, Roy S, Dhaneshwar S, Kumar S, Saxena SK. Desloratadine via its anti-inflammatory and antioxidative properties ameliorates TNBS-induced experimental colitis in rats. Immunopharmacol Immunotoxicol 2024:1-14. [PMID: 38816915 DOI: 10.1080/08923973.2024.2360043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 05/18/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Intestinal mucosal immune cells, notably mast cells, are pivotal in ulcerative colitis (UC) pathophysiology. Its activation elevates tissue concentrations of histamine. Inhibiting colonic histamine release could be an effective therapeutic strategy for treating UC. Experimental model like 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in rats mimic human IBD, aiding treatment investigations. Drug repurposing is a promising strategy to explore new indications for established drugs. Desloratadine (DES) is second-generation antihistamine utilized for managing allergies by blocking histamine action in the body. It also has reported anti-inflammatory and antioxidant actions. OBJECTIVE DES was investigated for its repurposing potential in UC by preclinical screening in TNBS-induced colitis in Wistar rats. METHODS Therapeutic efficacy of DES was evaluated both individually and in combination with standard drug 5-aminosalicylicacid (5-ASA). Rats were orally administered DES (10 mg/kg), 5-ASA (25 mg/kg), and DES + 5-ASA (5 mg + 12.15 mg) following the induction of colitis. Parameters including disease activity score rate (DASR), colon/body weight ratio (CBWR), colon length, diameter, pH, histological injury, and scoring were evaluated. Inflammatory biomarkers such as IL-1β, TNF-α, along with reduced glutathione (GSH), and malondialdehyde (MDA) were assessed. RESULTS Significant protective effects of DES, especially in combination with 5-ASA, against TNBS-induced inflammation were observed as evidenced by reduced DASR, CBWR, and improved colon morphology. Drugs significantly lowered plasma and colon histamine and, cytokines levels. GSH restoration, and decreased MDA content were also observed. CONCLUSION DES and DES + 5-ASA demonstrated potential in alleviating colonic inflammation associated with TNBS-induced colitis in rats. The effect can be attributed to its antihistamine, anticytokine, and antioxidative properties.
Collapse
Affiliation(s)
- Mohammad Aadil Bhat
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Supriya Roy
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Suneela Dhaneshwar
- Amity Institute of Pharmacy, Amity University Maharashtra, Mumbai, Maharashtra, India
| | - Swatantra Kumar
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Uttar Pradesh, Lucknow, India
| | - Shailendra K Saxena
- Centre for Advanced Research (CFAR), Faculty of Medicine, King George's Medical University (KGMU), Uttar Pradesh, Lucknow, India
| |
Collapse
|
10
|
Xie L, Chen T, Li H, Xiao J, Wang L, Kim SK, Huang Z, Xie J. An Exopolysaccharide from Genistein-Stimulated Monascus Purpureus: Structural Characterization and Protective Effects against DSS-Induced Intestinal Barrier Injury Associated with the Gut Microbiota-Modulated Short-Chain Fatty Acid-TLR4/MAPK/NF-κB Cascade Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7476-7496. [PMID: 38511260 DOI: 10.1021/acs.jafc.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Inflammatory bowel disease is a major health problem that can lead to prolonged damage to the digestive system. This study investigated the effects of an exopolysaccharide from genistein-stimulated Monascus purpureus (G-EMP) in a mouse model of colitis to clarify its molecular mechanisms and identified its structures. G-EMP (Mw = 56.4 kDa) was primarily consisted of → 4)-α-D-Galp-(1 →, → 2,6)-α-D-Glcp-(1→ and →2)-β-D-Manp-(1 → , with one of the branches being α-D-Manp-(1 →. G-EMP intervention reduced the loss of body weight, degree of colonic damage and shortening, disease activity index scores, and histopathology scores, while restoring goblet cell production and oxidative homeostasis, repairing colonic functions, and regulating inflammatory cytokines. RNA sequencing and Western blot analysis indicated that G-EMP exerts anti-inflammatory properties by suppressing the TLR4/MAPK/NF-κB inflammatory signaling pathway. G-EMP modulated the gut microbiota by improving its diversities, elevating the relative abundances of beneficial bacteria, declining the Firmicutes/Bacteroidota value, and regulating the level of short-chain fatty acids (SCFAs). Correlation analysis demonstrated strong links between SCFAs, gut microbiota, and the inflammatory response, indicating the potential of G-EMP to prevent colitis.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Ting Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Hong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jindan Xiao
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Linchun Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Soo-Ki Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Republic of Korea
| | - Zhibing Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| |
Collapse
|
11
|
Abdollahy A, Salehi M, Mahami S, Bernkop-Schnürch A, Vahedi H, Gharravi AM, Mehrabi M. Therapeutic effect of 5-ASA and hesperidin-loaded chitosan/Eudragit® S100 nanoparticles as a pH-sensitive carrier for local targeted drug delivery in a rat model of ulcerative colitis. Int J Pharm 2024; 652:123838. [PMID: 38266937 DOI: 10.1016/j.ijpharm.2024.123838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/20/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Ulcerative colitis (UC) is an idiopathic disease characterized by colonic mucosal tissue destruction secondary to an excessive immune response. We synthesized pH-sensitive cross-linked chitosan/Eudragit® S100 nanoparticles (EU S100/CS NPs) as carriers for 5-aminosalicylic acid (5-ASA) and hesperidin (HSP), then conducted in-vitro and in-vivo studies and evaluated the therapeutic effects. In-vitro analysis revealed that the 5-ASA-loaded EU S100/CS NPs and the HSP-loaded EU S100/CS NPs had smooth and curved surfaces and ranged in size between 250 and 300 nm, with a zeta potential of 32 to 34 mV. FTIR analysis demonstrated that the drugs were loaded on the nanoparticles without significant alterations. The loading capacity and encapsulation efficiency of loading 5-ASA onto EU S100/CS NPs were 25.13 % and 60.81 %, respectively. Regarding HSP, these values were 38.34 % and 77.84 %, respectively. Drug release did not occur in simulated gastric fluid (SGF), while a slow-release pattern was recorded for both drugs in simulated intestinal fluid (SIF). In-vivo macroscopic and histopathological examinations revealed that both NPs containing drugs significantly relieved the symptoms of acetic acid (AA)-induced UC in Wistar rats. We conclude that the synthesized pH-sensitive 5-ASA/EU S100/CS NPs and HSP/EU S100/CS NPs offer promise in treating UC.
Collapse
Affiliation(s)
- Armana Abdollahy
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Andreas Bernkop-Schnürch
- Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy, Leopold-Franzens-University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Anneh Mohammad Gharravi
- Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
12
|
Ali NB, Abdelhamid Ibrahim SS, Alsherbiny MA, Sheta E, El-Shiekh RA, Ashour RM, El-Gazar AA, Ragab GM, El-Gayed SH, Li CG, Abdel-Sattar E. Gastroprotective potential of red onion (Allium cepa L.) peel in ethanol-induced gastric injury in rats: Involvement of Nrf2/HO-1 and HMGB-1/NF-κB trajectories. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117115. [PMID: 37659760 DOI: 10.1016/j.jep.2023.117115] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The utilization of plants with therapeutic properties in traditional medicine has a longstanding practice. Among them, the well-known Allium cepa L. commonly known as onion has been valued for its anti-inflammatory and antioxidant potential in the treatment of various ailments, including gastric ulcers. AIM OF THE STUDY This study investigated the gastroprotective potential of red onion peel extract and its fractions in a rat model of ethanol-induced gastric ulcer. Moreover, their phytochemical profiles were compared to identify the active metabolites. MATERIALS AND METHODS Mass spectrometry-based metabolomics and chemometrics were performed for phytochemical analysis. Ethanol-induced gastric ulcer model was used to assess the gastroprotective activity. Nine groups of rats were allocated as follows: Group 1 was the normal control; Group 2 rats were used as a positive control/model and received 1 mL of absolute ethanol; and Group 3 rats were treated with famotidine at a dose of 20 mg/kg orally. Group 4 and 5 rats were treated with total acidified ethanolic extract (T1, T2). Group 6 and 7 rats were treated with anthocyanins-rich fractions (P1, P2). Groups 8 and 9 were the flavonoids-rich fraction (S1, S2) treatment. Prior to scarification, the ulcer index in mm was obtained from gastric tissues photographed beside a ruler with further analysis using ImageJ software. RESULTS Seventy key major and discriminatory metabolites were identified including flavonoids, anthocyanins, phenolic acids, and miscellaneous compounds. The examined extract and its fractions significantly reduced the ulcer index and inflammatory cytokines via downregulating HMGB-1/NF-κB. Also, they augmented the expression of Nrf2/HO-1 and reduced NOX1/4 mRNA expression. Moreover, there was a significant reduction in the oxidative stress and apoptotic biomarkers as well as a noticeable enhancement in histopathological changes of the stomach tissues. CONCLUSION Red onion peels have a promising dose dependent gastroprotective potential in alcohol-induced ulcers via modulating Nrf2/HO-1 and HMGB-1/NF-κB trajectories. This highlights the potential of red onion peels in treating gastric ulcers.
Collapse
Affiliation(s)
- Nermeen B Ali
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | | | - Muhammad A Alsherbiny
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Innovation Centre, Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, Australia; NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2747, Australia
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Riham A El-Shiekh
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Rehab M Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Amira A El-Gazar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, 12585, Egypt
| | - Ghada M Ragab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, 12585, Egypt
| | - Sabah H El-Gayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, 6th October University, Cairo, Egypt
| | - Chun Guang Li
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, 2747, Australia
| | - Essam Abdel-Sattar
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
13
|
Zhang H, Shi Y, Lin C, He C, Wang S, Li Q, Sun Y, Li M. Overcoming cancer risk in inflammatory bowel disease: new insights into preventive strategies and pathogenesis mechanisms including interactions of immune cells, cancer signaling pathways, and gut microbiota. Front Immunol 2024; 14:1338918. [PMID: 38288125 PMCID: PMC10822953 DOI: 10.3389/fimmu.2023.1338918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/26/2023] [Indexed: 01/31/2024] Open
Abstract
Inflammatory bowel disease (IBD), characterized primarily by gastrointestinal inflammation, predominantly manifests as Crohn's disease (CD) and ulcerative colitis (UC). It is acknowledged that Inflammation plays a significant role in cancer development and patients with IBD have an increased risk of various cancers. The progression from inflammation to carcinogenesis in IBD is a result of the interplay between immune cells, gut microbiota, and carcinogenic signaling pathways in epithelial cells. Long-term chronic inflammation can lead to the accumulation of mutations in epithelial cells and the abnormal activation of carcinogenic signaling pathways. Furthermore, Immune cells play a pivotal role in both the acute and chronic phases of IBD, contributing to the transformation from inflammation to tumorigenesis. And patients with IBD frequently exhibit dysbiosis of the intestinal microbiome. Disruption of the gut microbiota and subsequent immune dysregulation are central to the pathogenesis of both IBD and colitis associated colorectal cancer (CAC). The proactive management of inflammation combined with regular endoscopic and tumor screenings represents the most direct and effective strategy to prevent the IBD-associated cancer.
Collapse
Affiliation(s)
- Haonan Zhang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yulu Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chanchan Lin
- Department of Gastroenterology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Chengcheng He
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shanping Wang
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qingyuan Li
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yan Sun
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingsong Li
- Inflammatory Bowel Diseases Research Center, Department of Gastroenterology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
14
|
Künzel SR, Winter L, Hoffmann M, Kant TA, Thiel J, Kronstein‐Wiedemann R, Klapproth E, Lorenz K, El‐Armouche A, Kämmerer S. Investigation of mesalazine as an antifibrotic drug following myocardial infarction in male mice. Physiol Rep 2023; 11:e15809. [PMID: 37688424 PMCID: PMC10492006 DOI: 10.14814/phy2.15809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
OBJECTIVES Myocardial infarction (MI) initiates a complex reparative response during which damaged cardiac muscle is replaced by connective tissue. While the initial repair is essential for survival, excessive fibrosis post-MI is a primary contributor to progressive cardiac dysfunction, and ultimately heart failure. Currently, there are no approved drugs for the prevention or the reversal of cardiac fibrosis. Therefore, we tested the therapeutic potential of repurposed mesalazine as a post-MI therapy, as distinct antifibrotic effects have recently been demonstrated. METHODS At 8 weeks of age, MI was induced in male C57BL/6J mice by LAD ligation. Mesalazine was administered orally at a dose of 100 μg/g body weight in drinking water. Fluid intake, weight development, and cardiac function were monitored for 28 days post intervention. Fibrosis parameters were assessed histologically and via qPCR. RESULTS Compared to controls, mesalazine treatment offered no survival benefit. However, no adverse effects on heart and kidney function and weight development were observed, either. While total cardiac fibrosis remained largely unaffected by mesalazine treatment, we found a distinct reduction of perivascular fibrosis alongside reduced cardiac collagen expression. CONCLUSIONS Our findings warrant further studies on mesalazine as a potential add-on therapy post-MI, as perivascular fibrosis development was successfully prevented.
Collapse
Affiliation(s)
- Stephan R. Künzel
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- Institute of Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- German Red Cross Blood Donation Service North‐EastDresdenGermany
| | - Luise Winter
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Maximilian Hoffmann
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Theresa A. Kant
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Jessica Thiel
- Institute of Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- German Red Cross Blood Donation Service North‐EastDresdenGermany
| | - Romy Kronstein‐Wiedemann
- Institute of Transfusion Medicine, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
- German Red Cross Blood Donation Service North‐EastDresdenGermany
| | - Erik Klapproth
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Kristina Lorenz
- Institute of Pharmacology and Toxicology, Julius‐Maximilians‐University of WürzburgWürzburgGermany
- Leibniz‐Institut für Analytische Wissenschaften ‐ISAS‐ e.VDortmundGermany
| | - Ali El‐Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität DresdenDresdenGermany
| |
Collapse
|
15
|
Mahami S, Salehi M, Mehrabi M, Vahedi H, Hassani MS, Bitaraf FS, Omri A. pH-sensitive HPMCP-chitosan nanoparticles containing 5-aminosalicylic acid and berberine for oral colon delivery in a rat model of ulcerative colitis. Int J Biol Macromol 2023:125332. [PMID: 37302632 DOI: 10.1016/j.ijbiomac.2023.125332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Ulcerative colitis (UC) with continuous and extensive inflammation is limited to the colon mucosa and can lead to abdominal pain, diarrhea, and rectal bleeding. Conventional therapies are associated with several limitations, such as systemic side effects, drug degradation, inactivation, and limited drug uptake, leading to poor bioavailability. These restrictions necessitate drug delivery to the colon so that the drug passes through the stomach unchanged and has selective access to the colon. The present study aimed to formulate 5-aminosalicylic acid (5-ASA) and berberine (BBR) in chitosan nanoparticles cross-linked by HPMCP (hydroxypropyl methylcellulose phthalate) as a colon drug delivery system for UC. Spherical nanoparticles were prepared. They showed appropriate drug release in the simulated intestinal fluid (SIF), while the release did not occur in the simulated gastric fluid (SGF). They improved disease activity parameters (DAI) and ulcer index, increased the length of the colon, and decreased the wet weight of the colon. Furthermore, histopathological colon studies showed an improved therapeutic effect of 5-ASA/HPMCP/CSNPs and BBR/HPMCP/CSNPs. In conclusion, although 5-ASA/HPMCP/CSNPs showed the best effect in the treatment of UC, BBR/HPMCP/CSNPs, and 5-ASA/BBR/HPMCP/CSNPs were also effective in vivo study, and this study anticipated they could be helpful in future clinical applications for the management of UC.
Collapse
Affiliation(s)
- Solmaz Mahami
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Sexual Health and Fertility Research Center, Shahroud University of Medical Sciences, Shahroud, Iran; Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran.
| | - Hamid Vahedi
- Clinical Research Development Unit, Imam Hossein Hospital, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Gastroenterology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Maryam Sadat Hassani
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran; Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Science, Shahroud, Iran
| | - Fatemeh Sadat Bitaraf
- Department of Medical Biotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Abdelwahab Omri
- The Novel Drug & Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
16
|
Ionotropic Gelation and Chemical Crosslinking as Methods for Fabrication of Modified-Release Gellan Gum-Based Drug Delivery Systems. Pharmaceutics 2022; 15:pharmaceutics15010108. [PMID: 36678736 PMCID: PMC9865147 DOI: 10.3390/pharmaceutics15010108] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Hydrogels have a tridimensional structure. They have the ability to absorb a significant amount of water or other natural or simulated fluids that cause their swelling albeit without losing their structure. Their properties can be exploited for encapsulation and modified targeted drug release. Among the numerous natural polymers suitable for obtaining hydrogels, gellan gum is one gaining much interest. It is a gelling agent with many unique features, and furthermore, it is non-toxic, biocompatible, and biodegradable. Its ability to react with oppositely charged molecules results in the forming of structured physical materials (films, beads, hydrogels, nanoparticles). The properties of obtained hydrogels can be modified by chemical crosslinking, which improves the three-dimensional structure of the gellan hydrogel. In the current review, an overview of gellan gum hydrogels and their properties will be presented as well as the mechanisms of ionotropic gelation or chemical crosslinking. Methods of producing gellan hydrogels and their possible applications related to improved release, bioavailability, and therapeutic activity were described.
Collapse
|
17
|
Li J, Ling F, Guo D, Zhao J, Cheng L, Chen Y, Xu M, Zhu L. The efficacy of mesalazine on nonspecific terminal ileal ulcers: A randomized controlled trial. Front Pharmacol 2022; 13:989654. [PMID: 36210809 PMCID: PMC9538960 DOI: 10.3389/fphar.2022.989654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Nonspecific terminal ileal ulcers are one of the common ulcerative diseases in terminal ileum. However, the studies about treatment efficacy are scarce. We aimed to investigate the efficacy of mesalazine in the treatment of this disease. Methods: Eighty-two patients with nonspecific terminal ileal ulcers who sought outpatient medical treatment in the Division of Gastroenterology, Wuhan Union Hospital, from April 2016 to January 2019 were enrolled and randomly divided into two groups. The experimental group took mesalazine orally, 4.0 g/d, once a day for 3 months. The control group was followed up without special intervention. The primary endpoint was the endoscopic remission rate at the 6th and 12th month. Secondary endpoints included the clinical remission rate at the 1st, 6th and 12th month and adverse events (ChiCTR1900027503). Results: About the endoscopic efficacy, the remission rate of the experimental group and control group was 73.2 versus 61.0% at the 6th month (RR = 1.20, 95%CI 0.88∼1.63, p = 0.24) and 87.8 versus 78.0% at the 12th month (RR = 1.13, 95%CI 0.92∼1.37, p = 0.24). About the clinical efficacy, the remission rate was 70.3 versus 43.8% at the 1st month (RR = 1.61, 95%CI 1.03∼2.51, p = 0.03), 83.8 versus 68.8% at the 6th month (RR = 1.22, 95%CI 0.93∼1.60, p = 0.14) and 91.9 versus 81.3% at the 12th month (RR = 1.13, 95%CI 0.93∼1.37, p = 0.34). During follow-up, no patients were diagnosed with Crohn’s disease or intestinal tuberculosis, and no patients developed significant complications. Conclusion: For patients with nonspecific terminal ileal ulcers, there is no disease progression over a short term. In addition, there is no significant difference in clinical or endoscopic efficacy between patients who received mesalazine and patients who are followed up without special intervention.
Collapse
Affiliation(s)
- Junrong Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangmei Ling
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Guo
- Department of Geriatrics, Wuhan Central Hospital, Wuhan, China
| | - Jinfang Zhao
- Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ling Cheng
- Department of Gastroenterology, The First Peoples Hospital of Nanyang City, Henan, China
| | - Yidong Chen
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyang Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liangru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liangru Zhu,
| |
Collapse
|