1
|
Mustafa S, Alharbi LM, Abdelraheem MZ, Mobashar M, Qamar W, A Al-Doaiss A, Abbas RZ. Role of Silver Nanoparticles for the Control of Anthelmintic Resistance in Small and Large Ruminants. Biol Trace Elem Res 2024; 202:5502-5521. [PMID: 38436800 DOI: 10.1007/s12011-024-04132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Helminths are considered a significant threat to the livestock industry, as they cause substantial economic losses in small and large ruminant farming. Their morbidity and mortality rates are also increasing day by day as they have zoonotic importance. Anthelmintic drugs have been used for controlling these parasites; unfortunately, due to the development of resistance of these drugs in helminths (parasites), especially in three major classes like benzimidazoles, nicotinic agonists, and macrocyclic lactones, their use is becoming very low. Although new anthelmintics are being developed, the process is time-consuming and costly. As a result, nanoparticles are being explored as an alternative to anthelmintics. Nanoparticles enhance drug effectiveness, drug delivery, and target specificity and have no resistance against parasites. Different types of nanoparticles are used, such as organic (chitosan) and inorganic (gold, silver, zinc oxide, iron oxide, and nickel oxide). One of them, silver nanoparticles (AgNPs), has unique properties in various fields, especially parasitology. AgNPs are synthesized from three primary methods: physical, chemical, and biological. Their primary mechanism of action is causing stress through the production of ROS that destroys cells, organs, proteins, and DNA parasites. The present review is about AgNPs, their mode of action, and their role in controlling anthelmintic resistance against small and large ruminants.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, Pakistan
| | - Lafi M Alharbi
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, 51452, Buraidah, Saudi Arabia
| | - Mona Z Abdelraheem
- The National Institute of Oceanography and Fisheries (NIOF), Aswan, Egypt
| | - Muhammad Mobashar
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Warda Qamar
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan.
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
2
|
Zhang Y, Liu Y, Lu Y, Gong S, Haick H, Cheng W, Wang Y. Tailor-Made Gold Nanomaterials for Applications in Soft Bioelectronics and Optoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405046. [PMID: 39022844 DOI: 10.1002/adma.202405046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/02/2024] [Indexed: 07/20/2024]
Abstract
In modern nanoscience and nanotechnology, gold nanomaterials are indispensable building blocks that have demonstrated a plethora of applications in catalysis, biology, bioelectronics, and optoelectronics. Gold nanomaterials possess many appealing material properties, such as facile control over their size/shape and surface functionality, intrinsic chemical inertness yet with high biocompatibility, adjustable localized surface plasmon resonances, tunable conductivity, wide electrochemical window, etc. Such material attributes have been recently utilized for designing and fabricating soft bioelectronics and optoelectronics. This motivates to give a comprehensive overview of this burgeoning field. The discussion of representative tailor-made gold nanomaterials, including gold nanocrystals, ultrathin gold nanowires, vertically aligned gold nanowires, hard template-assisted gold nanowires/gold nanotubes, bimetallic/trimetallic gold nanowires, gold nanomeshes, and gold nanosheets, is begun. This is followed by the description of various fabrication methodologies for state-of-the-art applications such as strain sensors, pressure sensors, electrochemical sensors, electrophysiological devices, energy-storage devices, energy-harvesting devices, optoelectronics, and others. Finally, the remaining challenges and opportunities are discussed.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yuerui Lu
- School of Engineering, College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT, 2601, Australia
| | - Shu Gong
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P. R. China
| | - Hossam Haick
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Darlington, NSW, 2008, Australia
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
- The Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
- Key Laboratory of Science and Engineering for Health and Medicine of Guangdong Higher Education Institutes, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong, 515063, China
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, China
| |
Collapse
|
3
|
Haššo M, Kudr J, Zítka J, Šílený J, Švec P, Švorc Ľ, Zítka O. Proving the automatic benchtop electrochemical station for the development of dopamine and paracetamol sensors. Mikrochim Acta 2024; 191:408. [PMID: 38898321 PMCID: PMC11186920 DOI: 10.1007/s00604-024-06454-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
The introduced work represents an implementation of the automatic benchtop electrochemical station (BES) as an effective tool for the possibilities of high-throughput preparation of modified sensor/biosensors, speeding up the development of the analytical method, and automation of the analytical procedure for the determination of paracetamol (PAR) and dopamine (DOP) as target analytes. Within the preparation of gold nanoparticles modified screen-printed carbon electrode (AuNPs-SPCE) by electrodeposition, the deposition potential EDEP, the deposition time tDEP, and the concentration of HAuCl4 were optimized and their influence was monitored on 1 mM [Ru(NH3)6]3+/2+ redox probe and 50 μM DOP. The morphology of the AuNPs-SPCE prepared at various modification conditions was observed by SEM. The analytical performance of the AuNPs-SPCE prepared at different modification conditions was evaluated by a construction of the calibration curves of DOP and PAR. SPCE and AuNPs-SPCE at modification condition providing the best sensitivity to PAR and DOP, were successfully used to determine PAR and DOP in tap water by "spike-recovery" approach. The BES yields better reproducibility of the preparation of AuNPs-SPCE (RSD = 3.0%) in comparison with the case when AuNPs-SPCE was prepared manually by highly skilled laboratory operator (RSD = 7.0%).
Collapse
Affiliation(s)
- Marek Haššo
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, 812 37, Slovakia
| | - Jiří Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Jan Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Jan Šílený
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Pavel Švec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic
| | - Ľubomír Švorc
- Institute of Analytical Chemistry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, Bratislava, 812 37, Slovakia
| | - Ondřej Zítka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, 613 00, Czech Republic.
| |
Collapse
|
4
|
Paul S, Reyes-Morales J, Roy K, Dick JE. Anodic Electrodeposition of IrO x Nanoparticles from Aqueous Nanodroplets. ACS NANOSCIENCE AU 2024; 4:216-222. [PMID: 38912286 PMCID: PMC11191722 DOI: 10.1021/acsnanoscienceau.3c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 06/25/2024]
Abstract
Electrodeposition has been used for centuries to create new materials. However, synthetic platforms are still necessary to enrich a variety of nanomaterials that can be electrodeposited. For instance, IrO x is a popular material for the water oxidation reaction, but electrodeposition strategies for the controlled growth of IrO x nanoparticles are lacking. Here, we demonstrate the anodic electrodeposition of IrO x nanoparticles from aqueous nanodroplets. Field emission scanning electron microscopy (FESEM) and scanning transmission electron microscopy (STEM) images confirm the macro- and microstructure of the resulting nanoparticles. IrO x nanoparticles of 43 ± 10 nm in diameter were achieved. X-ray photoelectron spectroscopy (XPS) showed the presence of Ir(III) and Ir(IV) hydrated oxyhydroxide species. The synthesis of IrO x nanoparticles under anodic conditions using water nanodroplets expands the capabilities of our technique and provides a tunable platform for IrO x nanoparticle electrodeposition.
Collapse
Affiliation(s)
- Saptarshi Paul
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Joshua Reyes-Morales
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kingshuk Roy
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E. Dick
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Brasiunas B, Popov A, Kraujelyte G, Ramanaviciene A. The effect of gold nanostructure morphology on label-free electrochemical immunosensor design. Bioelectrochemistry 2024; 156:108638. [PMID: 38176325 DOI: 10.1016/j.bioelechem.2023.108638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/13/2023] [Accepted: 12/28/2023] [Indexed: 01/06/2024]
Abstract
In this research, various electrodeposition techniques were used to form gold nanostructures (AuNSs) on the surface of graphite rod electrode (GE). Three distinct AuNS morphologies on GE have been achieved based on the composition of electrodeposition solution. The use of H2SO4 as a supporting electrolyte resulted in the formation of smaller but more numerous AuNSI with a modified electrode's electroactive surface area (EASA) of 0.213 cm2. Exchanging the supporting electrolyte to KNO3 and increasing HAuCl4 concentration facilitated the formation of bigger AuNSII particles with electrode EASA of 0.116 cm2. Finally, a partial coverage of GE by branched gold nanostructures (AuNSIII) was achieved with an estimated EASA of 0.110 cm2, when the HAuCl4 and KNO3 concentrations were increased further. Estimated values of heterogeneous electron transfer rate constant did not depend on AuNS morphology. Electrode modified with AuNSI exhibited the highest bovine serum albumin (BSA) immobilization efficiency and the highest relative response for the detection of specific polyclonal antibodies against BSA (p-anti-BSA) compared to other modified electrodes. The limit of p-anti-BSA detection in PBS buffer was calculated as 0.63 nM, while in blood serum it was 0.71 nM. Linear ranges were from 1 to 7 nM and from 1 to 5 nM, respectively.
Collapse
Affiliation(s)
- Benediktas Brasiunas
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Anton Popov
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Gabija Kraujelyte
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
| | - Almira Ramanaviciene
- NanoTechnas - Center of Nanotechnology and Materials Science, Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania.
| |
Collapse
|
6
|
Laber C, Scircle AR, Mouton ZP, Thornell T, Antony A, Jurss JW, Glasscott MW. Tunable High Entropy Lanthanide Oxide Microspheres via Confined Electroprecipitation in Emulsion Droplet Scaffolds. ACS MATERIALS AU 2024; 4:179-184. [PMID: 38496052 PMCID: PMC10941274 DOI: 10.1021/acsmaterialsau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 03/19/2024]
Abstract
Emergent high entropy nanomaterials and their associated complex surface structure hold promise to unlock unique catalytic intermediate pathways and photonic/plasmonic interactions; however, synthetic strategies to tune the size, morphological, and stoichiometric properties remain limited. This work demonstrates a confined electro-precipitation mechanism for the formation of tunable, high-entropy oxide microspheres within emulsion droplet scaffolds. This mechanism complements a traditional confined electrodeposition mechanism and explains the previously observed anomalous formation of thermodynamically unfavorable particles, including lanthanide species. Mass transfer studies reveal that microsphere coverage over a surface may be tuned and modeled by using a time-dependent modified Levich equation. Additionally, morphological tuning was demonstrated as a function of experimental conditions, such as rotation rate and precursor concentration. Finally, extension to multimetallic species permitted the generation of high-entropy lanthanide oxide microspheres, which were confirmed to have equimolar stoichiometries via energy dispersive spectroscopy and inductively coupled plasma mass spectrometry. This novel method promises to generate tunable, complex oxides with applications to thermal catalysis, optics, and applications yet unknown.
Collapse
Affiliation(s)
- Charles
H. Laber
- US
Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, United States
| | - Austin R. Scircle
- US
Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, United States
| | - Zachary P. Mouton
- US
Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, United States
| | - Travis Thornell
- US
Army Engineer Research and Development Center, Geotechnical and Structures
Laboratory, Vicksburg, Mississippi 39180, United States
| | - Ashly Antony
- The
University of Mississippi, Department of Chemistry
and Biochemistry, University, Mississippi 38677, United
States
| | - Jonah W. Jurss
- The
University of Mississippi, Department of Chemistry
and Biochemistry, University, Mississippi 38677, United
States
| | - Matthew W. Glasscott
- US
Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, United States
| |
Collapse
|
7
|
Falsafi SR, Topuz F, Bajer D, Mohebi Z, Shafieiuon M, Heydari H, Rawal S, Sathiyaseelan A, Wang MH, Khursheed R, Enayati MH, Rostamabadi H. Metal nanoparticles and carbohydrate polymers team up to improve biomedical outcomes. Biomed Pharmacother 2023; 168:115695. [PMID: 37839113 DOI: 10.1016/j.biopha.2023.115695] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023] Open
Abstract
The convergence of carbohydrate polymers and metal nanoparticles (MNPs) holds great promise for biomedical applications. Researchers aim to exploit the capability of carbohydrate matrices to modulate the physicochemical properties of MNPs, promote their therapeutic efficiency, improve targeted drug delivery, and enhance their biocompatibility. Therefore, understanding various attributes of both carbohydrates and MNPs is the key to harnessing them for biomedical applications. The many distinct types of carbohydrate-MNP systems confer unique capabilities for drug delivery, wound healing, tissue engineering, cancer treatment, and even food packaging. Here, we introduce distinct physicochemical/biological properties of carbohydrates and MNPs, and discuss their potentials and shortcomings (alone and in combination) for biomedical applications. We then offer an overview on carbohydrate-MNP systems and how they can be utilized to improve biomedical outcomes. Last but not least, future perspectives toward the application of such systems are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Safiabad Agricultural Research and Education and Natural Resources Center, Agricultural Research, Education and Extension Organization (AREEO), Dezful P.O. Box 333, Iran
| | - Fuat Topuz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Sariyer 34469, Istanbul, Turkey
| | - Dagmara Bajer
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Zahra Mohebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Maryam Shafieiuon
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hajar Heydari
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Shruti Rawal
- Department of Pharmaceutical Technology, L.J. Institute of Pharmacy, L J University, Ahmedabad 382210, India; Department of Pharmaceutics, Institute of Pharmacy, Nirma University, S.G. Highway, Chharodi, Ahmedabad, Gujarat 382481, India
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, South Korea
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - M H Enayati
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran.
| |
Collapse
|
8
|
Zhu F, Liu Z, Wu X, Xu D, Li Q, Chen X, Pang W, Duan X, Wang Y. Enhanced on-Chip modification and intracellular hydrogen peroxide detection via gigahertz acoustic streaming microfluidic platform. ULTRASONICS SONOCHEMISTRY 2023; 100:106618. [PMID: 37769590 PMCID: PMC10543187 DOI: 10.1016/j.ultsonch.2023.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Developing effective strategies for the flexible control of fluid is vital for microfluidic electrochemical biosensing. In this study, a gigahertz (GHz) acoustic streaming (AS) based sonoelectrochemical system was developed to realize an on-chip surface modification and sensitive hydrogen peroxide (H2O2) detection from living cells. The flexible and controlled fluid surrounding the electrochemical chip was optimized theoretically and applied in the sonoelectrochemical deposition of Au nanoparticles (AuNPs) first. Under the steady and fast flow stimulus of AS, AuNPs could be synthesized with a smaller and evener size distribution than the normal condition, allowing AuNPs to show an excellent peroxidase-like activity. Moreover, the AS also accelerated the mass transport of target molecules and improved the catalytic rate, leading to the enhancement of H2O2 detection, with an extremely low detection limit of 32 nM and a high sensitivity of 4.34 μA/ (mM·mm2). Finally, this system was successfully applied in tracking H2O2 release from different cell lines to distinguish the cancer cells from normal cells. This study innovatively integrated the surface modification and molecules detection process on a chip, and also proposed a simple but sensitive platform for microfluidic biosensing application.
Collapse
Affiliation(s)
- Feng Zhu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Zeyu Liu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Wu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Die Xu
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Quanning Li
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuejiao Chen
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Pang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
9
|
Li D, Dai D, Xiong G, Lan S, Zhang C. Composite Nanocoatings of Biomedical Magnesium Alloy Implants: Advantages, Mechanisms, and Design Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300658. [PMID: 37097626 PMCID: PMC10288271 DOI: 10.1002/advs.202300658] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The rapid degradation of magnesium (Mg) alloy implants erodes mechanical performance and interfacial bioactivity, thereby limiting their clinical utility. Surface modification is among the solutions to improve corrosion resistance and bioefficacy of Mg alloys. Novel composite coatings that incorporate nanostructures create new opportunities for their expanded use. Particle size dominance and impermeability may increase corrosion resistance and thereby prolong implant service time. Nanoparticles with specific biological effects may be released into the peri-implant microenvironment during the degradation of coatings to promote healing. Composite nanocoatings provide nanoscale surfaces to promote cell adhesion and proliferation. Nanoparticles may activate cellular signaling pathways, while those with porous or core-shell structures may carry antibacterial or immunomodulatory drugs. Composite nanocoatings may promote vascular reendothelialization and osteogenesis, attenuate inflammation, and inhibit bacterial growth, thus increasing their applicability in complex clinical microenvironments such as those of atherosclerosis and open fractures. This review combines the physicochemical properties and biological efficiency of Mg-based alloy biomedical implants to summarize the advantages of composite nanocoatings, analyzes their mechanisms of action, and proposes design and construction strategies, with the purpose of providing a reference for promoting the clinical application of Mg alloy implants and to further the design of nanocoatings.
Collapse
Affiliation(s)
- Dan Li
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Danni Dai
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Gege Xiong
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Shuquan Lan
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| | - Chao Zhang
- Stomatological HospitalSchool of StomatologySouthern Medical UniversityGuangzhou510280China
| |
Collapse
|
10
|
Nakata M, Yasuda T, Miyamoto M, Kitada A, Okazaki Y, Oda R, Murase K, Fukami K. Production of Noble-Metal Nanohelices Based on Nonlinear Dynamics in Electrodeposition of Binary Copper Alloys. NANO LETTERS 2023; 23:462-468. [PMID: 36638061 DOI: 10.1021/acs.nanolett.2c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Spatiotemporal pattern formation is dynamic self-organization widely observed in nature and drives various functions. Among these functions, chirality plays a central role. The relationship between dynamic self-organization and chirality has been an open question; therefore, the production of chiral nanomaterials by dynamic self-organization has not been achieved. Here, we show that the confinement of a two-dimensional spatiotemporal micropattern via the electrodeposition of a binary Cu alloy into a nanopore induces mirror symmetry breaking to produce a helical nanostructure of the noble-metal component although it is still not yet possible to control the handedness at this stage. This result suggests that spatiotemporal symmetry breaking functions as a mirror symmetry breaking if cylindrical pores are given as the boundary condition. This study can be a model system of how spatiotemporal symmetry breaking plays a role in mirror symmetry breaking, and it proposes a new approach to producing helical nanomaterials through dynamic self-organization.
Collapse
Affiliation(s)
- Masahiro Nakata
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Takumi Yasuda
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Masayuki Miyamoto
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Atsushi Kitada
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Yutaka Okazaki
- Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
| | - Reiko Oda
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France
- Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
| | - Kuniaki Murase
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhiro Fukami
- Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan
- Integrated Research Center for Carbon Negative Science, Institute of Advanced Energy, Kyoto University, Kyoto 611-0011, Japan
| |
Collapse
|
11
|
Kaushik M, Sarkar N, Singh A, Kumar P. Nanomaterials to address the genesis of antibiotic resistance in Escherichia coli. Front Cell Infect Microbiol 2023; 12:946184. [PMID: 36683704 PMCID: PMC9845789 DOI: 10.3389/fcimb.2022.946184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Escherichia is a genus of prokaryotic gram-negative bacteria which forms a vital component of the gut microbiota of homeotherms including humans. Many members of this genus are commensals and pathogenic strains, which are responsible for some of the most common bacterial infections and can be fatal, particularly in the case of newborns and children. The fecal matter in wastewater treatment plants serves as major environmental sinks for the accumulation of Escherichia. The rise in antibiotic pollution and the lateral gene exchange of antibiotic-resistant genes have created antibiotic-resistant Escherichia strains that are often called superbugs. Antibiotic resistance has reached a crisis level that nowadays existing antibiotics are no longer effective. One way of tackling this emerging concern is by using nanomaterials. Punitively, nanomaterials can be used by conjugating with antibodies, biomolecules, and peptides to reduce antibiotic usage, whereas, preventatively, they can be used as either nano-antimicrobial additives or nano-photocatalytic sheets to reduce the microbial population and target the superbugs of environmental Escherichia. In this review, we have explored the threat posed by pathogenic Escherichia strains in the environment, especially in the context of antibiotic-resistant strains. Along with this, we have discussed some nanomaterial-mediated strategies in which the problem can be addressed by using nanomaterials as nanophotocatalytics, antimicrobial additives, drugs, and drug conjugates. This review also presents a brief overview of the ecological threats posed by the overuse of nanomaterials which warrants a balanced and judicious approach to the problem.
Collapse
Affiliation(s)
- Mahima Kaushik
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,*Correspondence: Mahima Kaushik, ;
| | - Niloy Sarkar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Environmental Studies, University of Delhi, Delhi, India
| | - Amit Singh
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Chemistry, University of Delhi, Delhi, India
| | - Pankaj Kumar
- Nano-Bioconjugate Chemistry Lab, Cluster Innovation Centre, University of Delhi, Delhi, India,Department of Chemistry, University of Delhi, Delhi, India
| |
Collapse
|
12
|
Liu Z, Cheng J, Höfft O, Endres F. In situ XPS study of template-free electrodeposition of antimony nanowires from an ionic liquid. J Solid State Electrochem 2022. [DOI: 10.1007/s10008-022-05321-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Preparation of an electrochemical biosensor based on indium tin oxide and its performance in detecting antibiotic resistance genes. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Sarkar S, Herath AC, Mukherjee D, Mandler D. Ionic strength induced local electrodeposition of ZnO nanoparticles. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Popović S, Nazrulla MA, Šket P, Kamal KM, Likozar B, Suhadolnik L, Pavko L, Surca AK, Bele M, Hodnik N. Electrochemically-grown Chloride-free Cu2O Nanocubes Favorably Electroreduce CO2 to Methane: The Interplay of Appropriate Electrochemical Protocol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Lin S, Cheng X, Zhu J, Wang B, Jelinek D, Zhao Y, Wu TY, Horrillo A, Tan J, Yeung J, Yan W, Forman S, Coller HA, Milla C, Emaminejad S. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. SCIENCE ADVANCES 2022; 8:eabq4539. [PMID: 36149955 PMCID: PMC9506728 DOI: 10.1126/sciadv.abq4539] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/09/2022] [Indexed: 05/31/2023]
Abstract
Therapeutic drug monitoring is essential for dosing pharmaceuticals with narrow therapeutic windows. Nevertheless, standard methods are imprecise and involve invasive/resource-intensive procedures with long turnaround times. Overcoming these limitations, we present a microneedle-based electrochemical aptamer biosensing patch (μNEAB-patch) that minimally invasively probes the interstitial fluid (ISF) and renders correlated, continuous, and real-time measurements of the circulating drugs' pharmacokinetics. The μNEAB-patch is created following an introduced low-cost fabrication scheme, which transforms a shortened clinical-grade needle into a high-quality gold nanoparticle-based substrate for robust aptamer immobilization and efficient electrochemical signal retrieval. This enables the reliable in vivo detection of a wide library of ISF analytes-especially those with nonexistent natural recognition elements. Accordingly, we developed μNEABs targeting various drugs, including antibiotics with narrow therapeutic windows (tobramycin and vancomycin). Through in vivo animal studies, we demonstrated the strong correlation between the ISF/circulating drug levels and the device's potential clinical use for timely prediction of total drug exposure.
Collapse
Affiliation(s)
- Shuyu Lin
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xuanbing Cheng
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jialun Zhu
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo Wang
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - David Jelinek
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Weintraub Center for Reconstructive Biotechnology, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichao Zhao
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tsung-Yu Wu
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Abraham Horrillo
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiawei Tan
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Justin Yeung
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wenzhong Yan
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Forman
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hilary A. Coller
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA
| | - Carlos Milla
- The Stanford Cystic Fibrosis Center, Center for Excellence in Pulmonary Biology, Stanford School of Medicine, Stanford, CA, USA
| | - Sam Emaminejad
- Interconnected and Integrated Bioelectronics Lab (IBL), University of California, Los Angeles, Los Angeles, CA, USA
- Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
17
|
Hydrogel Nanocomposite-Derived Nickel Nanoparticles/Porous Carbon Frameworks as Non-Precious and Effective Electrocatalysts for Methanol Oxidation. Gels 2022; 8:gels8090542. [PMID: 36135254 PMCID: PMC9498779 DOI: 10.3390/gels8090542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/18/2022] [Accepted: 08/23/2022] [Indexed: 12/03/2022] Open
Abstract
Innovative and facile methods for the preparation of metal nanoparticles (MNPs) with A highly uniform distribution and anchored on a unique substrate are receiving increasing interest for the development of efficient and low-cost catalysts in the field of alternative and sustainable energy technologies. In this study, we report a novel and facile metal-ions adsorption-pyrolysis method based on a hydrogel nanocomposite for the preparation of well-distributed nickel nanoparticles on 3D porous carbon frameworks (Ni@PCFs). The pyrolysis temperature effect on electrocatalytic activity toward methanol oxidation and catalyst stability was investigated. Physicochemical characterizations (SEM, TEM, and XRD) were used to determine the morphology and composition of the prepared electrocatalyst, which were then linked to their electrocatalytic activity. The experimental results indicate that the catalyst synthesized by pyrolysis at 800 °C (Ni@PCFs-8) exhibits the highest electrocatalytic activity for oxidation of methanol in alkaline media. Additionally, prepared Ni@PCFs-8 displays a remarkable increase in electrocatalytic activity after activation in 1 M KOH and excellent stability. The adsorption-pyrolysis pathway ensures that the Ni NPs are trapped in the PCFs, which can provide highly reactive surface sites. This work may provide a facile and effective strategy for preparing uniformly distributed metallic NPs on a 3D PCF substrate with high catalytic activity for energy applications.
Collapse
|
18
|
Chang Q, Huang J, He L, Xi F. Simple immunosensor for ultrasensitive electrochemical determination of biomarker of the bone metabolism in human serum. Front Chem 2022; 10:940795. [PMID: 36092672 PMCID: PMC9458950 DOI: 10.3389/fchem.2022.940795] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Ultrasensitive and selective determination of biomarkers of the bone metabolism in serum is crucial for early screening, timely treatment, and monitoring of the curative effect of osteoporosis, which is a silent disease with serious health threats. Immunoassay with a simple sensing interface and ultrahigh sensitivity is highly desirable. Herein, a simple electrochemical immunosensor is demonstrated based on gold nanoparticles (AuNPs) electrodeposited on chitosan-reduced graphene oxide (CS-G) composite modified electrode, which can achieve sensitive determination of the important biomarker of bone metabolism, bone gamma-carboxyglutamate protein (BGP). To overcome the agglomeration of graphene and introduce a biocompatible matrix with functional amino groups, CS-G is prepared and modified on the supporting glassy carbon electrode (GCE). Then, AuNPs are electrodeposited on CS-G through their interaction between amine groups of CS. The immobilized AuNPs provide numerous binding sites to immobilize anti-BGP antibodies (AbBGP). The specific recognition between BGP and AbBGP results in a reduction in the mass transfer of the electrochemical probe (Fe(CN)63-/4-) in solution, leading to a reduced electrochemical signal. Based on this mechanism, fast and ultrasensitive electrochemical detection of BGP is achieved when the concentration of BGP ranges from 100 ag ml−1 to 10 μg mL−1 with a limit of detection (LOD) of 20 ag ml−1 (S/N = 3). The determination of BGP in human serum is also realized with high reliability.
Collapse
Affiliation(s)
- Qiang Chang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Huang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liming He
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengna Xi
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Fengna Xi,
| |
Collapse
|
19
|
Rendale SS, Bhat T, Patil P. MnCo2O4 Nanomaterials Based Electrodes for Supercapacitors. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Liu J, Li P, Bi J, Zhu Q, Han B. Design and Preparation of Electrocatalysts by Electrodeposition for CO
2
Reduction. Chemistry 2022; 28:e202200242. [DOI: 10.1002/chem.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahui Bi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
21
|
Performance of SS304 Modified by Silver Micro/Nano-Dendrite Coating with Hot-Water Super-Repellency in Simulated PEMFC Cathode Environment. NANOMATERIALS 2022; 12:nano12101726. [PMID: 35630946 PMCID: PMC9145656 DOI: 10.3390/nano12101726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 02/04/2023]
Abstract
In this study, an silver (Ag) plating with micro/nano-dendrite structures is prepared on the 304 stainless steel (SS304) surface by potentiostatic deposition (Ag/SS304). After being modified by n-dodecyl mercaptan (NDM) with the low surface energy, the obtained sample (NDM@Ag/SS304) exhibits stable superhydrophobicity and excellent hot-water repellency. The surface morphology and composition of NDM@Ag/SS304 are analyzed by scanning electron microscope (SEM), X-ray spectrometer (EDS), X-ray diffractometer (XRD), and X-ray photoelectron spectrometer (XPS) characterization. The electrochemical measurements, tests of water contact angle (WCA), and interfacial contact resistance (ICR) are employed to systematically study the performance of the NDM@Ag/SS304 in the simulated cathode environment of proton exchange membrane fuel cell (PEMFC). The results show that the NDM@Ag/SS304 has high corrosion potential (~0.25 V) and low corrosion current density (~4.04 μA/cm2); after potentiostatic polarization (0.6 V, 5 h), the NDM@Ag/SS304 also shows high superhydrophobic stability.
Collapse
|
22
|
Shah V, Bhaliya J, Patel GM, Joshi P. Room-Temperature Chemiresistive Gas Sensing of SnO2 Nanowires: A Review. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02198-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Calabrese C, La Parola V, Testa ML, Liotta LF. Antifouling and antimicrobial activity of Ag, Cu and Fe nanoparticles supported on silica and titania. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120636] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
25
|
García-Guzmán JJ, López-Iglesias D, Cubillana-Aguilera L, Bellido-Milla D, Palacios-Santander JM, Marin M, Grigorescu SD, Lete C, Lupu S. Silver nanostructures - poly(3,4-ethylenedioxythiophene) sensing material prepared by sinusoidal voltage procedure for detection of antioxidants. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Md Yusop AH, Ulum MF, Al Sakkaf A, Hartanto D, Nur H. Insight into the bioabsorption of Fe-based materials and their current developments in bone applications. Biotechnol J 2021; 16:e2100255. [PMID: 34520117 DOI: 10.1002/biot.202100255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/10/2022]
Abstract
Iron (Fe) and Fe-based materials have been vigorously explored in orthopedic applications in the past decade mainly owing to their promising mechanical properties including high yield strength, elastic modulus and ductility. Nevertheless, their corrosion products and low corrosion kinetics are the major concerns that need to be improved further despite their appealing mechanical strengths. The current studies on porous Fe-based scaffolds show an improved corrosion rate but the in vitro biocompatibility is still problematic in general. Unlike the Mg implants, the biodegradation and bioabsorption of Fe-based implants are still not well described. This vague issue could implicate the development of Fe-based materials as potential medical implants as they have not reached the clinical trial stage yet. Thus, there is a need to understand in-depth the Fe corrosion behavior and its bioabsorption mechanism to facilitate the material design of Fe-based scaffolds and further improve its biocompatibility. This manuscript provides an important insight into the basic bioabsorption of the multi-ranged Fe-based corrosion products with a review of the latest progress on the corrosion & in vitro biocompatibility of porous Fe-based scaffolds together with the remaining challenges and the perspective on the future direction.
Collapse
Affiliation(s)
- Abdul Hakim Md Yusop
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | | | - Ahmed Al Sakkaf
- School of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Djoko Hartanto
- Department of Chemistry, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
| | - Hadi Nur
- Center for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.,Center of Advanced Materials for Renewable Energy (CAMRY), Universiti Negeri Malang, Malang, Indonesia
| |
Collapse
|
27
|
Hou C, Luo Q, He Y, Zhang H. Potentiostatic electrodeposition of gold nanoparticles: variation of electrocatalytic activity toward four targets. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01604-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
28
|
Döhler D, Triana A, Büttner P, Scheler F, Goerlitzer ESA, Harrer J, Vasileva A, Metwalli E, Gruber W, Unruh T, Manshina A, Vogel N, Bachmann J, Mínguez-Bacho I. A Self-Ordered Nanostructured Transparent Electrode of High Structural Quality and Corresponding Functional Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100487. [PMID: 33817974 DOI: 10.1002/smll.202100487] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The preparation of a highly ordered nanostructured transparent electrode based on a combination of nanosphere lithography and anodization is presented. The size of perfectly ordered pore domains is improved by an order of magnitude with respect to the state of the art. The concomitantly reduced density of defect pores increases the fraction of pores that are in good electrical contact with the underlying transparent conductive substrate. This improvement in structural quality translates directly and linearly into an improved performance of energy conversion devices built from such electrodes in a linear manner.
Collapse
Affiliation(s)
- Dirk Döhler
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Andrés Triana
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Pascal Büttner
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Florian Scheler
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| | - Eric S A Goerlitzer
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Johannes Harrer
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Anna Vasileva
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Ezzeldin Metwalli
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Wolfgang Gruber
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Tobias Unruh
- Dr. E. Metwalli, Dr. W. Gruber, Prof. T. Unruh, Institute for Crystallography and Structure Physics, Friedrich-Alexander University Erlangen-Nürnberg, Staudtstrasse 3, 91058, Erlangen, Germany
| | - Alina Manshina
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Nicolas Vogel
- E. S. A. Goerlitzer, J. Harrer, Prof. N. Vogel, Institute of Particle Technology, Friedrich-Alexander University Erlangen-Nürnberg, Cauerstraße 4, 91058, Erlangen, Germany
| | - Julien Bachmann
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
- A. Vasileva, Prof. A. Manshina, Prof. J. Bachmann, Institute of Chemistry, Saint-Petersburg State University, Universitetskii pr. 26, St. Petersburg, 198504, Russia
| | - Ignacio Mínguez-Bacho
- D. Döhler, A. Triana, P. Büttner, F. Scheler, Prof. J. Bachmann, Dr. I. Mínguez-Bacho, Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, IZNF, Friedrich-Alexander University of Erlangen-Nürnberg, Cauerstr. 3, 91058, Erlangen, Germany
| |
Collapse
|
29
|
Metallic nanoparticles for electrocatalytic reduction of halogenated organic compounds: A review. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Quantitative Determination of the Surface Distribution of Supported Metal Nanoparticles: A Laser Ablation–ICP–MS Based Approach. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9040077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A laser ablation–inductively coupled plasma–mass spectrometry (LA–ICP–MS) based method is proposed for the quantitative determination of the spatial distribution of metal nanoparticles (NPs) supported on planar substrates. The surface is sampled using tailored ablation patterns and the data are used to define three-dimensional functions describing the spatial distribution of NPs. The volume integrals of such interpolated surfaces are calibrated to obtain the mass distribution of Ag NPs by correlation with the total mass of metal as determined by metal extraction and ICP–MS analysis. Once this mass calibration is carried out on a sacrificial sample, quantifications can be performed over multiple samples by a simple micro-destructive LA–ICP–MS analysis without requiring the extraction/dissolution of metal NPs. The proposed approach is here tested using a model sample consisting of a low-density polyethylene (LDPE) disk decorated with silver NPs, achieving high spatial resolution over cm2-sized samples and very high sensitivity. The developed method is accordingly a useful analytical tool for applications requiring both the total mass and the spatial distribution of metal NPs to be determined without damaging the sample surface (e.g., composite functional materials and NPs, decorated catalysts or electrodic materials).
Collapse
|
31
|
Torres-Rivero K, Florido A, Bastos-Arrieta J. Recent Trends in the Improvement of the Electrochemical Response of Screen-Printed Electrodes by Their Modification with Shaped Metal Nanoparticles. SENSORS 2021; 21:s21082596. [PMID: 33917220 PMCID: PMC8067965 DOI: 10.3390/s21082596] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 12/04/2022]
Abstract
Novel sensing technologies proposed must fulfill the demands of wastewater treatment plants, the food industry, and environmental control agencies: simple, fast, inexpensive, and reliable methodologies for onsite screening, monitoring, and analysis. These represent alternatives to conventional analytical methods (ICP-MS and LC-MS) that require expensive and non-portable instrumentation. This needs to be controlled by qualified technicians, resulting moreover in a long delay between sampling and high-cost analysis. Electrochemical analysis based on screen-printed electrodes (SPEs) represents an excellent miniaturized and portable alternative due to their disposable character, good reproducibility, and low-cost commercial availability. SPEs application is widely extended, which makes it important to design functionalization strategies to improve their analytical response. In this sense, different types of nanoparticles (NPs) have been used to enhance the electrochemical features of SPEs. NPs size (1–100 nm) provides them with unique optical, mechanical, electrical, and chemical properties that give the modified SPEs increased electrode surface area, increased mass-transport rate, and faster electron transfer. Recent progress in nanoscale material science has led to the creation of reproducible, customizable, and simple synthetic procedures to obtain a wide variety of shaped NPs. This mini-review attempts to present an overview of the enhancement of the electrochemical response of SPEs when NPs with different morphologies are used for their surface modification
Collapse
Affiliation(s)
- Karina Torres-Rivero
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Antonio Florido
- Departament d’Enginyeria Química, Escola d’Enginyeria de Barcelona Est (EEBE), Universitat Politècnica de Catalunya, BarcelonaTEch (UPC), Av. Eduard Maristany 16, 08019 Barcelona, Spain; (K.T.-R.); (A.F.)
- Barcelona Research Center for Multiscale Science and Engineering, Av. Eduard Maristany 16, 08019 Barcelona, Spain
| | - Julio Bastos-Arrieta
- Grup de Biotecnologia Molecular i Industrial, Universitat Politècnica de Catalunya, Rambla Sant Nebridi 22, Edifici Gaia TR14, 08222 Terrassa, Spain
- Correspondence:
| |
Collapse
|
32
|
Hemben A, Chianella I, Leighton GJT. Surface Engineered Iron Oxide Nanoparticles Generated by Inert Gas Condensation for Biomedical Applications. Bioengineering (Basel) 2021; 8:bioengineering8030038. [PMID: 33803987 PMCID: PMC8001625 DOI: 10.3390/bioengineering8030038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 11/16/2022] Open
Abstract
Despite the lifesaving medical discoveries of the last century, there is still an urgent need to improve the curative rate and reduce mortality in many fatal diseases such as cancer. One of the main requirements is to find new ways to deliver therapeutics/drugs more efficiently and only to affected tissues/organs. An exciting new technology is nanomaterials which are being widely investigated as potential nanocarriers to achieve localized drug delivery that would improve therapy and reduce adverse drug side effects. Among all the nanocarriers, iron oxide nanoparticles (IONPs) are one of the most promising as, thanks to their paramagnetic/superparamagnetic properties, they can be easily modified with chemical and biological functions and can be visualized inside the body by magnetic resonance imaging (MRI), while delivering the targeted therapy. Therefore, iron oxide nanoparticles were produced here with a novel method and their properties for potential applications in both diagnostics and therapeutics were investigated. The novel method involves production of free standing IONPs by inert gas condensation via the Mantis NanoGen Trio physical vapor deposition system. The IONPs were first sputtered and deposited on plasma cleaned, polyethylene glycol (PEG) coated silicon wafers. Surface modification of the cleaned wafer with PEG enabled deposition of free-standing IONPs, as once produced, the soft-landed IONPs were suspended by dissolution of the PEG layer in water. Transmission electron microscopic (TEM) characterization revealed free standing, iron oxide nanoparticles with size < 20 nm within a polymer matrix. The nanoparticles were analyzed also by Atomic Force Microscope (AFM), Dynamic Light Scattering (DLS) and NanoSight Nanoparticle Tacking Analysis (NTA). Therefore, our work confirms that inert gas condensation by the Mantis NanoGen Trio physical vapor deposition sputtering at room temperature can be successfully used as a scalable, reproducible process to prepare free-standing IONPs. The PEG- IONPs produced in this work do not require further purification and thanks to their tunable narrow size distribution have potential to be a powerful tool for biomedical applications.
Collapse
|
33
|
TiO2-Graphene Quantum Dots Nanocomposites for Photocatalysis in Energy and Biomedical Applications. Catalysts 2021. [DOI: 10.3390/catal11030319] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The focus of current research in material science has shifted from “less efficient” single-component nanomaterials to the superior-performance, next-generation, multifunctional nanocomposites. TiO2 is a widely used benchmark photocatalyst with unique physicochemical properties. However, the large bandgap and massive recombination of photogenerated charge carriers limit its overall photocatalytic efficiency. When TiO2 nanoparticles are modified with graphene quantum dots (GQDs), some significant improvements can be achieved in terms of (i) broadening the light absorption wavelengths, (ii) design of active reaction sites, and (iii) control of the electron-hole (e−-h+) recombination. Accordingly, TiO2-GQDs nanocomposites exhibit promising multifunctionalities in a wide range of fields including, but not limited to, energy, biomedical aids, electronics, and flexible wearable sensors. This review presents some important aspects of TiO2-GQDs nanocomposites as photocatalysts in energy and biomedical applications. These include: (1) structural formulations and synthesis methods of TiO2-GQDs nanocomposites; (2) discourse about the mechanism behind the overall higher photoactivities of these nanocomposites; (3) various characterization techniques which can be used to judge the photocatalytic performance of these nanocomposites, and (4) the application of these nanocomposites in biomedical and energy conversion devices. Although some objectives have been achieved, new challenges still exist and hinder the widespread application of these nanocomposites. These challenges are briefly discussed in the Future Scope section of this review.
Collapse
|
34
|
Electrochemically synthesized superhydrophilic 3D tree-like Ag microstructure for ultrasensitive detection of omethoate. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Qian L, Durairaj S, Prins S, Chen A. Nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds. Biosens Bioelectron 2020; 175:112836. [PMID: 33272868 DOI: 10.1016/j.bios.2020.112836] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/16/2020] [Accepted: 11/20/2020] [Indexed: 01/13/2023]
Abstract
The surging growth of the pharmaceutical industry is a result of the rapidly increasing human population, which has inevitably led to new biomedical and environmental issues. Aside from the quality control of pharmaceutical production and drug delivery, there is an urgent need for precise, sensitive, portable, and cost-effective technologies to track patient overdosing and to monitor ambient water sources and wastewater for pharmaceutical pollutants. The development of advanced nanomaterial-based electrochemical sensors and biosensors for the detection of pharmaceutical compounds has garnered immense attention due to their advantages, such as high sensitivity and selectivity, real-time monitoring, and ease of use. This review article surveys state-of-the-art nanomaterials-based electrochemical sensors and biosensors for the detection and quantification of six classes of significant pharmaceutical compounds, including anti-inflammatory, anti-depressant, anti-bacterial, anti-viral, anti-fungal, and anti-cancer drugs. Important factors such as sensor/analyte interactions, design rationale, fabrication, characterization, sensitivity, and selectivity are discussed. Strategies for the development of high-performance electrochemical sensors and biosensors tailored toward specific pharmaceuticals are highlighted to provide readers and scientists with an extensive toolbox for the detection of a wide range of pharmaceuticals. Our aims are two-fold: (i) to inspire readers by further elucidating the properties and functionalities of existing nanomaterials for the detection of pharmaceuticals; and (ii) to provide examples of the potential opportunities that these devices have for the advanced sensing of pharmaceutical compounds toward safeguarding human health and ecosystems on a global scale.
Collapse
Affiliation(s)
- Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Scott Prins
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, Ontario, N1G 21, Canada.
| |
Collapse
|
36
|
Alizadeh M, Amiri M, Bezaatpour A. Indirect Determination of Amikacin by Gold Nanoparticles as Redox Probe. Curr Drug Deliv 2020; 18:761-769. [PMID: 32682378 DOI: 10.2174/1567201817666200719005919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/16/2020] [Accepted: 04/25/2020] [Indexed: 01/13/2023]
Abstract
BACKGROUND Amikacin is an aminoglycoside antibiotic used for many gram-negative bacterial infections like infections in the urinary tract, infections in brain, lungs and abdomen. Electrochemical determination of amikacin is a challenge in electroanalysis because it shows no voltammetric peak at the surface of bare electrodes. OBJECTIVE In this approach, a very simple and easy method for indirect voltammetric determination of amikacin presented in real samples. Gold nanoparticles were electrodeposited at the surface of glassy carbon electrode in constant potential. METHODS The effect of several parameters such as time and potential of deposition, pH and scan rates on signal were studied. The cathodic peak current of Au3+ decreased with increasing amikacin concentration. Quantitative analysis of amikacin was performed using differential pulse voltammetry by following cathodic peak current of gold ions. RESULTS Two dynamic linear ranges of 1.0 × 10-8-1.0 × 10-7 M and 5.0 × 10-7-1.0 × 10-3 M were obtained and limit of detection was estimated 3.0× 10-9 M. CONCLUSION The method was successfully determined amikacin in pharmaceutical preparation and human serum. The effect of several interference in determination of amikacin was also studied.
Collapse
Affiliation(s)
- Mansureh Alizadeh
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mandana Amiri
- Department of Chemistry, University of Mohaghegh Ardabili, Ardabil, Iran
| | | |
Collapse
|
37
|
Pan J, Zhang Z, Zhan Z, Xiong Y, Wang Y, Cao K, Chen Y. In situ generation of silver nanoparticles and nanocomposite films based on electrodeposition of carboxylated chitosan. Carbohydr Polym 2020; 242:116391. [PMID: 32564861 DOI: 10.1016/j.carbpol.2020.116391] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/25/2020] [Accepted: 04/25/2020] [Indexed: 12/20/2022]
Abstract
Herein, for the first time the electrodeposition of carboxylated chitosan is studied and utilized for the synthesis of silver nanoparticles (AgNPs) and generation of AgNPs/carboxylated chitosan nanocomposite films. Particularly, AgNPs are in situ synthesized on electrodes or substrates during the electrodeposition. Carboxylated chitosan not only acts as the green reducing agent and stabilizing agent for preparing AgNPs, but also serves as the main component in the electrodeposited nanocomposite film. The experimental results indicate that a smooth and homogeneous film is formed on the silver plate after electrodeposition, and the electrodeposited film can be detached from the silver plate as an independent film. The TEM observation and spectroscopic analysis results confirm the existence of AgNPs (the average size of 10 nm) in the nanocomposite film. The nanocomposite films with various shapes can be fabricated by the spatial selectivity of electrodeposition. In addition, the nanocomposite film containing AgNPs shows favorable antibacterial properties.
Collapse
Affiliation(s)
- Jie Pan
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Zheng Zhang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Ziyao Zhan
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yanfei Xiong
- Department of Biological Science and Technology, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yifeng Wang
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China.
| | - Kaiyuan Cao
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| | - Yanjun Chen
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, 430070, China
| |
Collapse
|
38
|
Synthesis of Silica-Coated Fe 3O 4 Nanoparticles by Microemulsion Method: Characterization and Evaluation of Antimicrobial Activity. Int J Biomater 2020; 2020:4783612. [PMID: 32308687 PMCID: PMC7153004 DOI: 10.1155/2020/4783612] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/07/2022] Open
Abstract
Magnetite and silica-coated magnetite (Fe3O4) nanoparticles (NPs) were synthesized by water-in-oil (W/O) microemulsion method from hydrated ferric nitrate, ferrous sulfate precursors and ammonia a precipitating agent with the assistance of Tween-80 and SDS surfactants. The synthesized materials were characterized by X-ray diffraction, scanning electron microscopy, thermal analyzer, and infrared spectroscopy. X-ray diffraction pattern of Fe3O4 showed that particles were phase pure with a cubic inverse spinel structure and FT-infrared spectra confirmed the presence of Fe-O bond in tetrahedral and octahedral interstitial sites. The crystallite size determined from powder XRD data with Scherer's equation was in the range of 7.3 ± 0.05 nm-10.83 ± 0.02 nm for uncoated Fe3O4 and 16 ± 0.14 nm for silica-coated Fe3O4 NPs. The SEM micrographs of the uncoated Fe3O4 oxide revealed the agglomeration of the magnetite (Fe3O4) particles. But the silica-coated Fe3O4 oxide exhibited homogeneous distribution of particles with relatively less agglomerate of the particles. The particle size of Fe3O4 NPs slightly increased with the temperature and precursor concentration. The antimicrobial activities of Fe3O4 and silica-coated Fe3O4 nanoparticles were tested against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria. Both Fe3O4 and silica-coated Fe3O4 NPs demonstrated better antimicrobial activities.
Collapse
|
39
|
Mariani S, Paghi A, La Mattina AA, Debrassi A, Dähne L, Barillaro G. Decoration of Porous Silicon with Gold Nanoparticles via Layer-by-Layer Nanoassembly for Interferometric and Hybrid Photonic/Plasmonic (Bio)sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43731-43740. [PMID: 31644268 DOI: 10.1021/acsami.9b15737] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Gold nanoparticle layers (AuNPLs) enable the coupling of morphological, optical, and electrical properties of gold nanoparticles (AuNPs) with tailored and specific surface topography, making them exploitable in many bioapplications (e.g., biosensing, drug delivery, and photothermal therapy). Herein, we report the formation of AuNPLs on porous silicon (PSi) interferometers and distributed Bragg reflectors (DBRs) for (bio)sensing applications via layer-by-layer (LbL) nanoassembling of a positively charged polyelectrolyte, namely, poly(allylamine hydrochloride) (PAH), and negatively charged citrate-capped AuNPs. Decoration of PSi interferometers with AuNPLs enhances the Fabry-Pérot fringe contrast due to increased surface reflectivity, resulting in an augmented sensitivity for both bulk and surface refractive index sensing, namely, about 4.5-fold using NaCl aqueous solutions to infiltrate the pores and 2.6-fold for unspecific bovine serum albumin (BSA) adsorption on the pore surface, respectively. Sensitivity enhancing, about 2.5-fold, is also confirmed for affinity and selective biosensing of streptavidin using a biotinylated polymer, namely, negatively charged poly(methacrylic acid) (b-PMAA). Further, decoration of PSi DBR with AuNPLs envisages building up a hybrid photonic/plasmonic optical sensing platform. Both photonic (DBR stop-band) and plasmonic (localized surface plasmon resonance, LSPR) peaks of the hybrid structure are sensitive to changes of bulk (using glucose aqueous solutions) and surface (due to BSA unspecific adsorption) refractive index. To the best of our knowledge, this is the first report about the formation of AuNPLs via LbL nanoassembly on PSi for (i) the enhancing of the interferometric performance in (bio)sensing applications and (ii) the building up of hybrid photonic/plasmonic platforms for sensing and perspective biosensing applications.
Collapse
Affiliation(s)
- Stefano Mariani
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| | - Alessandro Paghi
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| | - Antonino A La Mattina
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| | - Aline Debrassi
- Surflay Nanotec GmbH , Max-Planck-Straße 3 , 12489 Berlin , Germany
| | - Lars Dähne
- Surflay Nanotec GmbH , Max-Planck-Straße 3 , 12489 Berlin , Germany
| | - Giuseppe Barillaro
- Dipartimento di Ingegneria dell'Informazione , Università di Pisa , Via G. Caruso 16 , 56122 Pisa , Italy
| |
Collapse
|
40
|
Altimari P, Schiavi PG, Rubino A, Pagnanelli F. Electrodeposition of cobalt nanoparticles: An analysis of the mechanisms behind the deviation from three-dimensional diffusion-control. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113413] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Jamkhande PG, Ghule NW, Bamer AH, Kalaskar MG. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101174] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
42
|
Biswal A, Panda P, Jiang ZT, Tripathy B, Minakshi M. Facile synthesis of a nanoporous sea sponge architecture in a binary metal oxide. NANOSCALE ADVANCES 2019; 1:1880-1892. [PMID: 36134210 PMCID: PMC9418782 DOI: 10.1039/c8na00402a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/04/2019] [Indexed: 05/07/2023]
Abstract
A novel galvanostatic electrochemical technique has been employed to synthesize a cobalt-nickel mixed oxide, a binary metal oxide, via a two-step route involving electrodeposition followed by calcination. A diaphragm cell was used for the electro-deposition of the binary hydroxide at room temperature in which the electrolyte comprises a nitrate and/or sulphate bath of the corresponding metal ions at pH 4. The electrodeposited product was calcined at 300 °C to obtain the desired oxide material. The formation of the binary metal oxide has been confirmed by X-ray diffraction analysis. The scanning electron microscopy images associated with energy dispersive analysis (EDS) suggest the formation of a nanoporous sea sponge architecture consisting of an interconnected array of nanosheets aligned perpendicular to each other. The elemental mapping analysis of the binary oxide illustrated the uniformity in the distribution of Co and Ni in the composite material. The TEM image shows that binary oxides are nanocrystalline materials. A nitrogen adsorption-desorption study supports the pore size distribution behaviour of the synthesized material. The hybrid capacitor based on the binary metal oxide cathode and activated carbon anode displayed a capacitive behaviour with a capacitance of 76 F g-1 at a current rate of 2 mA with 98% efficiency after 1000 cycles. Due to the unique interconnected porous network and the role of binary cations, Co-Ni oxide exhibits superior electrochemical behaviour. The synthesis of binary oxides forming various morphologies, such as hexagonal, flower-shape, and sea sponge has been discussed.
Collapse
Affiliation(s)
- Avijit Biswal
- Department of Chemistry, College of Engineering & Technology Bhubaneswar 751029 India
| | - Prasanna Panda
- CSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Zhong-Tao Jiang
- School of Engineering and Information Technology, Murdoch University WA 6150 Australia
| | - Bankim Tripathy
- CSIR-Institute of Minerals and Materials Technology Bhubaneswar 751013 India
- Academy of Scientific and Innovative Research Ghaziabad 201 002 India
| | - Manickam Minakshi
- School of Engineering and Information Technology, Murdoch University WA 6150 Australia
| |
Collapse
|
43
|
Chiang HC, Wang Y, Zhang Q, Levon K. Optimization of the Electrodeposition of Gold Nanoparticles for the Application of High ly Sensitiv e, Label-Free Biosensor. BIOSENSORS 2019; 9:E50. [PMID: 30935158 PMCID: PMC6628353 DOI: 10.3390/bios9020050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 11/16/2022]
Abstract
A highly sensitive electrochemical biosensor with a signal amplification platform of electrodeposited gold nanoparticle (AuNP) has been developed and characterized. The sizes of the synthesized AuNP were found to be critical for the performance of biosensor in which the sizes were dependent on HAuCl₄ and acid concentrations; as well as on scan cycles and scan rates in the gold electro-reduction step. Systematic investigations of the adsorption of proteins with different sizes from aqueous electrolyte solution onto the electrodeposited AuNP surface were performed with a potentiometric method and calibrated by design of experiment (DOE). The resulting amperometric glucose biosensors was demonstrated to have a low detection limit (> 50M) and a wide linear range after optimization with AuNP electrodeposition.
Collapse
Affiliation(s)
- Hao-Chun Chiang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, NY 11201, USA.
| | - Yanyan Wang
- State Key Laboratory of Precision Measuring Technology & Instruments, School of Precision Instruments and Optoelectronics Engineering, Tianjin University, 300072 Tianjin, China.
| | - Qi Zhang
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, NY 11201, USA.
| | - Kalle Levon
- Department of Chemical and Biomolecular Engineering, NYU Tandon School of Engineering, Six Metrotech Center, Brooklyn, NY 11201, USA.
| |
Collapse
|
44
|
Altimari P, Greco F, Pagnanelli F. Nucleation and growth of metal nanoparticles on a planar electrode: A new model based on iso-nucleation-time classes of particles. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Xu J, Jianming L, Xiaoqi W, He L, Xiaodan L. Exploration of the Microscopic Pore Structure of Unconventional Energy Resource using Electrodeposition. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.egypro.2019.01.525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
|
47
|
Electrochemical Performance of Binary Ni-Co Particles Deposited on Graphene Oxide/Polyvinyl alcohol Substrate in Alkaline Medium. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2017.12.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Wei Y, Zhang QL, Wan HJ, Zhang YN, Zheng SW, Zhang Y. A facile synthesis of segmented silver nanowires and enhancement of the performance of polymer solar cells. Phys Chem Chem Phys 2018; 20:18837-18843. [DOI: 10.1039/c8cp02734j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Segmented AgNWs synthesized by a polyol method at a suitable reaction temperature and time were blended into PEDOT:PSS hole transporting layers to enhance the performance of polymer solar cells.
Collapse
Affiliation(s)
- You Wei
- Institute of Optoelectronic Materials and Technology
- South China Normal University
- Guangzhou 510631
- China
| | - Qi-lun Zhang
- Institute of Optoelectronic Materials and Technology
- South China Normal University
- Guangzhou 510631
- China
| | - Hui-jun Wan
- College of Mathematics and Physics
- Jinggangshan University
- Ji’an 343009
- China
| | - Ying-nan Zhang
- Institute of Optoelectronic Materials and Technology
- South China Normal University
- Guangzhou 510631
- China
| | - Shu-wen Zheng
- Institute of Optoelectronic Materials and Technology
- South China Normal University
- Guangzhou 510631
- China
| | - Yong Zhang
- Institute of Optoelectronic Materials and Technology
- South China Normal University
- Guangzhou 510631
- China
| |
Collapse
|
49
|
Determination of amino acids in sugarcane vinasse by ion chromatographic using nickel nanoparticles on reduced graphene oxide modified electrode. Microchem J 2017. [DOI: 10.1016/j.microc.2017.07.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
Sahiner N. Single step poly( l -Lysine) microgel synthesis, characterization and biocompatibility tests. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|