1
|
Ampollini S, Ardizzi M, Ferroni F, Cigala A. Synchrony perception across senses: A systematic review of temporal binding window changes from infancy to adolescence in typical and atypical development. Neurosci Biobehav Rev 2024; 162:105711. [PMID: 38729280 DOI: 10.1016/j.neubiorev.2024.105711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/14/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Sensory integration is increasingly acknowledged as being crucial for the development of cognitive and social abilities. However, its developmental trajectory is still little understood. This systematic review delves into the topic by investigating the literature about the developmental changes from infancy through adolescence of the Temporal Binding Window (TBW) - the epoch of time within which sensory inputs are perceived as simultaneous and therefore integrated. Following comprehensive searches across PubMed, Elsevier, and PsycInfo databases, only experimental, behavioral, English-language, peer-reviewed studies on multisensory temporal processing in 0-17-year-olds have been included. Non-behavioral, non-multisensory, and non-human studies have been excluded as those that did not directly focus on the TBW. The selection process was independently performed by two Authors. The 39 selected studies involved 2859 participants in total. Findings indicate a predisposition towards cross-modal asynchrony sensitivity and a composite, still unclear, developmental trajectory, with atypical development associated to increased asynchrony tolerance. These results highlight the need for consistent and thorough research into TBW development to inform potential interventions.
Collapse
Affiliation(s)
- Silvia Ampollini
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Borgo Carissimi, 10, Parma 43121, Italy.
| | - Martina Ardizzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39E, Parma 43121, Italy
| | - Francesca Ferroni
- Department of Medicine and Surgery, Unit of Neuroscience, University of Parma, Via Volturno 39E, Parma 43121, Italy
| | - Ada Cigala
- Department of Humanities, Social Sciences and Cultural Industries, University of Parma, Borgo Carissimi, 10, Parma 43121, Italy
| |
Collapse
|
2
|
Nava E, Giraud M, Bolognini N. The emergence of the multisensory brain: From the womb to the first steps. iScience 2024; 27:108758. [PMID: 38230260 PMCID: PMC10790096 DOI: 10.1016/j.isci.2023.108758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
The becoming of the human being is a multisensory process that starts in the womb. By integrating spontaneous neuronal activity with inputs from the external world, the developing brain learns to make sense of itself through multiple sensory experiences. Over the past ten years, advances in neuroimaging and electrophysiological techniques have allowed the exploration of the neural correlates of multisensory processing in the newborn and infant brain, thus adding an important piece of information to behavioral evidence of early sensitivity to multisensory events. Here, we review recent behavioral and neuroimaging findings to document the origins and early development of multisensory processing, particularly showing that the human brain appears naturally tuned to multisensory events at birth, which requires multisensory experience to fully mature. We conclude the review by highlighting the potential uses and benefits of multisensory interventions in promoting healthy development by discussing emerging studies in preterm infants.
Collapse
Affiliation(s)
- Elena Nava
- Department of Psychology & Milan Centre for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
| | - Michelle Giraud
- Department of Psychology & Milan Centre for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
| | - Nadia Bolognini
- Department of Psychology & Milan Centre for Neuroscience (NeuroMI), University of Milan-Bicocca, Milan, Italy
- Laboratory of Neuropsychology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
3
|
Patil O, Kaple M. Sensory Processing Differences in Individuals With Autism Spectrum Disorder: A Narrative Review of Underlying Mechanisms and Sensory-Based Interventions. Cureus 2023; 15:e48020. [PMID: 38034138 PMCID: PMC10687592 DOI: 10.7759/cureus.48020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by difficulties with social interaction and restricted, repetitive patterns of behavior. Altered sensory processing and perception are considered characteristics of ASD. Sensory processing differences (SPDs) are commonly observed in individuals with ASD, leading to atypical responses to sensory stimuli. SPDs refer to the way in which individuals receive, process, and respond to sensory information from the environment. People with SPDs may be hypersensitive (over-reactive) or hyposensitive (under-reactive) to sensory input, or they may experience fragmented or distorted perceptions. These differences can make it difficult for individuals with SPDs to filter out irrelevant sensory information, and to integrate sensory information from different sources. This study intends to investigate the underlying mechanisms contributing to SPDs in individuals with autism and determine the effectiveness of sensory-based therapies in addressing these challenges. The literature suggests that altered neural pathways, sensory gating dysfunction, and atypical sensory modulation contribute to SPDs in individuals with ASD. Assistive technology, environmental changes, and sensory-based interventions like sensory integration therapy (SIT) have all shown promise in improving sensory functioning and reducing associated behavioral issues. However, further research is needed to improve our understanding of sensory processing in autism and to optimize interventions for individuals with ASD.
Collapse
Affiliation(s)
- Om Patil
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Meghali Kaple
- Biochemistry, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
4
|
Ainsworth K, Bertone A. Audiovisual temporal binding window narrows with age in autistic individuals. Autism Res 2023; 16:355-363. [PMID: 36426723 DOI: 10.1002/aur.2860] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
Atypical sensory perception has been recognized in autistic individuals since its earliest descriptions and is now considered a key characteristic of autism. Although the integration of sensory information (multisensory integration; MSI) has been demonstrated to be altered in autism, less is known about how this perceptual process differs with age. This study aimed to assess the integration of audiovisual information across autistic children and adolescents. MSI was measured using a non-social, simultaneity judgment task. Variation in temporal sensitivity was evaluated via Gaussian curve fitting procedures, allowing us to compare the width of temporal binding windows (TBWs), where wider TBWs indicate less sensitivity to temporal alignment. We compared TBWs in age and IQ matched groups of autistic (n = 32) and neurotypical (NT; n = 73) children and adolescents. The sensory profile of all participants was also measured. Across all ages assessed (i.e., 6 through 18 years), TBWs were negatively correlated with age in the autistic group. A significant correlation was not found in the NT group. When compared as a function of child (6-12 years) and adolescent (13-18 years) age groups, a significant interaction of group (autism vs NT) by age group was found, whereby TBWs became narrower with age in the autistic, but not neurotypical group. We also found a significant main effect of age and no significant main effect of group. Results suggest that TBW differences between autistic and neurotypical groups diminishes with increasing age, indicating an atypical developmental profile of MSI in autism which ameliorates across development.
Collapse
Affiliation(s)
- Kirsty Ainsworth
- Perceptual Neuroscience Laboratory (PNLab) for Autism and Development, McGill University, Montréal, Quebec, Canada.,Department of Educational and Counselling Psychology, McGill University, Montréal, Quebec, Canada
| | - Armando Bertone
- Perceptual Neuroscience Laboratory (PNLab) for Autism and Development, McGill University, Montréal, Quebec, Canada.,Department of Educational and Counselling Psychology, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
5
|
Zayan U, Caccialupi Da Prato L, Muscatelli F, Matarazzo V. Modulation of the thermosensory system by oxytocin. Front Mol Neurosci 2023; 15:1075305. [PMID: 36698777 PMCID: PMC9868264 DOI: 10.3389/fnmol.2022.1075305] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/06/2022] [Indexed: 01/11/2023] Open
Abstract
Oxytocin (OT) is a neurohormone involved early in neurodevelopment and is implicated in multiple functions, including sensory modulation. Evidence of such modulation has been observed for different sensory modalities in both healthy and pathological conditions. This review summarizes the pleiotropic modulation that OT can exercise on an often overlooked sensory system: thermosensation. This system allows us to sense temperature variations and compensate for the variation to maintain a stable core body temperature. Oxytocin modulates autonomic and behavioral mechanisms underlying thermoregulation at both central and peripheral levels. Hyposensitivity or hypersensitivity for different sensory modalities, including thermosensitivity, is a common feature in autism spectrum disorder (ASD), recapitulated in several ASD mouse models. These sensory dysregulations occur early in post-natal development and are correlated with dysregulation of the oxytocinergic system. In this study, we discussed the potential link between thermosensory atypia and the dysregulation of the oxytocinergic system in ASD.
Collapse
|
6
|
Che Y, Jicol C, Ashwin C, Petrini K. An RCT study showing few weeks of music lessons enhance audio-visual temporal processing. Sci Rep 2022; 12:20087. [PMID: 36418441 PMCID: PMC9684138 DOI: 10.1038/s41598-022-23340-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/30/2022] [Indexed: 11/24/2022] Open
Abstract
Music involves different senses and is emotional in nature, and musicians show enhanced detection of audio-visual temporal discrepancies and emotion recognition compared to non-musicians. However, whether musical training produces these enhanced abilities or if they are innate within musicians remains unclear. Thirty-one adult participants were randomly assigned to a music training, music listening, or control group who all completed a one-hour session per week for 11 weeks. The music training group received piano training, the music listening group listened to the same music, and the control group did their homework. Measures of audio-visual temporal discrepancy, facial expression recognition, autistic traits, depression, anxiety, stress and mood were completed and compared from the beginning to end of training. ANOVA results revealed that only the music training group showed a significant improvement in detection of audio-visual temporal discrepancies compared to the other groups for both stimuli (flash-beep and face-voice). However, music training did not improve emotion recognition from facial expressions compared to the control group, while it did reduce the levels of depression, stress and anxiety compared to baseline. This RCT study provides the first evidence of a causal effect of music training on improved audio-visual perception that goes beyond the music domain.
Collapse
Affiliation(s)
- Yuqing Che
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Crescent Jicol
- grid.7340.00000 0001 2162 1699Department of Computer Science, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Chris Ashwin
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY UK ,grid.7340.00000 0001 2162 1699Centre for Applied Autism Research, Department of Psychology, University of Bath, , Claverton Down, Bath, BA2 7AY, UK, Bath, UK
| | - Karin Petrini
- grid.7340.00000 0001 2162 1699Department of Psychology, University of Bath, Claverton Down, Bath, BA2 7AY UK
| |
Collapse
|
7
|
Moraes ÍAP, Lima JA, Silva NM, Simcsik AO, Silveira AC, Menezes LDC, Araújo LV, Crocetta TB, Voos MC, Tonks J, Silva TD, Dawes H, Monteiro CBM. Effect of Longitudinal Practice in Real and Virtual Environments on Motor Performance, Physical Activity and Enjoyment in People with Autism Spectrum Disorder: A Prospective Randomized Crossover Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14668. [PMID: 36429386 PMCID: PMC9690405 DOI: 10.3390/ijerph192214668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
(1) Background: People with ASD commonly present difficulty performing motor skills and a decline in physical activity (PA) level and low enjoyment of PA. We aimed to evaluate whether longitudinal practice of an activity in virtual and real environments improves motor performance and whether this improvement is transferred to a subsequent practice when changing the environment, promoting PA and providing enjoyment; (2) Methods: People with ASD, aged between 10 and 16 years, were included and distributed randomly into two opposite sequences. The participants performed a 10 session protocol, with five sessions practicing in each environment (virtual or real). Heart rate measurement was carried out and an enjoyment scale was applied; (3) Results: 22 participants concluded the protocol. Sequence A (virtual first) presented an improvement in accuracy and precision and transferred this when changing environment; they also had a greater change in heart rate reserve. The majority of participants reported "fun" and "great fun" levels for enjoyment; (4) Conclusions: The virtual reality activity presented a higher level of difficulty, with greater gains in terms of transference to the real environment. Considering PA, our task provided very light to light activity and the majority of participants enjoyed the task.
Collapse
Affiliation(s)
- Íbis A. P. Moraes
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter EX1 2LU, UK
| | - Joyce A. Lima
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Nadja M. Silva
- Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
| | - Amanda O. Simcsik
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
| | - Ana C. Silveira
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Lilian D. C. Menezes
- Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
| | - Luciano V. Araújo
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Tânia B. Crocetta
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| | - Mariana C. Voos
- Faculty of Humanities and Health Sciences, Pontifical Catholic University of São Paulo (PUC-SP), São Paulo 05014-901, Brazil
| | - James Tonks
- College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter EX1 2LU, UK
| | - Talita D. Silva
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- Medicine (Cardiology), Escola Paulista de Medicina, Federal University of São Paulo (EPM/UNIFESP), São Paulo 04021-001, Brazil
- Faculty of Medicine, University City of São Paulo (UNICID), São Paulo 03071-000, Brazil
| | - Helen Dawes
- College of Medicine and Health, St Lukes Campus, University of Exeter, Exeter EX1 2LU, UK
- Department of Paediatrics, University of Oxford, Oxford OX3 9DU, UK
| | - Carlos B. M. Monteiro
- Rehabilitation Sciences, Faculty of Medicine, University of São Paulo (FMUSP), São Paulo 01246-903, Brazil
- Physical Activity Sciences, School of Arts, Science and Humanities, University of São Paulo (EACH-USP), São Paulo 03828-000, Brazil
| |
Collapse
|
8
|
Weiland RF, Polderman TJ, Smit DJ, Begeer S, Van der Burg E. No differences between adults with and without autism in audiovisual synchrony perception. AUTISM : THE INTERNATIONAL JOURNAL OF RESEARCH AND PRACTICE 2022; 27:927-937. [PMID: 36071692 PMCID: PMC10115936 DOI: 10.1177/13623613221121414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
LAY ABSTRACT It has been known for a long time that individuals diagnosed with autism spectrum disorder perceive the world differently. In this study, we investigated how people with or without autism perceive visual and auditory information. We know that an auditory and a visual stimulus do not have to be perfectly synchronous for us to perceive them as synchronous: first, when the two are within a certain time window (temporal binding window), the brain will tell us that they are synchronous. Second, the brain can also adapt quickly to audiovisual asynchronies (rapid recalibration). Although previous studies have shown that people with autism spectrum disorder have different temporal binding windows, and less rapid recalibration, we did not find these differences in our study. However, we did find that both processes develop over age, and since previous studies tested only young people (children, adolescents, and young adults), and we tested adults from 18 to 55 years, this might explain the different findings. In the end, there might be quite a complex story, where people with and without autism spectrum disorder perceive the world differently, even dependent on how old they are.
Collapse
Affiliation(s)
| | - Tinca Jc Polderman
- Vrije Universiteit Amsterdam, The Netherlands.,Amsterdam UMC, The Netherlands
| | | | | | | |
Collapse
|
9
|
Vogel DHV, Jording M, Esser C, Conrad A, Weiss PH, Vogeley K. Temporal binding of social events less pronounced in individuals with Autism Spectrum Disorder. Sci Rep 2022; 12:14853. [PMID: 36050371 PMCID: PMC9437002 DOI: 10.1038/s41598-022-19309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 08/26/2022] [Indexed: 11/09/2022] Open
Abstract
Differences in predictive processing are considered amongst the prime candidates for mechanisms underlying different symptoms of autism spectrum disorder (ASD). A particularly valuable paradigm to investigate these processes is temporal binding (TB) assessed through time estimation tasks. In this study, we report on two separate experiments using a TB task designed to assess the influence of top-down social information on action event related TB. Both experiments were performed with a group of individuals diagnosed with ASD and a matched group without ASD. The results replicate earlier findings on a pronounced social hyperbinding for social action-event sequences and extend them to persons with ASD. Hyperbinding however, is less pronounced in the group with ASD as compared to the group without ASD. We interpret our results as indicative of a reduced predictive processing during social interaction. This reduction most likely results from differences in the integration of top-down social information into action-event monitoring. We speculate that this corresponds to differences in mentalizing processes in ASD.
Collapse
Affiliation(s)
- David H V Vogel
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany. .,Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany.
| | - Mathis Jording
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Carolin Esser
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Amelie Conrad
- Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| | - Peter H Weiss
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| | - Kai Vogeley
- Institute of Neuroscience and Medicine, Cognitive Neuroscience (INM3), Research Center Juelich, Jülich, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Psychiatry, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Jure R. The “Primitive Brain Dysfunction” Theory of Autism: The Superior Colliculus Role. Front Integr Neurosci 2022; 16:797391. [PMID: 35712344 PMCID: PMC9194533 DOI: 10.3389/fnint.2022.797391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
A better understanding of the pathogenesis of autism will help clarify our conception of the complexity of normal brain development. The crucial deficit may lie in the postnatal changes that vision produces in the brainstem nuclei during early life. The superior colliculus is the primary brainstem visual center. Although difficult to examine in humans with present techniques, it is known to support behaviors essential for every vertebrate to survive, such as the ability to pay attention to relevant stimuli and to produce automatic motor responses based on sensory input. From birth to death, it acts as a brain sentinel that influences basic aspects of our behavior. It is the main brainstem hub that lies between the environment and the rest of the higher neural system, making continuous, implicit decisions about where to direct our attention. The conserved cortex-like organization of the superior colliculus in all vertebrates allows the early appearance of primitive emotionally-related behaviors essential for survival. It contains first-line specialized neurons enabling the detection and tracking of faces and movements from birth. During development, it also sends the appropriate impulses to help shape brain areas necessary for social-communicative abilities. These abilities require the analysis of numerous variables, such as the simultaneous evaluation of incoming information sustained by separate brain networks (visual, auditory and sensory-motor, social, emotional, etc.), and predictive capabilities which compare present events to previous experiences and possible responses. These critical aspects of decision-making allow us to evaluate the impact that our response or behavior may provoke in others. The purpose of this review is to show that several enigmas about the complexity of autism might be explained by disruptions of collicular and brainstem functions. The results of two separate lines of investigation: 1. the cognitive, etiologic, and pathogenic aspects of autism on one hand, and two. the functional anatomy of the colliculus on the other, are considered in order to bridge the gap between basic brain science and clinical studies and to promote future research in this unexplored area.
Collapse
|
11
|
Sou KL, Say A, Xu H. Unity Assumption in Audiovisual Emotion Perception. Front Neurosci 2022; 16:782318. [PMID: 35310087 PMCID: PMC8931414 DOI: 10.3389/fnins.2022.782318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
We experience various sensory stimuli every day. How does this integration occur? What are the inherent mechanisms in this integration? The “unity assumption” proposes a perceiver’s belief of unity in individual unisensory information to modulate the degree of multisensory integration. However, this has yet to be verified or quantified in the context of semantic emotion integration. In the present study, we investigate the ability of subjects to judge the intensities and degrees of similarity in faces and voices of two emotions (angry and happy). We found more similar stimulus intensities to be associated with stronger likelihoods of the face and voice being integrated. More interestingly, multisensory integration in emotion perception was observed to follow a Gaussian distribution as a function of the emotion intensity difference between the face and voice—the optimal cut-off at about 2.50 points difference on a 7-point Likert scale. This provides a quantitative estimation of the multisensory integration function in audio-visual semantic emotion perception with regards to stimulus intensity. Moreover, to investigate the variation of multisensory integration across the population, we examined the effects of personality and autistic traits of participants. Here, we found no correlation of autistic traits with unisensory processing in a nonclinical population. Our findings shed light on the current understanding of multisensory integration mechanisms.
Collapse
Affiliation(s)
- Ka Lon Sou
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- Humanities, Arts and Social Sciences, Singapore University of Technology and Design, Singapore, Singapore
| | - Ashley Say
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hong Xu
- Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
- *Correspondence: Hong Xu,
| |
Collapse
|
12
|
Bharadwaj H, Mamashli F, Khan S, Singh R, Joseph RM, Losh A, Pawlyszyn S, McGuiggan NM, Graham S, Hämäläinen MS, Kenet T. Cortical signatures of auditory object binding in children with autism spectrum disorder are anomalous in concordance with behavior and diagnosis. PLoS Biol 2022; 20:e3001541. [PMID: 35167585 PMCID: PMC8884487 DOI: 10.1371/journal.pbio.3001541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 02/28/2022] [Accepted: 01/14/2022] [Indexed: 11/24/2022] Open
Abstract
Organizing sensory information into coherent perceptual objects is fundamental to everyday perception and communication. In the visual domain, indirect evidence from cortical responses suggests that children with autism spectrum disorder (ASD) have anomalous figure-ground segregation. While auditory processing abnormalities are common in ASD, especially in environments with multiple sound sources, to date, the question of scene segregation in ASD has not been directly investigated in audition. Using magnetoencephalography, we measured cortical responses to unattended (passively experienced) auditory stimuli while parametrically manipulating the degree of temporal coherence that facilitates auditory figure-ground segregation. Results from 21 children with ASD (aged 7-17 years) and 26 age- and IQ-matched typically developing children provide evidence that children with ASD show anomalous growth of cortical neural responses with increasing temporal coherence of the auditory figure. The documented neurophysiological abnormalities did not depend on age, and were reflected both in the response evoked by changes in temporal coherence of the auditory scene and in the associated induced gamma rhythms. Furthermore, the individual neural measures were predictive of diagnosis (83% accuracy) and also correlated with behavioral measures of ASD severity and auditory processing abnormalities. These findings offer new insight into the neural mechanisms underlying auditory perceptual deficits and sensory overload in ASD, and suggest that temporal-coherence-based auditory scene analysis and suprathreshold processing of coherent auditory objects may be atypical in ASD.
Collapse
Affiliation(s)
- Hari Bharadwaj
- Department of Speech, Language, & Hearing Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Fahimeh Mamashli
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Sheraz Khan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Ravinderjit Singh
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Robert M. Joseph
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Ainsley Losh
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Stephanie Pawlyszyn
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Nicole M. McGuiggan
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Steven Graham
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Matti S. Hämäläinen
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| | - Tal Kenet
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
| |
Collapse
|
13
|
Morris PO, Hope E, Foulsham T, Mills JP. Dance, rhythm, and autism spectrum disorder: An explorative study. ARTS IN PSYCHOTHERAPY 2021. [DOI: 10.1016/j.aip.2020.101755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Exposure to first-person shooter videogames is associated with multisensory temporal precision and migraine incidence. Cortex 2020; 134:223-238. [PMID: 33291047 DOI: 10.1016/j.cortex.2020.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/03/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Adaptive interactions with the environment require optimal integration and segregation of sensory information. Yet, temporal misalignments in the presentation of visual and auditory stimuli may generate illusory phenomena such as the sound-induced flash illusion, in which a single flash paired with multiple auditory stimuli induces the perception of multiple illusory flashes. This phenomenon has been shown to be robust and resistant to feedback training. According to a Bayesian account, this is due to a statistically optimal combination of the signals operated by the nervous system. From this perspective, individual susceptibility to the illusion might be moulded through prolonged experience. For example, repeated exposure to the illusion and prolonged training sessions partially impact on the reported illusion. Therefore, extensive and immersive audio-visual experience, such as first-person shooter videogames, should sharpen individual capacity to correctly integrate multisensory information over time, leading to more veridical perception. We tested this hypothesis by comparing the temporal profile of the sound-induced illusion in a group of expert first-person shooter gamers and a non-players group. In line with the hypotheses, gamers experience significantly narrower windows of illusion (~87 ms) relative to non-players (~105 ms), leading to higher veridical reports in gamers (~68%) relative to non-players (~59%). Moreover, according to recent literature, we tested whether audio-visual intensive training in gamers could be related to the incidence of migraine, and found that its severity may be directly proportioned to the time spent on videogames. Overall, these results suggest that continued training within audio-visual environments such as first-person shooter videogames improves temporal discrimination and sensory integration. This finding may pave the way for future therapeutic strategies based on self-administered multisensory training. On the other hand, the impact of intensive training on visual-related stress disorders, such as migraine incidence, should be taken into account as a risk factor during therapeutic planning.
Collapse
|