1
|
Koch SM, Goldhahn C, Müller FJ, Yan W, Pilz-Allen C, Bidan CM, Ciabattoni B, Stricker L, Fratzl P, Keplinger T, Burgert I. Anisotropic wood-hydrogel composites: Extending mechanical properties of wood towards soft materials' applications. Mater Today Bio 2023; 22:100772. [PMID: 37674781 PMCID: PMC10477686 DOI: 10.1016/j.mtbio.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Delignified wood (DW) offers a versatile platform for the manufacturing of composites, with material properties ranging from stiff to soft and flexible by preserving the preferential fiber directionality of natural wood through a structure-retaining production process. This study presents a facile method for fabricating anisotropic and mechanically tunable DW-hydrogel composites. These composites were produced by infiltrating delignified spruce wood with an aqueous gelatin solution followed by chemical crosslinking. The mechanical properties could be modulated across a broad strength and stiffness range (1.2-18.3 MPa and 170-1455 MPa, respectively) by varying the crosslinking time. The diffusion-led crosslinking further allowed to manufacture mechanically graded structures. The resulting uniaxial, tubular structure of the anisotropic DW-hydrogel composite enabled the alignment of murine fibroblasts in vitro, which could be utilized in future studies on potential applications in tissue engineering.
Collapse
Affiliation(s)
- Sophie Marie Koch
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland
| | - Christian Goldhahn
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Florence J. Müller
- Soft Materials Group, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Wenqing Yan
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland
| | - Christine Pilz-Allen
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Cécile M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Beatrice Ciabattoni
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Laura Stricker
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Tobias Keplinger
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland
| |
Collapse
|
2
|
Saberi A, Kouhjani M, Mohammadi M, Hosta-Rigau L. Novel scaffold platforms for simultaneous induction osteogenesis and angiogenesis in bone tissue engineering: a cutting-edge approach. J Nanobiotechnology 2023; 21:351. [PMID: 37770928 PMCID: PMC10536787 DOI: 10.1186/s12951-023-02115-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite the recent advances in the development of bone graft substitutes, treatment of critical size bone defects continues to be a significant challenge, especially in the elderly population. A current approach to overcome this challenge involves the creation of bone-mimicking scaffolds that can simultaneously promote osteogenesis and angiogenesis. In this context, incorporating multiple bioactive agents like growth factors, genes, and small molecules into these scaffolds has emerged as a promising strategy. To incorporate such agents, researchers have developed scaffolds incorporating nanoparticles, including nanoparticulate carriers, inorganic nanoparticles, and exosomes. Current paper provides a summary of the latest advancements in using various bioactive agents, drugs, and cells to synergistically promote osteogenesis and angiogenesis in bone-mimetic scaffolds. It also discusses scaffold design properties aimed at maximizing the synergistic effects of osteogenesis and angiogenesis, various innovative fabrication strategies, and ongoing clinical studies.
Collapse
Affiliation(s)
- Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Kouhjani
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Leticia Hosta-Rigau
- DTU Health Tech, Centre for Nanomedicine and Theranostics, Technical University of Denmark, Produktionstorvet, Building 423, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Kumar A, Sood A, Agrawal G, Thakur S, Thakur VK, Tanaka M, Mishra YK, Christie G, Mostafavi E, Boukherroub R, Hutmacher DW, Han SS. Polysaccharides, proteins, and synthetic polymers based multimodal hydrogels for various biomedical applications: A review. Int J Biol Macromol 2023; 247:125606. [PMID: 37406894 DOI: 10.1016/j.ijbiomac.2023.125606] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/14/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Nature-derived or biologically encouraged hydrogels have attracted considerable interest in numerous biomedical applications owing to their multidimensional utility and effectiveness. The internal architecture of a hydrogel network, the chemistry of the raw materials involved, interaction across the interface of counter ions, and the ability to mimic the extracellular matrix (ECM) govern the clinical efficacy of the designed hydrogels. This review focuses on the mechanistic viewpoint of different biologically driven/inspired biomacromolecules that encourages the architectural development of hydrogel networks. In addition, the advantage of hydrogels by mimicking the ECM and the significance of the raw material selection as an indicator of bioinertness is deeply elaborated in the review. Furthermore, the article reviews and describes the application of polysaccharides, proteins, and synthetic polymer-based multimodal hydrogels inspired by or derived from nature in different biomedical areas. The review discusses the challenges and opportunities in biomaterials along with future prospects in terms of their applications in biodevices or functional components for human health issues. This review provides information on the strategy and inspiration from nature that can be used to develop a link between multimodal hydrogels as the main frame and its utility in biomedical applications as the primary target.
Collapse
Affiliation(s)
- Anuj Kumar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea; School of Materials Science and Technology, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| | - Ankur Sood
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Garima Agrawal
- School of Chemical Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, H.P. 175075, India
| | - Sourbh Thakur
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India.
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka 819-0395, Japan
| | - Yogendra Kumar Mishra
- Smart Materials, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg 6400, Denmark
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, UK
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN, F-59000 Lille, France.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea.
| |
Collapse
|
4
|
Wu J, Liyarita BR, Zhu H, Liu M, Hu X, Shao F. Self-Assembly of Dendritic DNA into a Hydrogel: Application in Three-Dimensional Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49705-49712. [PMID: 34658242 DOI: 10.1021/acsami.1c14445] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With inherent biocompatibility, biodegradability, and unique programmability, hydrogels with a DNA framework show great potential in three-dimensional (3D) cell culture. Here, a DNA hydrogel was assembled by a dendritic DNA with four branches. The hydrogel showed tunable mechanical strength and reversible thixotropy even under a nanomolar DNA concentration. The cell culture medium can be converted into the hydrogel isothermally at physiological temperature. This DNA hydrogel allows both cancer and somatic cells to be seeded in situ and to achieve high proliferation and viability. The bis-entity of dendritic branches enabled the specific loading of bioactive clues to regulate cell behaviors. Thus, the dendritic DNA-assembled hydrogel could serve as a highly biocompatible, readily functionalizing, and easy-casting gel platform for 3D cell culture.
Collapse
Affiliation(s)
- Jingyuan Wu
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Bella Rosa Liyarita
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 637371 Singapore
| | - Haishuang Zhu
- ZJU-UIUC Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| | - Ming Liu
- Temasek Laboratories@NTU, Nanyang Technological University, 637371 Singapore
| | - Xiao Hu
- School of Materials Science and Engineering and Environment Chemistry and Materials Centre, NEWRI, Nanyang Technological University, 637371 Singapore
| | - Fangwei Shao
- ZJU-UIUC Institute, International Campus, Zhejiang University, 718 East Haizhou Road, Haining, Zhejiang 314400, China
| |
Collapse
|
5
|
Use of alginate hydrogel to improve long-term 3D culture of spermatogonial stem cells: stemness gene expression and structural features. ZYGOTE 2021; 30:312-318. [PMID: 34641993 DOI: 10.1017/s0967199421000551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The quality and quantity of a spermatogonial stem-cell (SSC) culture can be measured in less time using a 3D culture in a scaffold. The present study investigated stemness gene expression and the morphological and structural characterization of SSCs encapsulated in alginate. SSCs were harvested from BALB/c neonatal mice testes through two-step mechanical and enzymatic digestion. The spermatogonial populations were separated using magnetic-activated cell sorting (MACS) using an anti-Thy1 antibody and c-Kit. The SSCs then were encapsulated in alginate hydrogel. After 2 months of SSC culturing, the alginate microbeads were extracted and stained to evaluate their histological properties. Real-time polymerase chain reaction (PCR) was performed to determine the stemness gene expression. Scanning electron microscopy (SEM) was performed to evaluate the SSC morphology, density and scaffold structure. The results showed that encapsulated SSCs had decreased expression of Oct4, Sox2 and Nanos2 genes, but the expression of Nanog, Bcl6b and Plzf genes was not significantly altered. Histological examination showed that SSCs with pale nuclei and numerous nucleolus formed colonies. SEM evaluation revealed that the alginate scaffold structure preserved the SSC morphology and density for more than 60 days. Cultivation of SSCs on alginate hydrogel can affect Oct4, Sox2 and Nanos2 expression.
Collapse
|
6
|
Shimatani A, Toyoda H, Orita K, Ibara Y, Yokogawa Y, Nakamura H. A bone replacement-type calcium phosphate cement that becomes more porous in vivo by incorporating a degradable polymer. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:77. [PMID: 34156560 PMCID: PMC8219573 DOI: 10.1007/s10856-021-06555-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
This study investigated whether mixing low viscosity alginic acid with calcium phosphate cement (CPC) causes interconnected porosity in the CPC and enhances bone replacement by improving the biological interactions. Furthermore, we hypothesized that low viscosity alginic acid would shorten the setting time of CPC and improve its strength. CPC samples were prepared with 0, 5, 10, and 20% low viscosity alginic acid. After immersion in acetate buffer, possible porosification in CPC was monitored in vitro using scanning electron microscopy (SEM), and the setting times and compressive strengths were measured. In vivo study was conducted by placing CPC in a hole created on the femur of New Zealand white rabbit. Microcomputed tomography and histological examination were performed 6 weeks after implantation. SEM images confirmed that alginic acid enhanced the porosity of CPC compared to the control, and the setting time and compressive strength also improved. When incorporating a maximum amount of alginic acid, the new bone mass was significantly higher than the control group (P = 0.0153). These biological responses are promising for the translation of these biomaterials and their commercialization for clinic applications.
Collapse
Affiliation(s)
- Akiyoshi Shimatani
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Hiromitsu Toyoda
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Kumi Orita
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| | - Yuta Ibara
- Department of Mechanical & Physical Engineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Yoshiyuki Yokogawa
- Department of Mechanical & Physical Engineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Hiroaki Nakamura
- Department of Orthopedic Surgery, Graduate School of Medicine, Osaka City University, 1-4-3 Asahi-Machi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
7
|
Sun M, Liu A, Yang X, Gong J, Yu M, Yao X, Wang H, He Y. 3D Cell Culture—Can It Be As Popular as 2D Cell Culture? ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Miao Sun
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - An Liu
- Department of Orthopaedic Surgery Second Affiliated Hospital School of Medicine Zhejiang University Hangzhou 310000 China
| | - Xiaofu Yang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Jiaxing Gong
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Mengfei Yu
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Xinhua Yao
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| | - Huiming Wang
- The Affiliated Hospital of Stomatology School of Stomatology Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province Hangzhou Zhejiang 310000 China
| | - Yong He
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
- State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310000 China
| |
Collapse
|
8
|
Rodriguez-Brenes IA, Wodarz D, Komarova NL. Beyond the pair approximation: Modeling colonization population dynamics. Phys Rev E 2021; 101:032404. [PMID: 32289892 DOI: 10.1103/physreve.101.032404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/02/2020] [Indexed: 11/07/2022]
Abstract
The process of range expansion (colonization) is one of the basic types of biological dynamics, whereby a species grows and spreads outwards, occupying new territories. Spatial modeling of this process is naturally implemented as a stochastic cellular automaton, with individuals occupying nodes on a rectangular grid, births and deaths occurring probabilistically, and individuals only reproducing onto unoccupied neighboring spots. In this paper we derive several approximations that allow prediction of the expected range expansion dynamics, based on the reproduction and death rates. We derive several approximations, where the cellular automaton is described by a system of ordinary differential equations that preserves correlations among neighboring spots (up to a distance). This methodology allows us to develop accurate approximations of the population size and the expected spatial shape, at a fraction of the computational time required to simulate the original stochastic system. In addition, we provide simple formulas for the steady-state population densities for von Neumann and Moore neighborhoods. Finally, we derive concise approximations for the speed of range expansion in terms of the reproduction and death rates, for both types of neighborhoods. The methodology is generalizable to more complex scenarios, such as different interaction ranges and multiple-species systems.
Collapse
Affiliation(s)
| | - Dominik Wodarz
- Department of Population Health and Disease Prevention, University of California, Irvine, California 92617, USA
| | - Natalia L Komarova
- Department of Mathematics, University of California Irvine, Irvine, California 92697, USA
| |
Collapse
|
9
|
Wang Y, Bruggeman KF, Franks S, Gautam V, Hodgetts SI, Harvey AR, Williams RJ, Nisbet DR. Is Viral Vector Gene Delivery More Effective Using Biomaterials? Adv Healthc Mater 2021; 10:e2001238. [PMID: 33191667 DOI: 10.1002/adhm.202001238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Abstract
Gene delivery has been extensively investigated for introducing foreign genetic material into cells to promote expression of therapeutic proteins or to silence relevant genes. This approach can regulate genetic or epigenetic disorders, offering an attractive alternative to pharmacological therapy or invasive protein delivery options. However, the exciting potential of viral gene therapy has yet to be fully realized, with a number of clinical trials failing to deliver optimal therapeutic outcomes. Reasons for this include difficulty in achieving localized delivery, and subsequently lower efficacy at the target site, as well as poor or inconsistent transduction efficiency. Thus, ongoing efforts are focused on improving local viral delivery and enhancing its efficiency. Recently, biomaterials have been exploited as an option for more controlled, targeted and programmable gene delivery. There is a growing body of literature demonstrating the efficacy of biomaterials and their potential advantages over other delivery strategies. This review explores current limitations of gene delivery and the progress of biomaterial-mediated gene delivery. The combination of biomaterials and gene vectors holds the potential to surmount major challenges, including the uncontrolled release of viral vectors with random delivery duration, poorly localized viral delivery with associated off-target effects, limited viral tropism, and immune safety concerns.
Collapse
Affiliation(s)
- Yi Wang
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Kiara F. Bruggeman
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Stephanie Franks
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
| | - Vini Gautam
- Department of Biomedical Engineering The University of Melbourne Melbourne Victoria 3010 Australia
| | - Stuart I. Hodgetts
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Alan R. Harvey
- School of Human Sciences The University of Western Australia Perth WA 6009 Australia
- Perron Institute for Neurological and Translational Science Perth WA 6009 Australia
| | - Richard J. Williams
- The Institute for Mental and Physical Health and Clinical Translation (IMPACT) School of Medicine Deakin University Waurn Ponds VIC 3216 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| | - David R. Nisbet
- Laboratory of Advanced Biomaterials Research School of Engineering The Australian National University Canberra ACT 2601 Australia
- Biofab3D St. Vincent's Hospital Fitzroy 3065 Australia
| |
Collapse
|
10
|
Development of Injectable Thermosensitive Chitosan-Based Hydrogels for Cell Encapsulation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10186550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The three-dimensional complexity of the native extracellular matrix (ECM) suggests switching from 2D to 3D culture systems for providing the cells with an architecture more similar to the physiological environment. Reproducing the three-dimensionality in vitro can guarantee beneficial effects in terms of cell growth, adhesion, proliferation, and/or their differentiation. Hydrogels have the same tailorable physico-chemical and biological characteristics as ECM materials. In this study, we propose a thermoresponsive chitosan-based hydrogel that gels thanks to the addition of organic and inorganic salt solutions (beta-glycerolphosphate and sodium hydrogen carbonate) and is suitable for cell encapsulation allowing obtaining 3D culture systems. Physico-chemical analyses showed that the hydrogel formulations jellify at physiological conditions (37 °C, pH 7.4), are stable in vitro up to three weeks, have high swelling ratios and mechanical stiffness suitable for cellular encapsulation. Moreover, preliminary biological tests underlined the pronounced biocompatibility of the system. Therefore, these chitosan-based hydrogels are proposed as valid biomaterials for cell encapsulation.
Collapse
|
11
|
Zhao P, Wang J, Li Y, Wang X, Chen C, Liu G. Microfluidic Technology for the Production of Well-Ordered Porous Polymer Scaffolds. Polymers (Basel) 2020; 12:E1863. [PMID: 32825098 PMCID: PMC7564514 DOI: 10.3390/polym12091863] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 01/01/2023] Open
Abstract
Advances in tissue engineering (TE) have revealed that porosity architectures, such as pore shape, pore size and pore interconnectivity are the key morphological properties of scaffolds. Well-ordered porous polymer scaffolds, which have uniform pore size, regular geometric shape, high porosity and good pore interconnectivity, facilitate the loading and distribution of active biomolecules, as well as cell adhesion, proliferation and migration. However, these are difficult to prepare by traditional methods and the existing well-ordered porous scaffold preparation methods require expensive experimental equipment or cumbersome preparation steps. Generally, droplet-based microfluidics, which generates and manipulates discrete droplets through immiscible multiphase flows inside microchannels, has emerged as a versatile tool for generation of well-ordered porous materials. This short review details this novel method and the latest developments in well-ordered porous scaffold preparation via microfluidic technology. The pore structure and properties of microfluidic scaffolds are discussed in depth, laying the foundation for further research and application in TE. Furthermore, we outline the bottlenecks and future developments in this particular field, and a brief outlook on the future development of microfluidic technique for scaffold fabrication is presented.
Collapse
Affiliation(s)
- Pei Zhao
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Jianchun Wang
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yan Li
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xueying Wang
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China;
| | - Chengmin Chen
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Guangxia Liu
- Energy Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; (J.W.); (Y.L.); (C.C.); (G.L.)
- School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
12
|
Wang TY, Xu SL, Wang ZP, Guo JY. Mega-oss and Mega-TCP versus Bio-Oss granules fixed by alginate gel for bone regeneration. BDJ Open 2020; 6:14. [PMID: 32821432 PMCID: PMC7419530 DOI: 10.1038/s41405-020-0042-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES/AIMS Bone graft materials are widely used at present because inadequate bone volume is usually found in implant patients. To determine the biocompatibility of a new grafting material, in vitro research is routinely performed before animal experiments and clinical testing. However, during in vitro experiments, bone material particles might move during testing, which could affect the accuracy of the results. MATERIALS AND METHODS To evaluate the biocompatibility of new bone substitutes, Mega-oss and Mega-TCP were compared with Bio-Oss using osteoblast cells and osteoclast cells fixed with alginate gel. Cell morphology, viability, bone resorption, alkaline phosphatase (ALP) activity, and staining were tested to compare the biocompatibility differences in the performance of Mega-oss, Mega-TCP, and Bio-Oss. RESULTS Cells spread better on Mega-oss and Mega-TCP than the round shape on Bio-Oss. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) results showed that Mega-oss, Mega-TCP, and sodium alginate had good viability. Meanwhile, Mega-oss and Mega-TCP had the same osteoblast differentiation ability as Bio-Oss. The resorption rates of Mega-TCP and Mega-oss were higher than those of Bio-Oss (24.4%, 15.3%, and 3.3%, respectively). CONCLUSION Mega-oss and Mega-TCP might be useful alternative bone graft materials compared with Bio-Oss. In addition, fixing the materials with sodium alginate gel could be a new method for in vitro bone material experiments.
Collapse
Affiliation(s)
- Tong-Yue Wang
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510220 China
| | - Shu-Lan Xu
- Center of Oral Implantology, Stomatological Hospital, Southern Medical University, Guangzhou, 510220 China
| | - Zhi-Ping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, 510220 China
| | - Jin-Yuan Guo
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, 510220 China
| |
Collapse
|
13
|
Zhang S, Li G, Man J, Zhang S, Li J, Li J, Li D. Fabrication of Microspheres from High-Viscosity Bioink Using a Novel Microfluidic-Based 3D Bioprinting Nozzle. MICROMACHINES 2020; 11:E681. [PMID: 32674334 PMCID: PMC7408603 DOI: 10.3390/mi11070681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 12/24/2022]
Abstract
Three-dimensional (3D) bioprinting is a novel technology utilizing biocompatible materials, cells, drugs, etc. as basic microcomponents to form 3D artificial structures and is believed as a promising method for regenerative medicine. Droplet-based bioprinting can precisely generate microspheres and manipulate them into organized structures with high fidelity. Biocompatible hydrogels are usually used as bioinks in 3D bioprinting, however, the viscosity of the bioink could be increased due to the additives such as cells, drugs, nutrient factors and other functional polymers in some particular applications, making it difficult to form monodispersed microspheres from high-viscosity bioink at the orifice of the nozzle. In this work, we reported a novel microfluidic-based printing nozzle to prepare monodispersed microspheres from high-viscosity bioink using the phase-inversion method. Different flowing conditions can be achieved by changing the flow rates of the fluids to form monodispersed solid and hollow microspheres using the same nozzle. The diameter of the microspheres can be tuned by changing the flow rate ratio and the size distribution of the microspheres is narrow. The prepared calcium alginate microspheres could also act as micro-carriers in drug delivery.
Collapse
Affiliation(s)
- Shanguo Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Guiling Li
- School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Jia Man
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Song Zhang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianyong Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Jianfeng Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of MOE, School of Mechanical Engineering, Shandong University, Jinan 250061, China; (S.Z.); (S.Z.); (J.L.); (J.L.)
- Key National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China
| | - Donghai Li
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China
| |
Collapse
|
14
|
Peñalver R, Lorenzo JM, Ros G, Amarowicz R, Pateiro M, Nieto G. Seaweeds as a Functional Ingredient for a Healthy Diet. Mar Drugs 2020; 18:E301. [PMID: 32517092 PMCID: PMC7345263 DOI: 10.3390/md18060301] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
Seaweeds have been used since ancient times as food, mainly by Asian countries, while in Western countries, their main application has been as gelling agents and colloids for the food, pharmaceuticals, and the cosmetic industry. Seaweeds are a good source of nutrients such as proteins, vitamins, minerals, and dietary fiber. Polyphenols, polysaccharides, and sterols, as well as other bioactive molecules, are mainly responsible for the healthy properties associated with seaweed. Antioxidant, anti-inflammatory, anti-cancer, and anti-diabetic properties are attributed to these compounds. If seaweeds are compared to terrestrial plants, they have a higher proportion of essential fatty acids as eicosapentaenoic (EPA) and docosahexaenoic (DHA) fatty acids. In addition, there are several secondary metabolites that are synthesized by algae such as terpenoids, oxylipins, phlorotannins, volatile hydrocarbons, and products of mixed biogenetic origin. Therefore, algae can be considered as a natural source of great interest, since they contain compounds with numerous biological activities and can be used as a functional ingredient in many technological applications to obtain functional foods.
Collapse
Affiliation(s)
- Rocío Peñalver
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gaspar Ros
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, 10-748 Olsztyn, Poland;
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain;
| | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty University of Murcia, Campus Mare Nostrum, 30100 Espinardo, Spain; (R.P.); (G.R.); (G.N.)
| |
Collapse
|
15
|
Wang Y, McKinstry AH, Burke KA. Main-Chain Liquid Crystalline Hydrogels that Support 3D Stem Cell Culture. Biomacromolecules 2020; 21:2365-2375. [DOI: 10.1021/acs.biomac.0c00316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yongjian Wang
- Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States
| | - Amy H. McKinstry
- Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States
| | - Kelly A. Burke
- Chemical and Biomolecular Engineering, University of Connecticut, 191 Auditorium Road Unit 3222, Storrs, Connecticut 06269-3222, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, 97 North Eagleville Road Unit 3136, Storrs, Connecticut 06269-3136, United States
- Biomedical Engineering, University of Connecticut, 260 Glenbrook Road Unit 3247, Storrs, Connecticut 06269-3247, United States
| |
Collapse
|
16
|
Bilal M, Iqbal HMN. Marine Seaweed Polysaccharides-Based Engineered Cues for the Modern Biomedical Sector. Mar Drugs 2019; 18:md18010007. [PMID: 31861644 PMCID: PMC7024278 DOI: 10.3390/md18010007] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
Seaweed-derived polysaccharides with unique structural and functional entities have gained special research attention in the current medical sector. Seaweed polysaccharides have been or being used to engineer novel cues with biomedical values to tackle in practice the limitations of counterparts which have become ineffective for 21st-century settings. The inherited features of seaweed polysaccharides, such as those of a biologically tunable, biocompatible, biodegradable, renewable, and non-toxic nature, urge researchers to use them to design therapeutically effective, efficient, controlled delivery, patient-compliant, and age-compliant drug delivery platforms. Based on their significant retention capabilities, tunable active units, swelling, and colloidal features, seaweed polysaccharides have appeared as highly useful materials for modulating drug-delivery and tissue-engineering systems. This paper presents a standard methodological approach to review the literature using inclusion-exclusion criteria, which is mostly ignored in the reported literature. Following that, numerous marine-based seaweed polysaccharides are discussed with suitable examples. For the applied perspectives, part of the review is focused on the biomedical values, i.e., targeted drug delivery, wound-curative potential, anticancer potentialities, tissue-engineering aspects, and ultraviolet (UV) protectant potential of seaweed polysaccharides based engineered cues. Finally, current challenges, gaps, and future perspectives have been included in this review.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
- Correspondence: or (M.B.); (H.M.N.I.)
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Mexico
- Correspondence: or (M.B.); (H.M.N.I.)
| |
Collapse
|
17
|
Gao Y, Zhang X, Jin X. Preparation and Properties of Minocycline-Loaded Carboxymethyl Chitosan Gel/Alginate Nonwovens Composite Wound Dressings. Mar Drugs 2019; 17:E575. [PMID: 31614468 PMCID: PMC6835814 DOI: 10.3390/md17100575] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/29/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022] Open
Abstract
As derivatives from marine natural biomaterials, alginate-based and chitosan-based biomaterials are commonly used in wound dressings. Calcium alginate fiber (CAF) dressings possess excellent absorption and unique gel forming performance, but the low bioactivity limits its application in wound healing. Carboxymethyl chitosan (CM-Chit) has excellent antibacterial activity, but the gel structure with weak mechanical properties restricts its application. In this study, minocycline (Mino)/CM-Chit solution was coated on the surface of plasma treated CAF needle-punched nonwovens, and then Mino loaded CM-Chit gel/CAF nonwovens composite dressings were fabricated by EDC/NHS (1-3-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride/N-hydroxysuccinimide) crosslinking. The dressings had a porous composite structure, which allowed them to quickly absorb and store a large number of wound exudates. Skin-like tensile performance allowed the dressings to provide a better healing environment. Antibacterial assay against Escherichia coli and Staphylococcus aureus indicated that the addition of Mino significantly improved the antibacterial activity of the wound dressings. The tight structure of CM-Chit gel prevented the burst release of Mino so that the dressings had antibacterial activity in a certain period of release time. Cell culture assay showed that the dressings had excellent cell biocompatibility. As new functional dressings, the prepared composite dressings had excellent potential in the clinical healing of wounds.
Collapse
Affiliation(s)
- Yingjun Gao
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xing Zhang
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xiangyu Jin
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
18
|
Lu Z, Zhou Y, Liu B. Preparation of chitosan microcarriers by high voltage electrostatic field and freeze drying. J Biosci Bioeng 2019; 128:504-509. [DOI: 10.1016/j.jbiosc.2019.03.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/27/2019] [Accepted: 03/31/2019] [Indexed: 10/27/2022]
|
19
|
Gao Y, Jin X. Dual Crosslinked Methacrylated Alginate Hydrogel Micron Fibers and Tissue Constructs for Cell Biology. Mar Drugs 2019; 17:E557. [PMID: 31569386 PMCID: PMC6836215 DOI: 10.3390/md17100557] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 12/20/2022] Open
Abstract
As an important natural polysaccharide biomaterial from marine organisms, alginate and its derivatives have shown great potential in the fabrication of biomedical materials such as tissue engineering, cell biology, drug delivery, and pharmaceuticals due to their excellent biological activity and controllable physicochemical properties. Ionic crosslinking is the most common method used in the preparation of alginate-based biomaterials, but ionic crosslinked alginate hydrogels are prone to decompose in physiological solution, which hinders their applications in biomedical fields. In this study, dual crosslinked alginate hydrogel microfibers were prepared for the first time. The ionic crosslinked methacrylated alginate (Alg-MA) hydrogel microfibers fabricated by Microfluidic Fabrication (MFF) system were exposed to ultraviolet (UV) light and covalent crosslink between methacrylate groups avoided the fracture of dual crosslinked macromolecular chains in organizational environment. The chemical structures, swelling ratio, mechanical performance, and stability were investigated. Cell-encapsulated dual crosslinked Alg-MA hydrogel microfibers were fabricated to explore the application in tissue engineering for the first time. The hydrogel microfibers provided an excellent 3D distribution and growth conditions for cells. Cell-encapsulated Alg-MA microfibers scaffolds with functional 3D tissue structures were developed which possessed great potential in the production of next-generation scaffolds for tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yingjun Gao
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| | - Xiangyu Jin
- Key Laboratory of Textile Science and Technology of the Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
20
|
Roi A, Ardelean LC, Roi CI, Boia ER, Boia S, Rusu LC. Oral Bone Tissue Engineering: Advanced Biomaterials for Cell Adhesion, Proliferation and Differentiation. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2296. [PMID: 31323766 PMCID: PMC6679077 DOI: 10.3390/ma12142296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 12/23/2022]
Abstract
The advancements made in biomaterials have an important impact on oral tissue engineering, especially on the bone regeneration process. Currently known as the gold standard in bone regeneration, grafting procedures can sometimes be successfully replaced by a biomaterial scaffold with proper characteristics. Whether natural or synthetic polymers, biomaterials can serve as potential scaffolds with major influences on cell adhesion, proliferation and differentiation. Continuous research has enabled the development of scaffolds that can be specifically designed to replace the targeted tissue through changes in their surface characteristics and the addition of growth factors and biomolecules. The progress in tissue engineering is incontestable and research shows promising contributions to the further development of this field. The present review aims to outline the progress in oral tissue engineering, the advantages of biomaterial scaffolds, their direct implication in the osteogenic process and future research directions.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania.
| | - Ciprian Ioan Roi
- Department of Anaesthesiology and Oral Surgery, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Eugen-Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| |
Collapse
|
21
|
Peter M, Singh A, Mohankumar K, Jeenger R, Joge PA, Gatne MM, Tayalia P. Gelatin-Based Matrices as a Tunable Platform To Study in Vitro and in Vivo 3D Cell Invasion. ACS APPLIED BIO MATERIALS 2019; 2:916-929. [PMID: 35016295 DOI: 10.1021/acsabm.8b00767] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogels have been used as synthetic mimics of 3D extracellular matrices (ECM) and their physical properties like stiffness, degradability, and porosity have been known to influence the behavior of encapsulated cells. However, to understand the role of individual properties, the influence of biophysical cues should be decoupled from biochemical ones. In this study, we have used hydrogels as a tunable model matrix to develop a 3D cell culture platform for studying cell invasion. Inert polyethylene (glycol) diacrylate (PEGDA) and cell adhesive gelatin methacryloyl (GELMA) were blended in varying compositions, followed by UV-mediated photo polymerization to obtain hydrogels with varying stiffness, degradation, and cell adhesive properties. We developed two hydrogel matrix systems, namely, PEGDA-GELMA (containing a larger proportion of PEGDA) and GELMA-PEGDA (containing predominantly GELMA), and characterized them for differences in pore size, swelling ratio, storage modulus, degradability, and biocompatibility of the matrix. Both hydrogel systems had similar pore dimensions and swelling behavior, but PEGDA-GELMA was found to be stiffer and nondegradable, while GELMA-PEGDA was softer and degradable. Accordingly, MDA-MB-231 breast cancer cells encapsulated in these matrices showed a spheroidal morphology in PEGDA-GELMA hydrogels and were more spindle-shaped in GELMA-PEGDA hydrogels, confirming that size and extent of spreading of cells were influenced by the type of these hydrogels. The softer GELMA-PEGDA matrices readily allowed invasion of MDA-MB-231 cells in 3D and showed differences in epithelial-mesenchymal transition (EMT) gene expression of these cells. We further demonstrated the invasion and sprouting of endothelial cells using a chick aortic arch assay, exhibiting the utility of softer matrices to study 3D cell invasion for multiple applications. We also implanted these matrices in mice and showed that soft gelatin-based hydrogels allow cell infiltration in vivo. Results from our study highlight the tunability of this matrix system and the role of matrix constitution in influencing cell invasion in a 3D microenvironment.
Collapse
Affiliation(s)
- Mathew Peter
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Department of Biomedical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104, India
| | - Archana Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Kumaravel Mohankumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.,Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Rajeev Jeenger
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| | - Puja Arun Joge
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| | - Madhumanjiri Mukulesh Gatne
- Department of Veterinary Pharmacology and Toxicology, Bombay Veterinary College, Parel, Mumbai 400012, India
| | - Prakriti Tayalia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
22
|
Rios de la Rosa JM, Wubetu J, Tirelli N, Tirella A. Colorectal tumor 3D in vitromodels: advantages of biofabrication for the recapitulation of early stages of tumour development. Biomed Phys Eng Express 2018; 4:045010. [PMID: 37596738 DOI: 10.1088/2057-1976/aac1c9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 05/02/2018] [Indexed: 12/20/2022]
Abstract
The majority of cancer-relatedin vitrostudies are conducted on cell monolayers or spheroids. Although this approach has led to key discoveries, it still has a poor outcome in recapitulating the different stages of tumor development. The advent of novel three-dimensional (3D) systems and technological methods for their fabrication is set to improve the field, offering a more physiologically relevant and high throughputin vitrosystem for the study of tumor development and treatment. Here we describe the fabrication of alginate-based 3D models that recapitulate the early stages of colorectal cancer, tracking two of the main biomarkers for tumor development: CD44 and HIF-1α. We optimized the fabrication process to obtain alginate micro-beads with controlled size and stiffness, mimicking the early stages of colorectal cancer. Human colorectal HCT-116 cancer cells were encapsulated with controlled initial number, and cell viability and protein expression of said 3Din vitromodels was compared to that of current gold standards (cell monolayers and spheroids). Our results evidenced that encapsulated HCT-116 demonstrated a high viability, increase in stem-like cell populations (increased expression of CD44) and reduced hypoxic regions (lower HIF-1a expression) compared to spheroid cultures. In conclusion we show that our biofabricated system is a highly reproducible and easily accessible alternative to study cell behavior, allowing to better mimic the early stages of colorectal cancer in comparison to otherin vitromodels. The use of biofabricatedin vitromodels will improve the translatability of results, in particular when testing strategies for therapeutic intervention.
Collapse
Affiliation(s)
- J M Rios de la Rosa
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
- NorthWest Centre for Advanced Drug Delivery (NoWCADD), Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - J Wubetu
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - N Tirelli
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
- Laboratory of Polymers and Biomaterials, Fondazione Istituto Italiano di Tecnologia, 16163 Genova, Italy
| | - A Tirella
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Oxford Road, Manchester, M13 9PL, United Kingdom
- NorthWest Centre for Advanced Drug Delivery (NoWCADD), Faculty of Biology, Medicine and Health, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
23
|
Cell encapsulation utilizing PEG-fibrinogen hydrogel supports viability and enhances productivity under stress conditions. Cytotechnology 2018; 70:1075-1083. [PMID: 29468479 DOI: 10.1007/s10616-018-0204-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 02/10/2018] [Indexed: 02/05/2023] Open
Abstract
Recent advances in the bioengineering field have introduced new opportunities enabling cell encapsulation in three-dimensional (3D) structures using either various natural or synthetic materials. However, such hydrogel scaffolds have not been fully biocompatible for cell cultivation due to the lack of physical stability or bioactivity. Here, we utilized a uniquely fabricated semi-synthetic 3D polyethylene glycol-fibrinogen (PEG-Fb) hydrogel scaffold, which exhibits both high stability and high bioactivity, to encapsulate HEK293 cells for the production of human recombinant acetylcholine esterase (AChE). To examine the beneficial bioactive effect of the PEG-Fb scaffold over 2D surfaces, an experimental system was established to compare the viability, proliferation and AChE secretion of encapsulated cells versus non-encapsulated surface-adherent cells in serum starvation. Our results show that the transfer of surface-adherent HEK293 cells from fully enriched medium with 10% FCS to 0.2% FCS resulted in an eightfold reduction in cell number and a fourfold reduction in AChE production. In contrast, the encapsulated cells were highly viable and about twofold more efficient in AChE production. In addition, they had round morphology with a twofold larger cell diameter, supporting the observation of increased AChE production. These results suggest a role of the PEG-Fb scaffold in providing a supportive microenvironment in reduced serum conditions that enhances encapsulated cell functions, opening new directions to study the implementation of this platform in large-scale pharmaceutical protein production.
Collapse
|
24
|
Shin YC, Kang SH, Lee JH, Kim B, Hong SW, Han DW. Three-dimensional graphene oxide-coated polyurethane foams beneficial to myogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:762-774. [PMID: 28657493 DOI: 10.1080/09205063.2017.1348738] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of three dimensional (3D) scaffolds for promoting and stimulating cell growth is one of the greatest concerns in biomedical and tissue engineering. In the present study, novel biomimetic 3D scaffolds composed of polyurethane (PU) foam and graphene oxide (GO) nanosheets were designed, and their potential as 3D scaffolds for skeletal tissue regeneration was explored. The GO-coated PU foams (GO-PU foams) were characterized by scanning electron microscopy and Raman spectroscopy. It was revealed that the 3D GO-PU foams consisted of an interconnected foam-like network structure with an approximate 300 μm pore size, and the GO was uniformly distributed in the PU foams. On the other hand, the myogenic stimulatory effects of GO on skeletal myoblasts were also investigated. Moreover, the cellular behaviors of the skeletal myoblasts within the 3D GO-PU foams were evaluated by immunofluorescence analysis. Our findings showed that GO can significantly promote spontaneous myogenic differentiation without any myogenic factors, and the 3D GO-PU foams can provide a suitable 3D microenvironment for cell growth. Furthermore, the 3D GO-PU foams stimulated spontaneous myogenic differentiation via the myogenic stimulatory effects of GO. Therefore, this study suggests that the 3D GO-PU foams are beneficial to myogenesis, and can be used as biomimetic 3D scaffolds for skeletal tissue engineering.
Collapse
Affiliation(s)
- Yong Cheol Shin
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Seok Hee Kang
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Jong Ho Lee
- b Center for Biomaterials, Biomedical Research Institute , Korea Institute of Science and Technology , Seoul , Korea
| | - Bongju Kim
- c Dental Life Science Research Institute & Clinical Translational Research Center for Dental Science , Seoul National University Dental Hospital , Seoul , Korea
| | - Suck Won Hong
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| | - Dong-Wook Han
- a Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea.,d Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology , Pusan National University , Busan , Korea
| |
Collapse
|
25
|
Kasoju N, Wang H, Zhang B, George J, Gao S, Triffitt JT, Cui Z, Ye H. Transcriptomics of human multipotent mesenchymal stromal cells: Retrospective analysis and future prospects. Biotechnol Adv 2017; 35:407-418. [DOI: 10.1016/j.biotechadv.2017.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/28/2022]
|
26
|
Cavo M, Fato M, Peñuela L, Beltrame F, Raiteri R, Scaglione S. Microenvironment complexity and matrix stiffness regulate breast cancer cell activity in a 3D in vitro model. Sci Rep 2016; 6:35367. [PMID: 27734939 PMCID: PMC5062115 DOI: 10.1038/srep35367] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 09/20/2016] [Indexed: 12/18/2022] Open
Abstract
Three-dimensional (3D) cell cultures represent fundamental tools for the comprehension of cellular phenomena both in normal and in pathological conditions. In particular, mechanical and chemical stimuli play a relevant role on cell fate, cancer onset and malignant evolution. Here, we use mechanically-tuned alginate hydrogels to study the role of substrate elasticity on breast adenocarcinoma cell activity. The hydrogel elastic modulus (E) was measured via atomic force microscopy (AFM) and a remarkable range (150-4000 kPa) was obtained. A breast cancer cell line, MCF-7, was seeded within the 3D gels, on standard Petri and alginate-coated dishes (2D controls). Cells showed dramatic morphological differences when cultured in 3D versus 2D, exhibiting a flat shape in both 2D conditions, while maintaining a circular, spheroid-organized (cluster) conformation within the gels, similar to those in vivo. Moreover, we observed a strict correlation between cell viability and substrate elasticity; in particular, the number of MCF-7 cells decreased constantly with increasing hydrogel elasticity. Remarkably, the highest cellular proliferation rate, associated with the formation of cell clusters, occurred at two weeks only in the softest hydrogels (E = 150-200 kPa), highlighting the need to adopt more realistic and a priori defined models for in vitro cancer studies.
Collapse
Affiliation(s)
- Marta Cavo
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Marco Fato
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Leonardo Peñuela
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Francesco Beltrame
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
| | - Roberto Raiteri
- University of Genoa – Department of Biophysical and Electronic Engineering (DIBRIS), Genoa, 16145, Italy
- National Council of Research (CNR) – IBF Institute, Genoa, 16149, Italy
| | - Silvia Scaglione
- National Council of Research (CNR) – IEIIT Institute, Genoa, 16149, Italy
| |
Collapse
|
27
|
Momose T, Miyaji H, Kato A, Ogawa K, Yoshida T, Nishida E, Murakami S, Kosen Y, Sugaya T, Kawanami M. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog. Open Dent J 2016; 10:347-59. [PMID: 27583044 PMCID: PMC4974830 DOI: 10.2174/1874210601610010347] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 06/13/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVE Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. METHODS Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. RESULT FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey's fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. CONCLUSION FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization.
Collapse
Affiliation(s)
- Takehito Momose
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Akihito Kato
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Kosuke Ogawa
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Takashi Yoshida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Syusuke Murakami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Yuta Kosen
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Tsutomu Sugaya
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| | - Masamitsu Kawanami
- Department of Periodontology and Endodontology, Hokkaido University Graduate School of Dental Medicine, N13 W7 Kita-ku Sapporo 060-8586 Japan
| |
Collapse
|
28
|
Appert-Collin A, Bennasroune A, Jeannesson P, Terryn C, Fuhrmann G, Morjani H, Dedieu S. Role of LRP-1 in cancer cell migration in 3-dimensional collagen matrix. Cell Adh Migr 2016; 11:316-326. [PMID: 27463962 DOI: 10.1080/19336918.2016.1215788] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The low-density lipoprotein receptor-related protein-1 (LRP-1) is a member of Low Density Lipoprotein Receptor (LDLR) family, which is ubiquitously expressed and which is described as a multifunctional endocytic receptor which mediates the clearance of various extracellular matrix molecules including serine proteinases, proteinase-inhibitor complexes, and matricellular proteins. Several studies showed that high LRP-1 expression promotes breast cancer cell invasiveness, and LRP-1 invalidation leads to cell motility abrogation in both tumor and non-tumor cells. Furthermore, our group has reported that LRP-1 silencing prevents the invasion of a follicular thyroid carcinoma despite increased pericellular proteolytic activities from MMP2 and uPA using a 2D-cell culture model. As the use of 3D culture systems is becoming more and more popular due to their promise as enhanced models of tissue physiology, the aim of the present work is to characterize for the first time how the 3D collagen type I matrix may impact the ability of LRP-1 to regulate the migratory properties of thyroid carcinoma using as a model FTC-133 cells. Our results show that inhibition of LRP-1 activity or expression leads to morphological changes affecting cell-matrix interactions, reorganizations of the actin-cytoskeleton especially by inhibiting FAK activation and increasing RhoA activity and MLC-2 phosphorylation, thus preventing cell migration. Taken together, our results suggest that LRP-1 silencing leads to a decrease of cell migratory capacity in a 3D configuration.
Collapse
Affiliation(s)
- Aline Appert-Collin
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| | - Amar Bennasroune
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France.,b UMR CNRS 7360, LIEC, Université de Lorraine , Metz , France
| | - Pierre Jeannesson
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Christine Terryn
- d Plateforme d'Imagerie Cellulaire et Tissulaire, URCA , Reims , France
| | - Guy Fuhrmann
- e UMR 7213 CNRS, Laboratoire de Biophotonique et Pharmacologie, Faculté de Pharmacie , Illkirch , France
| | - Hamid Morjani
- c Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Faculté de Pharmacie , Reims , France
| | - Stéphane Dedieu
- a Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7369 Matrice Extracellulaire et Dynamique Cellulaire, Université de Reims Champagne-Ardenne, Unité de Formation et de Recherche Sciences Exactes et Naturelles , Reims , France
| |
Collapse
|
29
|
Köster N, Schmiermund A, Grubelnig S, Leber J, Ehlicke F, Czermak P, Salzig D. Single-Step RNA Extraction from Different Hydrogel-Embedded Mesenchymal Stem Cells for Quantitative Reverse Transcription-Polymerase Chain Reaction Analysis. Tissue Eng Part C Methods 2016; 22:552-60. [PMID: 27094052 DOI: 10.1089/ten.tec.2015.0362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
For many tissue engineering applications, cells such as human mesenchymal stem cells (hMSCs) must be embedded in hydrogels. The analysis of embedded hMSCs requires RNA extraction, but common extraction procedures often produce low yields and/or poor quality RNA. We systematically investigated four homogenization methods combined with eight RNA extraction protocols for hMSCs embedded in three common hydrogel types (alginate, agarose, and gelatin). We found for all three hydrogel types that using liquid nitrogen or a rotor-stator produced low RNA yields, whereas using a microhomogenizer or enzymatic/chemical hydrogel digestion achieved better yields regardless of which extraction protocol was subsequently applied. The hot phenol extraction protocol generally achieved the highest A260 values (representing up to 40.8 μg RNA per 10(6) cells), but the cetyltrimethylammonium bromide (CTAB) method produced RNA of better quality, with A260/A280 and A260/A230 ratios and UV spectra similar to the pure RNA control. The RNA produced by this method was also suitable as a template for endpoint and quantitative reverse transcription-PCR (qRT-PCR), achieving low Ct values of ∼20. The prudent choice of hydrogel homogenization and RNA extraction methods can ensure the preparation of high-quality RNA that generates reliable endpoint and quantitative RT-PCR data. We therefore propose a universal method that is suitable for the extraction of RNA from cells embedded in all three hydrogel types commonly used for tissue engineering.
Collapse
Affiliation(s)
- Natascha Köster
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Alexandra Schmiermund
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Stefan Grubelnig
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Jasmin Leber
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Franziska Ehlicke
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| | - Peter Czermak
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany .,2 Department of Chemical Engineering, Kansas State University , Manhattan, Kansas.,3 Faculty of Chemistry and Biology, University of Giessen , Giessen, Germany .,4 Project Group Bioresources, Fraunhofer Institute for Molecular Biology an Applied Ecology IME , Giessen, Germany
| | - Denise Salzig
- 1 Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen , Giessen, Germany
| |
Collapse
|
30
|
Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: A review. J Biomed Mater Res A 2016; 104:1276-84. [PMID: 26826060 DOI: 10.1002/jbm.a.35647] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 12/29/2015] [Accepted: 01/07/2016] [Indexed: 01/01/2023]
Abstract
Craniofacial bone is a complex structure with an intricate anatomical and physiological architecture. The defects that exist in this region therefore require a precise control of osteogenesis in their reconstruction. Unlike traditional surgical intervention, tissue engineering techniques mediate bone development with limited postoperative risk and cost. Alginate stands as the premier polymer in bone repair because of its mild ionotropic gelation and excellent biocompatibility, biodegradability, and injectability. Alginate microcarriers are candidates of choice to mediate cells and accommodate into 3-D environment. Several studies reported the use of alginate microcarriers for delivering cells, drugs, and growth factors. This review will explore the potential use of alginate microcarrier for stem cell systems and its application in craniofacial bone tissue engineering.
Collapse
Affiliation(s)
- Adam Saltz
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, 33328
| | - Umadevi Kandalam
- Nova Southeastern University College of Dental Medicine, Fort Lauderdale, Florida, 33328
| |
Collapse
|
31
|
Liu Z, Takeuchi M, Nakajima M, Fukuda T, Hasegawa Y, Huang Q. Batch Fabrication of Microscale Gear-Like Tissue by Alginate-Poly-L-lysine (PLL) Microcapsules System. IEEE Robot Autom Lett 2016. [DOI: 10.1109/lra.2016.2514500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
32
|
Short AR, Koralla D, Deshmukh A, Wissel B, Stocker B, Calhoun M, Dean D, Winter JO. Hydrogels That Allow and Facilitate Bone Repair, Remodeling, and Regeneration. J Mater Chem B 2015; 3:7818-7830. [PMID: 26693013 PMCID: PMC4675359 DOI: 10.1039/c5tb01043h] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Bone defects can originate from a variety of causes, including trauma, cancer, congenital deformity, and surgical reconstruction. Success of the current "gold standard" treatment (i.e., autologous bone grafts) is greatly influenced by insufficient or inappropriate bone stock. There is thus a critical need for the development of new, engineered materials for bone repair. This review describes the use of natural and synthetic hydrogels as scaffolds for bone tissue engineering. We discuss many of the advantages that hydrogels offer as bone repair materials, including their potential for osteoconductivity, biodegradability, controlled growth factor release, and cell encapsulation. We also discuss the use of hydrogels in composite devices with metals, ceramics, or polymers. These composites are useful because of the low mechanical moduli of hydrogels. Finally, the potential for thermosetting and photo-cross-linked hydrogels as three-dimensionally (3D) printed, patient-specific devices is highlighted. Three-dimensional printing enables controlled spatial distribution of scaffold materials, cells, and growth factors. Hydrogels, especially natural hydrogels present in bone matrix, have great potential to augment existing bone tissue engineering devices for the treatment of critical size bone defects.
Collapse
Affiliation(s)
- Aaron R. Short
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deepthi Koralla
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Ameya Deshmukh
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Wissel
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Stocker
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Mark Calhoun
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - David Dean
- Department of Plastic Surgery, The Ohio State University, Columbus, Ohio, USA
| | - Jessica O. Winter
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
33
|
Kandalam U, Omidian H, Mirza MA. Comparative assessment of growth supporting potential of different alginic acid salts. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1055630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
34
|
Adipose-derived stem cells alleviate osteoporosis by enchancing osteogenesis and inhibiting adipogenesis in a rabbit model. Cytotherapy 2014; 16:1643-55. [DOI: 10.1016/j.jcyt.2014.07.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/10/2014] [Accepted: 07/28/2014] [Indexed: 11/21/2022]
|
35
|
Mobed-Miremadi M, Djomehri S, Keralapura M, McNeil M. Fickian-Based Empirical Approach for Diffusivity Determination in Hollow Alginate-Based Microfibers Using 2D Fluorescence Microscopy and Comparison with Theoretical Predictions. MATERIALS 2014; 7:7670-7688. [PMID: 28788268 PMCID: PMC5456451 DOI: 10.3390/ma7127670] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/10/2014] [Accepted: 11/21/2014] [Indexed: 01/05/2023]
Abstract
Hollow alginate microfibers (od = 1.3 mm, id = 0.9 mm, th = 400 µm, L = 3.5 cm) comprised of 2% (w/v) medium molecular weight alginate cross-linked with 0.9 M CaCl2 were fabricated to model outward diffusion capture by 2D fluorescent microscopy. A two-fold comparison of diffusivity determination based on real-time diffusion of Fluorescein isothiocyanate molecular weight (FITC MW) markers was conducted using a proposed Fickian-based approach in conjunction with a previously established numerical model developed based on spectrophotometric data. Computed empirical/numerical (Dempiricial/Dnumerical) diffusivities characterized by small standard deviations for the 4-, 70- and 500-kDa markers expressed in m2/s are (1.06 × 10−9 ± 1.96 × 10−10)/(2.03 × 10−11), (5.89 × 10−11 ± 2.83 × 10−12)/(4.6 × 10−12) and (4.89 × 10−12 ± 3.94 × 10−13)/(1.27 × 10−12), respectively, with the discrimination between the computation techniques narrowing down as a function of MW. The use of the numerical approach is recommended for fluorescence-based measurements as the standard computational method for effective diffusivity determination until capture rates (minimum 12 fps for the 4-kDa marker) and the use of linear instead of polynomial interpolating functions to model temporal intensity gradients have been proven to minimize the extent of systematic errors associated with the proposed empirical method.
Collapse
Affiliation(s)
- Maryam Mobed-Miremadi
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053-0583, USA.
| | - Sabra Djomehri
- Preventive & Restorative Dental Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| | | | - Melanie McNeil
- Department of Biomedical, Chemical and Materials Engineering, San Jose State University, San Jose, CA 95192-0082, USA.
| |
Collapse
|
36
|
Kim HM, Park JY, Kim EY, Song JE, Kwon SY, Chung JW, Khang G. Tissue Engineered Catilage Reconstruction with Alginate Sponge Containing Demineralized Bone Particles. POLYMER-KOREA 2014. [DOI: 10.7317/pk.2014.38.3.278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
37
|
Djomehri S, Zeid H, Yavari A, Mobed-Miremadi M, Youssefi K, Liao-Chan S. Simulation and verification of macroscopic isotropy of hollow alginate-based microfibers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:390-7. [PMID: 24684489 DOI: 10.3109/21691401.2014.897629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
A simulation of tensile strength of various alginate-based hollow microfibers using FEA analysis has been conducted with the hypothesis of macroscopic isotropy and linear elastic-plastic behavior. Results of student t-tests indicated that there was no significant difference between the experimental and simulated tensile strengths (p = 0.37, α = 0.05), while there was a significant reduction in elasticity as a result of chitosan coating (p = 0.024, α = 0.05). The hypothesis of macroscopic isotropy was verified by highly correlated (R(2) ≥ 0.92) theoretical and experimental elongation at break measurements, findings that could be extended to the failure analysis of alginate microfibers used in regenerative medicine.
Collapse
Affiliation(s)
- Sabra Djomehri
- a Biomedical, Chemical and Materials Engineering, San Jose State University , San Jose , CA , USA
| | - Hanaa Zeid
- a Biomedical, Chemical and Materials Engineering, San Jose State University , San Jose , CA , USA
| | - Alireza Yavari
- a Biomedical, Chemical and Materials Engineering, San Jose State University , San Jose , CA , USA
| | | | - Kenneth Youssefi
- c Mechanical and Aerospace Engineering, San Jose State University , San Jose , CA , USA
| | - Sindy Liao-Chan
- d Department of Chemistry and Biochemistry , San Francisco State University , San Francisco , CA , USA
| |
Collapse
|
38
|
Environmental sensitive hydrogel for purification of waste water: part 1: synthesis and characterization. Polym Bull (Berl) 2014. [DOI: 10.1007/s00289-014-1097-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Do Ca2+-chelating polysaccharides reduce calcium ion release from gypsum-based biomaterials? Open Life Sci 2013. [DOI: 10.2478/s11535-013-0191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Collapse
|
40
|
Lam J, Segura T. The modulation of MSC integrin expression by RGD presentation. Biomaterials 2013; 34:3938-3947. [PMID: 23465825 PMCID: PMC3650837 DOI: 10.1016/j.biomaterials.2013.01.091] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 01/26/2013] [Indexed: 12/29/2022]
Abstract
Biomaterials designed to mimic the intricate native extracellular matrix (ECM) can use a variety of techniques to control the behavior of encapsulated cells. Common methods include controlling the mechanical properties of the material, incorporating bioactive signals, spatially patterning bioactive signals, and controlling the time-release of bioactive signals. Further design parameters like bioactive signal distribution can be used to manipulate cell behavior. Efforts on clustering adhesion peptides have focused on seeding cells on top of a biomaterial. Here we report the effect of clustering the adhesion peptide RGD on mouse mesenchymal stem cells encapsulated inside three-dimensional hyaluronic acid hydrogels. The clustered bioactive signals resulted in significant differences in both cell spreading and integrin expression. These results indicate that signal RGD peptide clustering is an additional hydrogel design parameter can be used to influence and guide the behavior of encapsulated cells.
Collapse
Affiliation(s)
- Jonathan Lam
- University of California Los Angeles, Bioengineering Department, USA
| | - Tatiana Segura
- University of California Los Angeles, Bioengineering Department, USA; University of California Los Angeles, Chemical and Biomolecular Engineering Department, USA.
| |
Collapse
|
41
|
Huang H, Ding Y, Sun XS, Nguyen TA. Peptide hydrogelation and cell encapsulation for 3D culture of MCF-7 breast cancer cells. PLoS One 2013; 8:e59482. [PMID: 23527204 PMCID: PMC3603912 DOI: 10.1371/journal.pone.0059482] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/14/2013] [Indexed: 01/15/2023] Open
Abstract
Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing.
Collapse
Affiliation(s)
- Hongzhou Huang
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, United States of America
| | - Ying Ding
- Department of Biochemistry, Kansas State University, Manhattan, Kansas, United States of America
| | - Xiuzhi S. Sun
- Department of Grain Science and Industry, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (XSS); (TAN)
| | - Thu A. Nguyen
- Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail: (XSS); (TAN)
| |
Collapse
|
42
|
Dreifke MB, Ebraheim NA, Jayasuriya AC. Investigation of potential injectable polymeric biomaterials for bone regeneration. J Biomed Mater Res A 2013; 101:2436-47. [PMID: 23401336 DOI: 10.1002/jbm.a.34521] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 10/09/2012] [Accepted: 10/29/2012] [Indexed: 01/12/2023]
Abstract
This article reviews the potential injectable polymeric biomaterial scaffolds currently being investigated for application in bone tissue regeneration. Two types of injectable biomaterial scaffolds are focused in this review, including injectable microspheres and injectable gels. The injectable microspheres section covers several polymeric materials, including poly(L-lactide-co-glycolide)-PLGA, poly(propylene fumarate), and chitosan. The injectable gel section covers alginate gels, hyaluronan hydrogels, poly(ethylene-glycol)-PEG hydrogels, and PEG-PLGA copolymer hydrogels. This review focuses on the effect of cellular behavior in vitro and in vivo in terms of material properties of polymers, such as biodegradation, biocompatibility, porosity, microsphere size, and cross-linking nature. Injectable polymeric biomaterials offer a major advantage for orthopedic applications by allowing the ability to use noninvasive or minimally invasive treatment methods. Therefore, combining injectable polymeric biomaterial scaffolds with cells have a significant potential to treat orthopedic bone defects, including spine fusion, and craniofacial and periodontal defects.
Collapse
Affiliation(s)
- Michael B Dreifke
- Department of Orthopaedic Surgery, The University of Toledo, College of Medicine, Toledo, Ohio 43614, USA
| | | | | |
Collapse
|
43
|
Smith AM, Hunt NC, Shelton RM, Birdi G, Grover LM. Alginate Hydrogel Has a Negative Impact on in Vitro Collagen 1 Deposition by Fibroblasts. Biomacromolecules 2012; 13:4032-8. [DOI: 10.1021/bm301321d] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alan M Smith
- School of
Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15
2TT, United Kingdom
- School
of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield,
HD1 3DH, United Kingdom
| | - Nicola C Hunt
- School of
Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15
2TT, United Kingdom
- Institute
of Genetic Medicine, Newcastle University, Newcastle Upon Tyne, NE1 7RU,
United Kingdom
| | - Richard M Shelton
- School
of Dentistry, St Chad’s
Queensway, University of Birmingham, Birmingham,
B4 6NN United Kingdom
| | - Gurpreet Birdi
- School of
Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15
2TT, United Kingdom
| | - Liam M Grover
- School of
Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15
2TT, United Kingdom
| |
Collapse
|
44
|
Fallica B, Maffei JS, Villa S, Makin G, Zaman M. Alteration of cellular behavior and response to PI3K pathway inhibition by culture in 3D collagen gels. PLoS One 2012; 7:e48024. [PMID: 23110163 PMCID: PMC3479126 DOI: 10.1371/journal.pone.0048024] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 09/24/2012] [Indexed: 11/29/2022] Open
Abstract
Most investigations into cancer cell drug response are performed with cells cultured on flat (2D) tissue culture plastic. Emerging research has shown that the presence of a three-dimensional (3D) extracellular matrix (ECM) is critical for normal cell behavior including migration, adhesion, signaling, proliferation and apoptosis. In this study we investigate differences between cancer cell signaling in 2D culture and a 3D ECM, employing real-time, live cell tracking to directly observe U2OS human osteosarcoma and MCF7 human breast cancer cells embedded in type 1 collagen gels. The activation of the important PI3K signaling pathway under these different growth conditions is studied, and the response to inhibition of both PI3K and mTOR with PI103 investigated. Cells grown in 3D gels show reduced proliferation and migration as well as reduced PI3K pathway activation when compared to cells grown in 2D. Our results quantitatively demonstrate that a collagen ECM can protect U2OS cells from PI103. Overall, our data suggests that 3D gels may provide a better medium for investigation of anti-cancer drugs than 2D monolayers, therefore allowing better understanding of cellular response and behavior in native like environments.
Collapse
Affiliation(s)
- Brian Fallica
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Joseph S. Maffei
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Shaun Villa
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, and School of Cancer and Enabling Sciences, Manchester Cancer Research Centre and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
| | - Guy Makin
- Clinical and Experimental Pharmacology, Paterson Institute for Cancer Research, and School of Cancer and Enabling Sciences, Manchester Cancer Research Centre and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, United Kingdom
- Department of Paediatric Oncology, Royal Manchester Children’s Hospital, Manchester, United Kingdom
| | - Muhammad Zaman
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
45
|
Wang X, He J, Wang Y, Cui FZ. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus 2012; 2:278-91. [PMID: 23741606 PMCID: PMC3363026 DOI: 10.1098/rsfs.2012.0016] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/20/2012] [Indexed: 12/17/2022] Open
Abstract
Central nervous system (CNS) regeneration with central neuronal connections and restoration of synaptic connections has been a long-standing worldwide problem and, to date, no effective clinical therapies are widely accepted for CNS injuries. The limited regenerative capacity of the CNS results from the growth-inhibitory environment that impedes the regrowth of axons. Central neural tissue engineering has attracted extensive attention from multi-disciplinary scientists in recent years, and many studies have been carried out to develop cell- and regeneration-activating biomaterial scaffolds that create an artificial micro-environment suitable for axonal regeneration. Among all the biomaterials, hyaluronic acid (HA) is a promising candidate for central neural tissue engineering because of its unique physico-chemical and biological properties. This review attempts to outline current biomaterials-based strategies for CNS regeneration from a tissue engineering point of view and discusses the main progresses in research of HA-based scaffolds for central neural tissue engineering in detail.
Collapse
Affiliation(s)
- Xiumei Wang
- Institute for Regenerative Medicine and Biomimetic Materials, State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Kosen Y, Miyaji H, Kato A, Sugaya T, Kawanami M. Application of collagen hydrogel/sponge scaffold facilitates periodontal wound healing in class II furcation defects in beagle dogs. J Periodontal Res 2012; 47:626-34. [PMID: 22443229 DOI: 10.1111/j.1600-0765.2012.01475.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND OBJECTIVE A three-dimensional scaffold may play an important role in periodontal tissue engineering. We prepared bio-safe collagen hydrogel, which exhibits properties similar to those of native extracellular matrix. The aim of this study was to examine the effect of implantation of collagen hydrogel/sponge scaffold on periodontal wound healing in class II furcation defects in dogs. MATERIAL AND METHODS The collagen hydrogel/sponge scaffold was prepared by injecting collagen hydrogel, cross-linked to the ascorbate-copper ion system, into a collagen sponge. Class II furcation defects (of 5 mm depth and 3 mm width) were surgically created in beagle dogs. The exposed root surface was planed and demineralized with EDTA. In the experimental group, the defect was filled with collagen hydrogel/sponge scaffold. In the control group, no implantation was performed. Histometric parameters were evaluated 2 and 4 wk after surgery. RESULTS At 2 wk, the collagen hydrogel/sponge scaffold displayed high biocompatibility and biodegradability with numerous cells infiltrating the scaffold. In the experimental group, reconstruction of alveolar bone and cementum was frequently observed 4 wk after surgery. Periodontal ligament tissue was also re-established between alveolar bone and cementum. Volumes of new bone, new cementum and new periodontal ligament were significantly greater in the experimental group than in the control group. In addition, epithelial down-growth was suppressed by application of collagen hydrogel. CONCLUSION The collagen hydrogel/sponge scaffold possessed high tissue compatibility and degradability. Implantation of the scaffold facilitated periodontal wound healing in class II furcation defects in beagle dogs.
Collapse
Affiliation(s)
- Y Kosen
- Department of Periodontology and Endodontology, Division of Oral Health Science, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | | | | | | | | |
Collapse
|
47
|
Fiddes LK, Luk VN, Au SH, Ng AHC, Luk V, Kumacheva E, Wheeler AR. Hydrogel discs for digital microfluidics. BIOMICROFLUIDICS 2012; 6:14112-1411211. [PMID: 22662096 PMCID: PMC3365348 DOI: 10.1063/1.3687381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 01/27/2012] [Indexed: 05/10/2023]
Abstract
Hydrogels are networks of hydrophilic polymer chains that are swollen with water, and they are useful for a wide range of applications because they provide stable niches for immobilizing proteins and cells. We report here the marriage of hydrogels with digital microfluidic devices. Until recently, digital microfluidics, a fluid handling technique in which discrete droplets are manipulated electromechanically on the surface of an array of electrodes, has been used only for homogeneous systems involving liquid reagents. Here, we demonstrate for the first time that the cylindrical hydrogel discs can be incorporated into digital microfluidic systems and that these discs can be systematically addressed by droplets of reagents. Droplet movement is observed to be unimpeded by interaction with the gel discs, and gel discs remain stationary when droplets pass through them. Analyte transport into gel discs is observed to be identical to diffusion in cases in which droplets are incubated with gels passively, but transport is enhanced when droplets are continually actuated through the gels. The system is useful for generating integrated enzymatic microreactors and for three-dimensional cell culture. This paper demonstrates a new combination of techniques for lab-on-a-chip systems which we propose will be useful for a wide range of applications.
Collapse
|
48
|
Kandalam U, Cabel AI, Omidian H, Stelnicki EJ. Viability of human umbilical cord–derived mesenchymal stem cells in G-rich and M-rich alginates. J BIOACT COMPAT POL 2012. [DOI: 10.1177/0883911511434961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, the effect of pharmaceutical-grade alginates on the cell viability of human mesenchymal stem cells derived from umbilical cord was examined and their use in tissue engineering applications was evaluated. The effects of the ratio of the copolymer building blocks (guluronic and mannuronic acids) and their interactions with divalent calcium, the purity of alginates (proteins and polyphenol content), and gelation factors (calcium concentration and sol content) were examined. The high guluronic acid content in the alginates improved the viability of the human mesenchymal stem cells derived from umbilical cord and supported cell growth significantly. It was confirmed that the sol fraction of alginate reduced cell viability. Cells in the presence of alginate beads cross-linked with 50 and 100 mM calcium chloride showed maximum viability; the protein and polyphenol content of the alginates did not affect the viability of the human mesenchymal stem cells derived from umbilical cord, while the monomer ratio did have an obvious effect.
Collapse
Affiliation(s)
- Umadevi Kandalam
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Anamaria I Cabel
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Eric J Stelnicki
- College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
- Cleft and Craniofacial Center, Joe DiMaggio Children’s Hospital, Hollywood, FL, USA
| |
Collapse
|
49
|
Abstract
Alginate is a biomaterial that has found numerous applications in biomedical science and engineering due to its favorable properties, including biocompatibility and ease of gelation. Alginate hydrogels have been particularly attractive in wound healing, drug delivery, and tissue engineering applications to date, as these gels retain structural similarity to the extracellular matrices in tissues and can be manipulated to play several critical roles. This review will provide a comprehensive overview of general properties of alginate and its hydrogels, their biomedical applications, and suggest new perspectives for future studies with these polymers.
Collapse
|
50
|
Zeng X, Sun YX, Qu W, Zhuo RX, Zhang XZ. Bilayer matrix composed of polycation/DNA complex and sodium alginate gel as a tumor cell catcher. Macromol Biosci 2011; 11:1579-85. [PMID: 21954183 DOI: 10.1002/mabi.201100212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 07/26/2011] [Indexed: 11/10/2022]
Abstract
A bilayer matrix consisting of TABP-SS/DNA complexes and sodium alginate gel is formed via electrostatic interaction. In vitro cell adhesion, proliferation and transfection of the bilayer matrix are investigated in HepG2, HeLa and COS7 cells. Results show that this matrix can only promote tumor cell attachment and growth. Compared with normal cells, the bilayer matrix exhibits significantly higher transfection efficacy in tumor cells. Cell co-culture competitive transfection assay shows that the cell uptake of TABP-SS/DNA complexes is significantly enhanced in tumor cells rather than normal cells under the co-culture competitive condition, which confirms that TABP-SS/DNA complexes have strong tumor cell selectivity and tumor targeting transfection ability.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, China
| | | | | | | | | |
Collapse
|