1
|
Li S, Song Z, Fan C, Zhang W, Ma T, Li X, Zhang Q, Zhao M, Yu T, Li S. Potential of FGF21 in type 2 diabetes mellitus treatment based on untargeted metabolomics. Biochem Pharmacol 2024; 225:116306. [PMID: 38782076 DOI: 10.1016/j.bcp.2024.116306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/30/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Fibroblast growth factor 21 (FGF21) has promise for treating diabetes and its associated comorbidities. It has been found to reduce blood glucose in mice and humans; however, its underlying mechanism is not known. Here, the metabolic function of FGF21 in diabetes was investigated. Diabetic db/db mice received intraperitoneal injections of FGF21 for 28 days, the serum of each mouse was collected, and their metabolites were analyzed by untargeted metabolomics using UHPLC-MS/MS. It was found that FGF21 reduced blood glucose and oral glucose tolerance without causing hypoglycemia. Moreover, administration of FGF21 reduced the levels of TG and LDL levels while increasing those of HDL and adiponectin. Importantly, the levels of 45 metabolites, including amino acids and lipids, were significantly altered, suggesting their potential as biomarkers. We speculated that FGF21 may treat T2DM through the regulation of fatty acid biosynthesis, the TCA cycle, and vitamin digestion and absorption. These findings provide insight into the mechanism of FGF21 in diabetes and suggest its potential for treating diabetes.
Collapse
Affiliation(s)
- Shuai Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China; State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang 222001, People s Republic of China
| | - Zilong Song
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Chunxiang Fan
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Weiwei Zhang
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Tianyi Ma
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China
| | - Xu Li
- State Key Laboratory of New-Tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Parmaceutical CO. LTD, Lianyungang 222001, People s Republic of China
| | - Qi Zhang
- President's Office, Qiqihar University, Qiqihar 161006, China.
| | - Ming Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Tianfei Yu
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| | - Shanshan Li
- College of Life Sciences and Agriculture and Forestry, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
2
|
Tao Y, Peng F, Wang L, Sun J, Ding Y, Xiong S, Tenzin U, MiMa, Nhamdriel T, Fan G. Ji-Ni-De-Xie ameliorates type 2 diabetes mellitus by modulating the bile acids metabolism and FXR/FGF15 signaling pathway. Front Pharmacol 2024; 15:1383896. [PMID: 38835663 PMCID: PMC11148236 DOI: 10.3389/fphar.2024.1383896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction: Ji-Ni-De-Xie (JNDX) is a traditional herbal preparation in China. It is widely used to treat type 2 diabetes mellitus (T2DM) in traditional Tibetan medicine system. However, its antidiabetic mechanisms have not been elucidated. The aim of this study is to elucidate the underlying mechanism of JNDX on bile acids (BAs) metabolism and FXR/FGF15 signaling pathway in T2DM rats. Methods: High-performance liquid chromatography-triple quadrupole mass spectrometry (HPLC-QQQ-MS) and UPLC-Q-Exactive Orbitrap MS technology were used to identify the constituents in JNDX. High-fat diet (HFD) combined with streptozotocin (45 mg∙kg-1) (STZ) was used to establish a T2DM rat model, and the levels of fasting blood-glucose (FBG), glycosylated serum protein (GSP), homeostasis model assessment of insulin resistance (HOMA-IR), LPS, TNF-α, IL-1β, IL-6, TG, TC, LDL-C, HDL-C, and insulin sensitivity index (ISI) were measured to evaluate the anti-diabetic activity of JNDX. In addition, metagenomic analysis was performed to detect changes in gut microbiota. The metabolic profile of BAs was analyzed by HPLC-QQQ-MS. Moreover, the protein and mRNA expressions of FXR and FGF15 in the colon and the protein expressions of FGF15 and CYP7A1 in the liver of T2DM rats were measured by western blot and RT-qPCR. Results: A total of 12 constituents were identified by HPLC-QQQ-MS in JNDX. Furthermore, 45 chemical components in serum were identified from JNDX via UPLC-Q-Exactive Orbitrap MS technology, including 22 prototype components and 23 metabolites. Using a T2DM rat model, we found that JNDX (0.083, 0.165 and 0.33 g/kg) reduced the levels of FBG, GSP, HOMA-IR, LPS, TNF-α, IL-1β, IL-6, TG, TC, and LDL-C, and increased ISI and HDL-C levels in T2DM rats. Metagenomic results demonstrated that JNDX treatment effectively improved gut microbiota dysbiosis, including altering some bacteria (e.g., Streptococcus and Bacteroides) associated with BAs metabolism. Additionally, JNDX improved BAs disorder in T2DM rats, especially significantly increasing cholic acid (CA) levels and decreasing ursodeoxycholic acid (UDCA) levels. Moreover, the protein and mRNA expressions of FXR and FGF15 of T2DM rats were significantly increased, while the expression of CYP7A1 protein in the liver was markedly inhibited by JNDX. Discussion: JNDX can effectively improve insulin resistance, hyperglycemia, hyperlipidemia, and inflammation in T2DM rats. The mechanism is related to its regulation of BAs metabolism and activation of FXR/FGF15 signaling pathway.
Collapse
Affiliation(s)
- Yiwen Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiayi Sun
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ding
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuangfeng Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ugen Tenzin
- Dege County Tibetan Hospital (Institute of Tibetan Medicine), Dege, China
| | - MiMa
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Tsedien Nhamdriel
- Department of Tibetan Medicine, University of Tibetan Medicine, Lhasa, China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine and School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
3
|
Pedersen AKN, Gormsen LC, Nielsen S, Jessen N, Bjerre M. Metformin Improves the Prerequisites for FGF21 Signaling in Patients With Type 2 Diabetes. J Clin Endocrinol Metab 2024; 109:e552-e561. [PMID: 37776319 DOI: 10.1210/clinem/dgad583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
CONTEXT Fibroblast growth factor (FGF) 21 acts as a metabolic regulator and its therapeutic use is under investigation. FGF21 signaling requires binding to surface receptors, FGFR1c and β-klotho. FGF21 resistance is observed in metabolic diseases and FGF21 signaling is regulated by fibroblast activation protein (FAP). Metformin is reported to influence expression and secretion of FGF21 in preclinical models, but the effect of metformin on FGF21 in a clinical trial remains unknown. OBJECTIVE To investigate how 12 weeks of treatment with metformin affects the FGF21 signaling pathway in patients with type 2 diabetes (T2D). METHODS Randomized, placebo-controlled study in patients with T2D (n = 24) receiving either metformin (1000 mg twice daily) or placebo. A control group of body mass index- and age-matched healthy individuals (n = 12) received a similar dose of metformin. Blood samples and muscle and fat biopsies were collected at study entry and after 12 weeks. METHODS Plasma levels of FGF21 (total and intact) and FAP (total and activity) were measured. Muscle and fat biopsies were analyzed for mRNA and protein expression of targets relevant for activation of the FGF21 signaling pathway. RESULTS Circulating FAP activity decreased after metformin treatment compared with placebo (P = .006), whereas FGF21 levels were unchanged. Metformin treatment increased gene and protein expression of β-klotho, FGFR1c, and pFGFR1c in adipose tissue. FGF21 mRNA expression increased in muscle tissue after metformin and the FGF21 protein, but not mRNA levels, were observed in adipose tissue. CONCLUSION Our findings suggest that metformin suppresses the circulating FAP activity and upregulates the expression of FGFR1c and β-klotho for increased FGF21 signaling in adipose tissue, thus improving peripheral FGF21 sensitivity.
Collapse
Affiliation(s)
- Anne Kathrine Nissen Pedersen
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Søren Nielsen
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Niels Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus N, Denmark
- Department of Biomedicine, Health, Aarhus University, 8000 Aarhus, Denmark
- Department of Clinical Pharmacology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Mette Bjerre
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|