1
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Azevedo EDAN, Morais CNLD. Zika virus: Critical crosstalk between pathogenesis, cytopathic effects, and macroautophagy. J Cell Biochem 2024; 125:e30438. [PMID: 37334850 DOI: 10.1002/jcb.30438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/06/2023] [Accepted: 06/06/2023] [Indexed: 06/21/2023]
Abstract
Zika virus (ZIKV) is a re-emerging positive-sense RNA arbovirus. Its genome encodes a polyprotein that is cleaved by proteases into three structural proteins (Envelope, pre-Membrane, and Capsid) and seven nonstructural proteins (NS1, NS2A, NS2B, NS3, NS4A, NS4B, and NS5). These proteins have essential functions in viral replication cycle, cytopathic effects, and host cellular response. When infected by ZIKV, host cells promote macroautophagy, which is believed to favor virus entry. Although several authors have attempted to understand this link between macroautophagy and viral infection, little is known. Herein, we performed a narrative review of the molecular connection between macroautophagy and ZIKV infection while focusing on the roles of the structural and nonstructural proteins. We concluded that ZIKV proteins are major virulence factors that modulate host-cell machinery to its advantage by disrupting and/or blocking specific cellular systems and organelles' function, such as endoplasmic reticulum stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Lucas Coêlho Bernardo-Menezes
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Strategic Technologies Center of Northeast (CETENE), Recife, Pernambuco, Brazil
| | | | - Elisa de Almeida Neves Azevedo
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Clarice Neuenschwander Lins de Morais
- Laboratory of Virology and Experimental Therapeutics (LaViTE), Aggeu Magalhães Institute, Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
2
|
Veilleux C, Eugenin EA. Mechanisms of Zika astrocyte infection and neuronal toxicity. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2023; 2:5-18. [PMID: 37027343 PMCID: PMC10070016 DOI: 10.1515/nipt-2022-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/02/2022] [Indexed: 04/08/2023]
Abstract
Objectives Zika virus (ZIKV) has become an epidemic in several countries and was declared a major public health issue by the WHO. Although ZIKV infection is asymptomatic or shows mild fever-related symptoms in most people, the virus can be transmitted from a pregnant mother to the fetus, resulting in severe brain developmental abnormalities, including microcephaly. Multiple groups have identified developmental neuronal and neuronal progenitor compromise during ZIKV infection within the fetal brain, but little is known about whether ZIKV could infect human astrocytes and its effect on the developing brain. Thus, our objective was to determine astrocyte ZiKV infection in a developmental-dependent manner. Methods We analyze infection of pure cultures of astrocytes and mixed cultures of neurons and astrocytes in response to ZIKV using plaque assays, confocal, and electron microscopy to identify infectivity, ZIKV accumulation and intracellular distribution as well as apoptosis and interorganelle dysfunction. Results Here, we demonstrated that ZIKV enters, infects, replicates, and accumulates in large quantities in human fetal astrocytes in a developmental-dependent manner. Astrocyte infection and intracellular viral accumulation resulted in neuronal apoptosis, and we propose astrocytes are a ZIKV reservoir during brain development. Conclusions Our data identify astrocytes in different stages of development as major contributors to the devastating effects of ZIKV in the developing brain.
Collapse
Affiliation(s)
- Courtney Veilleux
- Public Health Research Institute (PHRI), New York, USA
- Deparment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
| | - Eliseo A. Eugenin
- Public Health Research Institute (PHRI), New York, USA
- Deparment of Microbiology, Biochemistry, and Molecular Genetics, Rutgers New Jersey Medical School, Rutgers the State University of New Jersey, Newark, NJ, USA
- Department of Neurobiology, University of Texas Medical Branch (UTMB), Galveston, TX, USA
| |
Collapse
|
3
|
Caldwell HS, Pata JD, Ciota AT. The Role of the Flavivirus Replicase in Viral Diversity and Adaptation. Viruses 2022; 14:1076. [PMID: 35632818 PMCID: PMC9143365 DOI: 10.3390/v14051076] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/03/2022] [Accepted: 05/06/2022] [Indexed: 02/04/2023] Open
Abstract
Flaviviruses include several emerging and re-emerging arboviruses which cause millions of infections each year. Although relatively well-studied, much remains unknown regarding the mechanisms and means by which these viruses readily alternate and adapt to different hosts and environments. Here, we review a subset of the different aspects of flaviviral biology which impact host switching and viral fitness. These include the mechanism of replication and structural biology of the NS3 and NS5 proteins, which reproduce the viral genome; rates of mutation resulting from this replication and the role of mutational frequency in viral fitness; and the theory of quasispecies evolution and how it contributes to our understanding of genetic and phenotypic plasticity.
Collapse
Affiliation(s)
- Haley S. Caldwell
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| | - Janice D. Pata
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA;
- Department of Biomedical Sciences, State University of New York at Albany, School of Public Health, Rensselaer, NY 12144, USA;
| |
Collapse
|
4
|
Bernardo-Menezes LC, Agrelli A, Oliveira ASLED, Moura RRD, Crovella S, Brandão LAC. An overview of Zika virus genotypes and their infectivity. Rev Soc Bras Med Trop 2022; 55:e02632022. [PMID: 36197380 PMCID: PMC9536801 DOI: 10.1590/0037-8682-0263-2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
Zika virus (ZIKV) is an enveloped, single-stranded RNA arbovirus belonging to the
genus Flavivirus. It was first isolated from a sentinel monkey
in Uganda in 1947. More recently, ZIKV has undergone rapid geographic expansion
and has been responsible for outbreaks in Southeast Asia, the Pacific Islands,
and America. In this review, we have highlighted the influence of viral genetic
variants on ZIKV pathogenesis. Two major ZIKV genotypes (African and Asian) have
been identified. The Asian genotype is subdivided into Southwest Asia, Pacific
Island, and American strains, and is responsible for most outbreaks.
Non-synonymous mutations in ZIKV proteins C, prM, E, NS1, NS2A, NS2B, NS3, and
NS4B were found to have a higher prevalence and association with virulent
strains of the Asian genotype. Consequently, the Asian genotype appears to have
acquired higher cellular permissiveness, tissue persistence, and viral tropism
in human neural cells. Therefore, mutations in specific coding regions of the
Asian genotype may enhance ZIKV infectivity. Considering that mutations in the
genomes of emerging viruses may lead to new virulent variants in humans, there
is a potential for the re-emergence of new ZIKV cases in the future.
Collapse
|
5
|
Vial T, Marti G, Missé D, Pompon J. Lipid Interactions Between Flaviviruses and Mosquito Vectors. Front Physiol 2021; 12:763195. [PMID: 34899388 PMCID: PMC8660100 DOI: 10.3389/fphys.2021.763195] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/20/2021] [Indexed: 11/18/2022] Open
Abstract
Mosquito-borne flaviviruses, such as dengue (DENV), Zika (ZIKV), yellow fever (YFV), West Nile (WNV), and Japanese encephalitis (JEV) viruses, threaten a large part of the human populations. In absence of therapeutics and effective vaccines against each flaviviruses, targeting viral metabolic requirements in mosquitoes may hold the key to new intervention strategies. Development of metabolomics in the last decade opened a new field of research: mosquito metabolomics. It is now clear that flaviviruses rely on mosquito lipids, especially phospholipids, for their cellular cycle and propagation. Here, we review the biosyntheses of, biochemical properties of and flaviviral interactions with mosquito phospholipids. Phospholipids are structural lipids with a polar headgroup and apolar acyl chains, enabling the formation of lipid bilayer that form plasma- and endomembranes. Phospholipids are mostly synthesized through the de novo pathway and remodeling cycle. Variations in headgroup and acyl chains influence phospholipid physicochemical properties and consequently the membrane behavior. Flaviviruses interact with cellular membranes at every step of their cellular cycle. Recent evidence demonstrates that flaviviruses reconfigure the phospholipidome in mosquitoes by regulating phospholipid syntheses to increase virus multiplication. Identifying the phospholipids involved and understanding how flaviviruses regulate these in mosquitoes is required to design new interventions.
Collapse
Affiliation(s)
- Thomas Vial
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,UMR 152 PHARMADEV-IRD, Université Paul Sabatier, Toulouse, France
| | - Guillaume Marti
- LRSV (UMR 5546), CNRS, Université de Toulouse, Toulouse, France.,MetaboHUB, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Dorothée Missé
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| | - Julien Pompon
- MIVEGEC, Université Montpellier, IRD, CNRS, Montpellier, France
| |
Collapse
|
6
|
Nakayama E, Kato F, Tajima S, Ogawa S, Yan K, Takahashi K, Sato Y, Suzuki T, Kawai Y, Inagaki T, Taniguchi S, Le TT, Tang B, Prow NA, Uda A, Maeki T, Lim CK, Khromykh AA, Suhrbier A, Saijo M. Neuroinvasiveness of the MR766 strain of Zika virus in IFNAR-/- mice maps to prM residues conserved amongst African genotype viruses. PLoS Pathog 2021; 17:e1009788. [PMID: 34310650 PMCID: PMC8341709 DOI: 10.1371/journal.ppat.1009788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 08/05/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022] Open
Abstract
Zika virus (ZIKV) strains are classified into the African and Asian genotypes. The higher virulence of the African MR766 strain, which has been used extensively in ZIKV research, in adult IFNα/β receptor knockout (IFNAR-/-) mice is widely viewed as an artifact associated with mouse adaptation due to at least 146 passages in wild-type suckling mouse brains. To gain insights into the molecular determinants of MR766's virulence, a series of genes from MR766 were swapped with those from the Asian genotype PRVABC59 isolate, which is less virulent in IFNAR-/- mice. MR766 causes 100% lethal infection in IFNAR-/- mice, but when the prM gene of MR766 was replaced with that of PRVABC59, the chimera MR/PR(prM) showed 0% lethal infection. The reduced virulence was associated with reduced neuroinvasiveness, with MR766 brain titers ≈3 logs higher than those of MR/PR(prM) after subcutaneous infection, but was not significantly different in brain titers of MR766 and MR/PR(prM) after intracranial inoculation. MR/PR(prM) also showed reduced transcytosis when compared with MR766 in vitro. The high neuroinvasiveness of MR766 in IFNAR-/- mice could be linked to the 10 amino acids that differ between the prM proteins of MR766 and PRVABC59, with 5 of these changes affecting positive charge and hydrophobicity on the exposed surface of the prM protein. These 10 amino acids are highly conserved amongst African ZIKV isolates, irrespective of suckling mouse passage, arguing that the high virulence of MR766 in adult IFNAR-/- mice is not the result of mouse adaptation.
Collapse
Affiliation(s)
- Eri Nakayama
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Fumihiro Kato
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shigeru Tajima
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Shinya Ogawa
- Department of Applied Biological Chemistry, School of Agriculture and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kexin Yan
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Kenta Takahashi
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yuko Sato
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tadaki Suzuki
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yasuhiro Kawai
- Management Department of Biosafety and Laboratory Animal, Division of Biosafety Control and Research, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takuya Inagaki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Taniguchi
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Thuy T. Le
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Bing Tang
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Natalie A. Prow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Maeki
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Alexander A. Khromykh
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- Australian Infectious Disease Research Centre, GVN Center of Excellence, The University of Queensland and QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
7
|
Dey D, Poudyal S, Rehman A, Hasan SS. Structural and biochemical insights into flavivirus proteins. Virus Res 2021; 296:198343. [PMID: 33607183 DOI: 10.1016/j.virusres.2021.198343] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 01/01/2023]
Abstract
Flaviviruses are the fastest spreading arthropod-borne viruses that cause severe symptoms such as hepatitis, hemorrhagic fever, encephalitis, and congenital deformities. Nearly 40 % of the entire human population is at risk of flavivirus epidemics. Yet, effective vaccination is restricted only to a few flaviviruses such as yellow fever and Japanese encephalitis viruses, and most recently for select cases of dengue virus infections. Despite the global spread of dengue virus, and emergence of new threats such as Zika virus and a new genotype of Japanese encephalitis virus, insights into flavivirus targets for potentially broad-spectrum vaccination are limited. In this review article, we highlight biochemical and structural differences in flavivirus proteins critical for virus assembly and host interactions. A comparative sequence analysis of pH-responsive properties of viral structural proteins identifies trends in conservation of complementary acidic-basic character between interacting viral structural proteins. This is highly relevant to the understanding of pH-sensitive differences in virus assembly in organelles such as neutral ER and acidic Golgi. Surface residues in viral interfaces identified by structural approaches are shown to demonstrate partial conservation, further reinforcing virus-specificity in assembly and interactions with host proteins. A comparative analysis of epitope conservation in emerging flaviviruses identifies therapeutic antibody candidates that have potential as broad spectrum anti-virals, thus providing a path towards development of vaccines.
Collapse
Affiliation(s)
- Debajit Dey
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - Shishir Poudyal
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette IN 47907, USA
| | - Asma Rehman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA
| | - S Saif Hasan
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene Street, Baltimore MD 21201, USA; University of Maryland Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, 22. S. Greene St. Baltimore MD 21201, USA; Center for Biomolecular Therapeutics, University of Maryland School of Medicine, 9600 Gudelsky Drive, Rockville MD 20850, USA.
| |
Collapse
|
8
|
Huber RG, Marzinek JK, Boon PLS, Yue W, Bond PJ. Computational modelling of flavivirus dynamics: The ins and outs. Methods 2021; 185:28-38. [PMID: 32526282 PMCID: PMC7278654 DOI: 10.1016/j.ymeth.2020.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023] Open
Abstract
Enveloped viruses such as the flaviviruses represent a significant burden to human health around the world, with hundreds of millions of people each year affected by dengue alone. In an effort to improve our understanding of the molecular basis for the infective mechanisms of these viruses, extensive computational modelling approaches have been applied to elucidate their conformational dynamics. Multiscale protocols have been developed to simulate flavivirus envelopes in close accordance with biophysical data, in particular derived from cryo-electron microscopy, enabling high-resolution refinement of their structures and elucidation of the conformational changes associated with adaptation both to host environments and to immunological factors such as antibodies. Likewise, integrative modelling efforts combining data from biophysical experiments and from genome sequencing with chemical modification are providing unparalleled insights into the architecture of the previously unresolved nucleocapsid complex. Collectively, this work provides the basis for the future rational design of new antiviral therapeutics and vaccine development strategies targeting enveloped viruses.
Collapse
Affiliation(s)
- Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Jan K Marzinek
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore
| | - Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore (NUS), University Hall, Tan Chin Tuan Wing #04-02, 119077, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore
| | - Wan Yue
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, 138672, Singapore
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Building S3, Singapore.
| |
Collapse
|
9
|
Nambala P, Yu WY, Lo YC, Lin CW, Su WC. Ubiquitination of Zika virus precursor membrane protein promotes the release of viral proteins. Virus Res 2020; 286:198065. [DOI: 10.1016/j.virusres.2020.198065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 01/22/2023]
|
10
|
Feng K, Zheng X, Wang R, Gao N, Fan D, Sheng Z, Zhou H, Chen H, An J. Long-Term Protection Elicited by a DNA Vaccine Candidate Expressing the prM-E Antigen of Dengue Virus Serotype 3 in Mice. Front Cell Infect Microbiol 2020; 10:87. [PMID: 32257963 PMCID: PMC7089926 DOI: 10.3389/fcimb.2020.00087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/19/2020] [Indexed: 01/12/2023] Open
Abstract
Dengue virus (DENV) is the causative agent of dengue, and its incidence has increased 30-fold in the past five decades. Among the four cocirculating serotypes, DENV3 is associated with an increased number of severe infections and has become widespread. Vaccination is the mainstay of prevention in reducing disease burden. Previously, the protective efficacy of DNA vaccine candidates toward DENV1, 2, and 4 was confirmed in mice. In this study, a DNA vaccine candidate (pVAX1-D3ME) expressing the prM and E proteins of DENV3 was constructed, and then the immunogenicity and protection were assessed in mice to further develop a tetravalent dengue vaccine. Moreover, the cross-reactive immune responses against the other three serotypes were investigated. The results showed that three doses of 50 μg of pVAX1-D3ME were sufficient to induce strong antigen-specific T cell responses and robust and consistent neutralizing antibodies. Additionally, immunization with pVAX1-D3ME offered protective immunity against not only DENV3 but also the other three serotypes, which could be observed even after 12 months. This study shows great promise for the further evaluation of a dengue tetravalent DNA vaccine candidate in large animal models, including non-human primates.
Collapse
Affiliation(s)
- Kaihao Feng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoyan Zheng
- Beijing Tropical Medicine Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ran Wang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Na Gao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Dongying Fan
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ziyang Sheng
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongning Zhou
- Yunnan Provincial Key Laboratory of Vector-borne Disease Control and Research, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Hui Chen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing An
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.,Center of Epilepsy, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
11
|
Simón D, Fajardo A, Moreno P, Moratorio G, Cristina J. An Evolutionary Insight into Zika Virus Strains Isolated in the Latin American Region. Viruses 2018; 10:v10120698. [PMID: 30544785 PMCID: PMC6316622 DOI: 10.3390/v10120698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 02/04/2023] Open
Abstract
Zika virus (ZIKV) is an emerging pathogen member of the Flaviviridae family. ZIKV has spread rapidly in the Latin American region, causing hundreds of thousands of cases of ZIKV disease, as well as microcephaly in congenital infections. Detailed studies on the pattern of evolution of ZIKV strains have been extremely important to our understanding of viral survival, fitness, and evasion of the host’s immune system. For these reasons, we performed a comprehensive phylogenetic analysis of ZIKV strains recently isolated in the Americas. The results of these studies revealed evidence of diversification of ZIKV strains circulating in the Latin American region into at least five different genetic clusters. This diversification was also reflected in the different trends in dinucleotide bias and codon usage variation. Amino acid substitutions were found in E and prM proteins of the ZIKV strains isolated in this region, revealing the presence of novel genetic variants circulating in Latin America.
Collapse
Affiliation(s)
- Diego Simón
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
- Laboratorio de Organización y Evolución del Genoma, Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Alvaro Fajardo
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Pilar Moreno
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
- Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
| | - Juan Cristina
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo 11400, Uruguay.
| |
Collapse
|
12
|
Sharma KK, Marzinek JK, Tantirimudalige SN, Bond PJ, Wohland T. Single-molecule studies of flavivirus envelope dynamics: Experiment and computation. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 143:38-51. [PMID: 30223001 DOI: 10.1016/j.pbiomolbio.2018.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 12/11/2022]
Abstract
Flaviviruses are simple enveloped viruses exhibiting complex structural and functional heterogeneities. Decades of research have provided crucial basic insights, antiviral medication and moderately successful gene therapy trials. The most infectious particle is, however, not always the most abundant one in a population, questioning the utility of classic ensemble-averaging virology approaches. Indeed, viral replication is often not particularly efficient, prone to errors or containing parallel routes. Here, we review different single-molecule sensitive fluorescence methods that are employed to investigate flaviviruses. In particular, we review how (i) time-resolved Förster resonance energy transfer (trFRET) was applied to probe dengue envelope conformations; (ii) FRET-fluorescence correlation spectroscopy to investigate dengue envelope intrinsic dynamics and (iii) single particle tracking to follow the path of dengue viruses in cells. We also discuss how such methods may be supported by molecular dynamics (MD) simulations over a range of spatio-temporal scales, to provide complementary data on the structure and dynamics of flaviviral systems. We describe recent improvements in multiscale MD approaches that allowed the simulation of dengue particle envelopes in near-atomic resolution. We hope this review is an incentive for setting up and applying similar single-molecule studies and combine them with MD simulations to investigate structural dynamics of entire flavivirus particles over the nanosecond-to-millisecond time-scale and follow viruses during infection in cells over milliseconds to minutes.
Collapse
Affiliation(s)
- Kamal Kant Sharma
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jan K Marzinek
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
| | - Sarala Neomi Tantirimudalige
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Peter J Bond
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore.
| | - Thorsten Wohland
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Department of Chemistry, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore; Centre for Bioimaging Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore.
| |
Collapse
|
13
|
Nambala P, Su WC. Role of Zika Virus prM Protein in Viral Pathogenicity and Use in Vaccine Development. Front Microbiol 2018; 9:1797. [PMID: 30116235 PMCID: PMC6083217 DOI: 10.3389/fmicb.2018.01797] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Recent Zika virus (ZIKV) epidemics necessitate the urgent development of effective drugs and vaccines, which can be accelerated by an enhanced understanding of ZIKV biology. One of the ZIKV structural proteins, precursor membrane (prM), plays an important role in the assembly of mature virions through cleavage of prM into M protein. Recent studies have suggested that prM protein might be implicated in the neurovirulence of ZIKV. Most vaccines targeting ZIKV include prM as the immunogen. Here, we review progress in our understanding of ZIKV prM protein and its application in ZIKV vaccine development.
Collapse
Affiliation(s)
- Peter Nambala
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan,*Correspondence: Wen-Chi Su,
| |
Collapse
|
14
|
Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA. Biochemistry and Molecular Biology of Flaviviruses. Chem Rev 2018; 118:4448-4482. [PMID: 29652486 DOI: 10.1021/acs.chemrev.7b00719] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Flaviviruses, such as dengue, Japanese encephalitis, tick-borne encephalitis, West Nile, yellow fever, and Zika viruses, are critically important human pathogens that sicken a staggeringly high number of humans every year. Most of these pathogens are transmitted by mosquitos, and not surprisingly, as the earth warms and human populations grow and move, their geographic reach is increasing. Flaviviruses are simple RNA-protein machines that carry out protein synthesis, genome replication, and virion packaging in close association with cellular lipid membranes. In this review, we examine the molecular biology of flaviviruses touching on the structure and function of viral components and how these interact with host factors. The latter are functionally divided into pro-viral and antiviral factors, both of which, not surprisingly, include many RNA binding proteins. In the interface between the virus and the hosts we highlight the role of a noncoding RNA produced by flaviviruses to impair antiviral host immune responses. Throughout the review, we highlight areas of intense investigation, or a need for it, and potential targets and tools to consider in the important battle against pathogenic flaviviruses.
Collapse
Affiliation(s)
- Nicholas J Barrows
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Rafael K Campos
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Department of Molecular Genetics and Microbiology , Duke University , Durham , North Carolina 27710 , United States
| | - Kuo-Chieh Liao
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - K Reddisiva Prasanth
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Ruben Soto-Acosta
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Shih-Chia Yeh
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Geraldine Schott-Lerner
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Julien Pompon
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore.,MIVEGEC, IRD, CNRS, Université de Montpellier , Montpellier 34090 , France
| | - October M Sessions
- Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| | - Shelton S Bradrick
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology , University of Texas Medical Branch , Galveston , Texas 77555 , United States.,Programme in Emerging Infectious Diseases , Duke-NUS Medical School , Singapore 169857 , Singapore
| |
Collapse
|