1
|
Ren H, Zhang Z, Chen X, He C. Stimuli-Responsive Hydrogel Adhesives for Wound Closure and Tissue Regeneration. Macromol Biosci 2024; 24:e2300379. [PMID: 37827713 DOI: 10.1002/mabi.202300379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/27/2023] [Indexed: 10/14/2023]
Abstract
Sutures and staplers, as gold standards for clinical wound closure, usually cause secondary tissue injury and require professional technicians and equipment. The noninvasive hydrogel adhesives are used in various biomedical applications, such as wound closure, tissue sealing, and tissue regeneration, due to their remarkable properties. Recently-developed hydrogel adhesives, especially stimuli-responsive hydrogels, have shown great potential owing to their advantages in regulating their performance and functions according to the wound situations or external conditions, thus allowing the wounds to heal gradually. However, comprehensive summary on stimuli-responsive hydrogels as tissue adhesives is rarely reported to date. This review focuses on the advances in the design of various stimuli-responsive hydrogel adhesives over the past decade, including the systems responsive to pH, temperature, photo, and enzymes. Their potential biomedical applications, such as skin closure, cardiovascular and liver hemostasis, and gastrointestinal sealing, are emphasized. Meanwhile, the challenges and future development of stimuli-responsive hydrogel adhesives are discussed. This review aims to provide meaningful insights for the further design of next-generation of hydrogel adhesives for wound closure and tissue regeneration.
Collapse
Affiliation(s)
- Hui Ren
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
2
|
|
3
|
Grosjean M, Girard E, Bethry A, Chagnon G, Garric X, Nottelet B. Degradable Bioadhesives Based on Star PEG-PLA Hydrogels for Soft Tissue Applications. Biomacromolecules 2023; 24:4430-4443. [PMID: 36524541 DOI: 10.1021/acs.biomac.2c01166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tissue adhesives are interesting materials for wound treatment as they present numerous advantages compared to traditional methods of wound closure such as suturing and stapling. Nowadays, fibrin and cyanoacrylate glues are the most widespread commercial biomedical adhesives, but these systems display some drawbacks. In this study, degradable bioadhesives based on PEG-PLA star-shaped hydrogels are designed. Acrylate, methacrylate, and catechol functional copolymers are synthesized and used to design various bioadhesive hydrogels. Various types of mechanisms responsible for adhesion are investigated (physical entanglement and interlocking, physical interactions, chemical bonds), and the adhesive properties of the different systems are first studied on a gelatin model and compared to fibrin and cyanoacrylate references. Hydrogels based on acrylate and methacrylate reached adhesion strength close to cyanoacrylate (332 kPa) with values of 343 and 293 kPa, respectively, whereas catechol systems displayed higher values (11 and 19 kPa) compared to fibrin glue (7 kPa). Bioadhesives were then tested on mouse skin and human cadaveric colonic tissue. The results on mouse skin confirmed the potential of acrylate and methacrylate gels with adhesion strength close to commercial glues (15-30 kPa), whereas none of the systems led to high levels of adhesion on the colon. These data confirm that we designed a family of degradable bioadhesives with adhesion strength in the range of commercial glues. The low level of cytotoxicity of these materials is also demonstrated and confirm the potential of these hydrogels to be used as surgical adhesives.
Collapse
Affiliation(s)
- Mathilde Grosjean
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Edouard Girard
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
- Département de chirurgie digestive et de l'urgence, Centre Hospitalier Grenoble-Alpes, Grenoble38043, France
- Laboratoire d'anatomie des Alpes françaises (LADAF), UFR de médecine de Grenoble, Université Grenoble Alpes, Grenoble38058, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| | - Grégory Chagnon
- Univ Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, Grenoble38058, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
- Department of Pharmacy, Nîmes University Hospital, 30900Nîmes, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier34095, France
| |
Collapse
|
4
|
Zheng K, Gu Q, Zhou D, Zhou M, Zhang L. Recent progress in surgical adhesives for biomedical applications. SMART MATERIALS IN MEDICINE 2022; 3:41-65. [DOI: 10.1016/j.smaim.2021.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Kalverkamp S, Mantas A, Spillner J, Hima F, Kanzler SS, Stopinski T, Tolba RH, Zayat R. Efficacy of a Novel Medical Adhesive for Sealing Lung Parenchyma: An in vitro Study in Rabbit Lungs. Eur Surg Res 2021; 62:255-261. [PMID: 34289469 DOI: 10.1159/000517173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION During thoracic resection procedures, complete hemostasis and aerostasis are priorities. A persistent alveolar air leak is associated with increased morbidity and mortality rates. This study aimed to evaluate whether the novel medical adhesive VIVO (Adhesys Medical GmbH Aachen, Germany) is a reliable alternative sealing technique to routine surgical procedures. METHODS We conducted an in vitro animal study by analyzing 21 lungs of New Zealand (n = 19) and Chinchilla Bastard (n = 2) rabbits (age, 11-18 weeks; weight, 2,400-3,600 g). Three groups, each comprising 7 animals, were evaluated. VIVO (VIVO-group) was compared with standard surgical lung parenchymal lesion closure with a polypropylene suture (Suture-group) and TachoSil® (TachoSil-group). We adopted a stable, pressure-controlled ventilation protocol. After explantation, a surgical incision 0.5-cm deep and 1.5-cm wide was made in the lungs using a customized template. Air leak was measured quantitatively (mL/min) using a respirator and visualized qualitatively by 2 observers who made independent judgments. Next, the leak was closed using VIVO, suture, or TachoSil® as specified by the manufacturer. Subsequently, positive end-expiratory pressure (PEEP) and inspiratory pressure were gradually increased until a maximum of 15 and 30 mbar were attained, respectively. RESULTS At PEEPs of 8, 10, and 15 mbar, VIVO achieved complete sealing of the profound parenchymal defect in all (n = 7) lungs. After closure of the incision, we observed an air leak variation of 127 ± 114 mL/min (Suture-group), 31 ± 49 mL/min (VIVO-group), and 114 ± 134 mL/min (TachoSil-group). VIVO showed a significantly lower air leak than surgical sutures (p = 0.031) and TachoSil® (p = 0.046). CONCLUSION VIVO offers sufficient closure of the lung parenchymal lesions. The novel adhesive enabled significantly better sealing with lower persistent air leakage than TachoSil® or surgical sutures. Further investigation using in vivo models is strongly encouraged to confirm our findings.
Collapse
Affiliation(s)
- Sebastian Kalverkamp
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Mantas
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Spillner
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | - Flutura Hima
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| | | | - Thaddäus Stopinski
- Institute for Laboratory Animal Science & Experimental Surgery, RWTH Aachen, University Hospital RWTH Aachen, Aachen, Germany
| | - René H Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, RWTH Aachen, University Hospital RWTH Aachen, Aachen, Germany
| | - Rashad Zayat
- Department of Thoracic and Cardiovascular Surgery, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
6
|
Zhang Y, Li X, Wei W, Liu X. A Strong Dual-Component Bioadhesive Based on Solventless Thiol-isocyanate Click Chemistry. ACS Biomater Sci Eng 2021; 7:3389-3398. [PMID: 34165278 DOI: 10.1021/acsbiomaterials.1c00504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Isocyanate is an efficient tissue anchor for engineering of strong bioadhesives. However, isocyanate-containing adhesives were seldom manufactured due to their requirement of water-free administration and time-consuming moisture-induced solidification. To address this issue, here, a solventless dual-component bioadhesive based on thiol-isocyanate cross-linking chemistry is reported. This dual-component bioadhesive consists of a hyperbranched polymer with thiol groups (HBPTE) and an isocyanate-modified polyethylene glycol (PEGNCO). HBPTE and PEGNCO are low-viscosity fluids at room temperature and hence could be used directly as adhesive components, in the absence of a catalyst and a solvent. The thiol-isocyanate click chemistry of components provides the HBPTE-PEGNCO mixture with a gelation time of 1.8-3 min, which makes it acceptable for practical applications. The abundance of isocyanate groups in the adhesive molecule provides strong bonding strength through formation of chemical linkages with reactive groups on the tissue. Moreover, in vitro and in vivo evaluations showed excellent biocompatibility of the HBPTE-PEGNCO adhesive. This dual-component bioadhesive based on solventless thiol-isocyanate click chemistry displayed a fast gelation time and excellent bonding performance, providing a pioneering idea for engineering isocyanate-containing bioadhesives.
Collapse
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
7
|
Bovone G, Dudaryeva OY, Marco-Dufort B, Tibbitt MW. Engineering Hydrogel Adhesion for Biomedical Applications via Chemical Design of the Junction. ACS Biomater Sci Eng 2021; 7:4048-4076. [PMID: 33792286 DOI: 10.1021/acsbiomaterials.0c01677] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydrogel adhesion inherently relies on engineering the contact surface at soft and hydrated interfaces. Upon contact, adhesion normally occurs through the formation of chemical or physical interactions between the disparate surfaces. The ability to form these adhesion junctions is challenging for hydrogels as the interfaces are wet and deformable and often contain low densities of functional groups. In this Review, we link the design of the binding chemistries or adhesion junctions, whether covalent, dynamic covalent, supramolecular, or physical, to the emergent adhesive properties of soft and hydrated interfaces. Wet adhesion is useful for bonding to or between tissues and implants for a range of biomedical applications. We highlight several recent and emerging adhesive hydrogels for use in biomedicine in the context of efficient junction design. The main focus is on engineering hydrogel adhesion through molecular design of the junctions to tailor the adhesion strength, reversibility, stability, and response to environmental stimuli.
Collapse
Affiliation(s)
- Giovanni Bovone
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Oksana Y Dudaryeva
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Bruno Marco-Dufort
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
8
|
Abstract
Polymeric tissue adhesives provide versatile materials for wound management and are widely used in a variety of medical settings ranging from minor to life-threatening tissue injuries. Compared to the traditional methods of wound closure (i.e., suturing and stapling), they are relatively easy to use, enable rapid application, and introduce minimal tissue damage. Furthermore, they can act as hemostats to control bleeding and provide a tissue-healing environment at the wound site. Despite their numerous current applications, tissue adhesives still face several limitations and unresolved challenges (e.g., weak adhesion strength and poor mechanical properties) that limit their use, leaving ample room for future improvements. Successful development of next-generation adhesives will likely require a holistic understanding of the chemical and physical properties of the tissue-adhesive interface, fundamental mechanisms of tissue adhesion, and requirements for specific clinical applications. In this review, we discuss a set of rational guidelines for design of adhesives, recent progress in the field along with examples of commercially available adhesives and those under development, tissue-specific considerations, and finally potential functions for future adhesives. Advances in tissue adhesives will open new avenues for wound care and potentially provide potent therapeutics for various medical applications.
Collapse
Affiliation(s)
- Sungmin Nam
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02134, United States.,Wyss Institute for Biologically Inspired Engineering, Cambridge, Massachusetts 02115, United States
| |
Collapse
|
9
|
Zhang Y, Li X, Zhu Q, Wei W, Liu X. Photocurable Hyperbranched Polymer Medical Glue for Water-Resistant Bonding. Biomacromolecules 2020; 21:5222-5232. [DOI: 10.1021/acs.biomac.0c01302] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yifan Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Qinfu Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Wei Wei
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| | - Xiaoya Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, No 1800 Lihu Avenue, Wuxi, Jiangsu 214122, P. R. China
| |
Collapse
|
10
|
Star-shaped polycaprolactone bearing mussel-inspired catechol end-groups as a promising bio-adhesive. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
11
|
Li D, Chen J, Wang X, Zhang M, Li C, Zhou J. Recent Advances on Synthetic and Polysaccharide Adhesives for Biological Hemostatic Applications. Front Bioeng Biotechnol 2020; 8:926. [PMID: 32923431 PMCID: PMC7456874 DOI: 10.3389/fbioe.2020.00926] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Rapid hemostasis and formation of stable blood clots are very important to prevent massive blood loss from the excessive bleeding for living body, but their own clotting process cannot be completed in time for effective hemostasis without the help of hemostatic materials. In general, traditionally suturing and stapling techniques for wound closure are prone to cause the additional damages to the tissues, activated inflammatory responses, short usage periods and inevitable second operations in clinical applications. Especially for the large wounds that require the urgent closure of fluids or gases, these conventional closure methods are far from enough. To address these problems, various tissue adhesives, sealants and hemostatic materials are placed great expectation. In this review, we focused on the development of two main categories of tissue adhesive materials: synthetic polymeric adhesives and naturally derived polysaccharide adhesives. Research of the high performance of hemostatic adhesives with strong adhesion, better biocompatibility, easy usability and cheap price is highly demanded for both scientists and clinicians, and this review is also intended to provide a comprehensive summarization and inspiration for pursuit of more advanced hemostatic adhesives for biological fields.
Collapse
Affiliation(s)
- Dawei Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jing Chen
- Department of Orthopedics, Aerospace Center Hospital, Beijing, China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingming Zhang
- The People’s Liberation Army Strategic Support Force Characteristic Medical Center, Beijing, China
| | - Chunlin Li
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| | - Jin Zhou
- Eighth Medical Center of the General Hospital of the Chinese People’s Liberation Army, Beijing, China
| |
Collapse
|
12
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
13
|
Zhang W, Ji T, Lyon S, Mehta M, Zheng Y, Deng X, Liu A, Shagan A, Mizrahi B, Kohane DS. Functionalized Multiarmed Polycaprolactones as Biocompatible Tissue Adhesives. ACS APPLIED MATERIALS & INTERFACES 2020; 12:17314-17320. [PMID: 32227980 DOI: 10.1021/acsami.0c03478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Existing tissue adhesives have a trade-off between adhesive strength and biocompatibility. Here, we report a series of biocompatible multiarmed polycaprolactones (PCL) as tissue adhesives that can be released from a hot glue gun and the length of each arm was kept at ∼2-3 kg mol-1 in all the polymers. The adhesion properties were dependent on the number of functionalized (N-hydroxysuccinimide ester (NHS), aldehyde (CHO), and isocyanate (NCO)) arms of the multiarmed polymers. The more arms, the higher the adhesion strength. For example, the adhesion strength in binding cut rat skin increased from 2.3 N cm-2 for 2PCL-NHS to 11.2 N cm-2 for 8-PCL-NHS. CHO- and NCO-modified 8PCL also had suitable adhesive properties. All the multiarmed polymers had minimal cytotoxicity in vitro and good biocompatibility in vivo, suggesting their potential as promising alternative surgical adhesives.
Collapse
Affiliation(s)
- Wei Zhang
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Tianjiao Ji
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sophie Lyon
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Manisha Mehta
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yueqin Zheng
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Xiaoran Deng
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Andong Liu
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Alona Shagan
- Faculty of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel
| | - Boaz Mizrahi
- Faculty of Biotechnology and Food Engineering, Technion, Haifa 3200003, Israel
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, The Department of Anesthesiology, Critical Care, and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
14
|
Cernadas T, Morgado S, Alves P, Gonçalves FAMM, Correia TR, Correia IJ, Ferreira P. Preparation of functionalized poly(caprolactone diol)/castor oils blends to be applied as photocrosslinkable tissue adhesives. J Appl Polym Sci 2020. [DOI: 10.1002/app.49092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Teresa Cernadas
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | - Stacy Morgado
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | - Patrícia Alves
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| | | | - Tiago R. Correia
- CICS‐UBI, Health Sciences Research CenterUniversity of Beira Interior Covilhã Portugal
| | - Ilídio J. Correia
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
- CICS‐UBI, Health Sciences Research CenterUniversity of Beira Interior Covilhã Portugal
| | - Paula Ferreira
- CIEPQPF, Department of Chemical EngineeringUniversity of Coimbra Coimbra Portugal
| |
Collapse
|
15
|
Cernadas T, Santos M, Gonçalves F, Alves P, Correia T, Correia I, Ferreira P. Functionalized polyester-based materials as UV curable adhesives. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Jain R, Wairkar S. Recent developments and clinical applications of surgical glues: An overview. Int J Biol Macromol 2019; 137:95-106. [DOI: 10.1016/j.ijbiomac.2019.06.208] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 01/10/2023]
|
17
|
Designing a castor oil-based polyurethane as bioadhesive. Colloids Surf B Biointerfaces 2019; 181:740-748. [PMID: 31229801 DOI: 10.1016/j.colsurfb.2019.06.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 02/08/2023]
Abstract
Based on the stealth behavior of castor oil and poly(ethylene glycol), we selected a polyurethane system to obtain an ideal surgical adhesive. The polyurethane adhesives with varying concentrations of castor oil were investigated by Fourier transform infrared spectrometer, differential scanning calorimetry, scanning electron microscopy, goniometer, and universal testing machine. Curing results show that a 7-min to 25-min room temperature curing can be achieved, providing one possibility of shortening the surgery time. In vitro biodegradation test demonstrates that a certain proportion of the polyurethane film will be hydrolyzed in a foregone manner after a period of time (7 weeks). The adhesion strengths of these adhesives show a strong bonding between pieces of tissue, which makes them qualified for application in a moist environment.
Collapse
|
18
|
Agnol LD, Dias FTG, Nicoletti NF, Marinowic D, Moura E Silva S, Marcos-Fernandez A, Falavigna A, Bianchi O. Polyurethane tissue adhesives for annulus fibrosus repair: Mechanical restoration and cytotoxicity. J Biomater Appl 2019; 34:673-686. [PMID: 31354030 DOI: 10.1177/0885328219864901] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Lucas Dall Agnol
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil
| | | | | | - Daniel Marinowic
- 4 Brain Institute of Rio Grande do Sul (BraIns), Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Sidnei Moura E Silva
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,5 Laboratory of Biotechnology of Natural and Synthetics Products, Technology Department, Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul, RS, Brazil
| | | | - Asdrubal Falavigna
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,3 Cell Therapy Laboratory (LATEC), University of Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Otávio Bianchi
- 1 Health Sciences Graduate Program, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,2 Materials Science Graduate Program (PGMAT), University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil.,7 Federal University of Rio Grande do Sul, Materials engineering department, Porto Alegre, Brazil
| |
Collapse
|
19
|
Gregorí Valdés BS, Gomes CSB, Gomes PT, Ascenso JR, Diogo HP, Gonçalves LM, Galhano Dos Santos R, Ribeiro HM, Bordado JC. Synthesis and Characterization of Isosorbide-Based Polyurethanes Exhibiting Low Cytotoxicity Towards HaCaT Human Skin Cells. Polymers (Basel) 2018; 10:polym10101170. [PMID: 30961095 PMCID: PMC6403884 DOI: 10.3390/polym10101170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/02/2022] Open
Abstract
The synthesis of four samples of new polyurethanes was evaluated by changing the ratio of the diol monomers used, poly(propylene glycol) (PPG) and D-isosorbide, in the presence of aliphatic isocyanates such as the isophorone diisocyanate (IPDI) and 4,4′-methylenebis(cyclohexyl isocyanate) (HMDI). The thermal properties of the four polymers obtained were determined by DSC, exhibiting Tg values in the range 55–70 °C, and their molecular structure characterized by FTIR, 1H, and 13C NMR spectroscopies. The diffusion coefficients of these polymers in solution were measured by the Pulse Gradient Spin Echo (PGSE) NMR method, enabling the calculation of the corresponding hydrodynamic radii in diluted solution (1.62–2.65 nm). The molecular weights were determined by GPC/SEC and compared with the values determined by a quantitative 13C NMR analysis. Finally, the biocompatibility of the polyurethanes was assessed using the HaCaT keratinocyte cell line by the MTT reduction assay method showing values superior to 70% cell viability.
Collapse
Affiliation(s)
- Barbara S Gregorí Valdés
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Clara S B Gomes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Pedro T Gomes
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - José R Ascenso
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Hermínio P Diogo
- Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Lídia M Gonçalves
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - Rui Galhano Dos Santos
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Helena M Ribeiro
- Research Institute for Medicine and Pharmaceutical Science (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal.
| | - João C Bordado
- CERENA, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
20
|
Heher P, Ferguson J, Redl H, Slezak P. An overview of surgical sealant devices: current approaches and future trends. Expert Rev Med Devices 2018; 15:747-755. [DOI: 10.1080/17434440.2018.1526672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Philipp Heher
- Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria
| | - James Ferguson
- Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria
| | - Heinz Redl
- Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria
| | - Paul Slezak
- Austrian Cluster for Tissue Regeneration, Ludwig Boltzmann Institute for Experimental and Clinical Traumatology/AUVA Research Center, Vienna, Austria
| |
Collapse
|
21
|
Fukushima K, Tanaka H, Kadaba Srinivasan P, Pawlowsky K, Kögel B, Uemoto S, Ku Y, Tolba R. Hemostatic Efficacy and Safety of the Novel Medical Adhesive, MAR VIVO-107, in a Rabbit Liver Resection Model. Eur Surg Res 2018; 59:48-57. [DOI: 10.1159/000481818] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 09/25/2017] [Indexed: 11/19/2022]
Abstract
Background: Topical hemostatic agents are useful when hepatic hemorrhage is difficult to control. The aim of this study was to evaluate the hemostatic efficacy and safety of a biodegradable polyurethane-based adhesive, MAR VIVO-107 (MAR), in comparison with a clinically used fibrin glue. Methods: Thirty female New Zealand white rabbits were randomly assigned to 3 study groups as follows: MAR (n = 10), fibrin glue (n = 10), and saline groups (n = 10). After standardized partial liver resection was performed, each agent was immediately applied to the wound area. Bleeding time until hemostasis and blood loss were recorded. After 7 days, body weight, hematology parameters, and serum levels of aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase were measured. Simultaneously, the severity of intra-abdominal adhesion was evaluated. Results: The mean bleeding time in the MAR (38 ± 10 s) and fibrin glue groups (65 ± 17 s) was significantly shorter than that in the saline group (186 ± 12 s). Similarly, the mean blood loss in the MAR (9 ± 3 g) and fibrin glue groups (9 ± 3 g) was significantly less than that in the saline group (23 ± 4 g). No significant differences in bleeding time and blood loss were found between the MAR and fibrin glue groups. The postoperative survival rate was 100% in all the groups. Body weight as well as hematological and serum biochemical values on day 7 were within the small and physiological range when compared with the preoperative baseline values, and significant differences were not detected among the MAR, fibrin glue, and saline groups. The severities of adhesion were similar between the 3 groups. Conclusion: Our data demonstrated that MAR was not inferior to fibrin glue in terms of hemostatic efficacy and safety.
Collapse
|
22
|
Nanda HS, Shah AH, Wicaksono G, Pokholenko O, Gao F, Djordjevic I, Steele TWJ. Nonthrombogenic Hydrogel Coatings with Carbene-Cross-Linking Bioadhesives. Biomacromolecules 2018; 19:1425-1434. [DOI: 10.1021/acs.biomac.8b00074] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Himansu Sekhar Nanda
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
- Department of Mechanical Engineering, PDPM-Indian Institute of Information Technology, Design and Manufacturing (IIITDM)-Jabalpur, Dumna Airport Road, Jabalpur-482005, Madhya Pradesh, India
| | - Ankur Harish Shah
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Gautama Wicaksono
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Oleksandr Pokholenko
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Feng Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| | - Ivan Djordjevic
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León 64849, Mexico
| | - Terry W. J. Steele
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798
| |
Collapse
|
23
|
Srinivasan PK, Sperber V, Afify M, Tanaka H, Fukushima K, Kögel B, Gremse F, Tolba R. Novel synthetic adhesive as an effective alternative to Fibrin based adhesives. World J Hepatol 2017; 9:1030-1039. [PMID: 28932349 PMCID: PMC5583535 DOI: 10.4254/wjh.v9.i24.1030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To compare a novel, fully synthetic, polyurethane based glue (MAR-1) to fibrin sealant in a partial liver resection rat model.
METHODS After 50% resection of the lateral left liver lobe in male Wistar rats (n = 7/group/time point), MAR-1, Fibrin or NaCl was applied. After 14, 21 and 90 postoperative days, sealant degradation, intra-abdominal adhesions were scored, and histological examination of liver tissue was performed.
RESULTS (Mean ± SEM) (MAR-1 vs Fibrin vs NaCl). Bleeding mass was significantly higher in NaCl (3.36 ± 0.51 g) compared to MAR-1 (1.44 ± 0.40 g) and Fibrin (1.16 ± 0.32 g). At 14 and 90 d, bleeding time was significantly lower in MAR-1 (6.00 ± 0.9 s; 13.57 ± 3.22 s) and Fibrin (3.00 ± 0.44 s; 22.2 ± 9.75 s) compared to NaCl (158.16 ± 11.36 s; 127.5 ± 23.3 s). ALT levels were significantly higher in MAR-1 (27.66 ± 1 U/L) compared to Fibrin (24.16 ± 0.98 U/L) and NaCl (23.85 ± 0.80 U/L). Intrabdominal adhesions were significantly lower in MAR-1 (11.22% ± 5.5%) compared to NaCl (58.57% ± 11.83%). Degradation of the glue was observed and MAR-1 showed almost no traces of glue in the abdominal cavity as compared to the Fibrin (10% ± 5% 14 d; 7% ± 3% 21 d). Survival showed no significant differences between the groups.
CONCLUSION Compared to Fibrin, MAR-1 showed similar hemostatic properties, no adverse effects, and is biocompatible. Further studies on adhesion strength and biodegradability of synthetic sealants are warranted.
Collapse
Affiliation(s)
- Pramod Kadaba Srinivasan
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Vera Sperber
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Mamdouh Afify
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Hirokazu Tanaka
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Kenji Fukushima
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Babette Kögel
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - Felix Gremse
- Experimental Molecular Imaging, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, University Hospital, RWTH Aachen, 52074 Aachen, Germany
| |
Collapse
|
24
|
Bochyńska A, Hannink G, Buma P, Grijpma D. Adhesion of tissue glues to different biological substrates. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3909] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- A.I. Bochyńska
- MIRA Institute for Biomedical Engineering and Technical Medicine and Faculty of Science and Technology, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - G. Hannink
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - P. Buma
- Orthopaedic Research Laboratory, Department of Orthopaedics, Nijmegen Centre for Molecular Life Sciences; Radboud University Nijmegen Medical Centre; Nijmegen the Netherlands
| | - D.W. Grijpma
- MIRA Institute for Biomedical Engineering and Technical Medicine and Faculty of Science and Technology, Department of Biomaterials Science and Technology; University of Twente; Enschede the Netherlands
- W.J. Kolff Institute, Department of Biomedical Engineering; University Medical Centre Groningen, University of Groningen; Groningen the Netherlands
| |
Collapse
|
25
|
Marques DS, Santos JMC, Ferreira P, Correia TR, Correia IJ, Gil MH, Baptista CMSG. Functionalization and photocuring of an L-lactic acid macromer for biomedical applications. INT J POLYM MATER PO 2016. [DOI: 10.1080/00914037.2015.1129962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Balcioglu S, Parlakpinar H, Vardi N, Denkbas EB, Karaaslan MG, Gulgen S, Taslidere E, Koytepe S, Ates B. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4456-4466. [PMID: 26824739 DOI: 10.1021/acsami.5b12279] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Developing biocompatible tissue adhesives with high adhesion properties is a highly desired goal of the tissue engineering due to adverse effects of the sutures. Therefore, our work involves synthesis, characterization, adhesion properties, protein adsorption, in vitro biodegradation, in vitro and in vivo biocompatibility properties of xylose-based semisynthetic polyurethane (NPU-PEG-X) bioadhesives. Xylose-based semisynthetic polyurethanes were developed by the reaction among 4,4'-methylenebis(cyclohexyl isocyanate) (MCI), xylose and polyethylene glycol 200 (PEG). Synthesized polyurethanes (PUs) showed good thermal stability and high adhesion strength. The highest values in adhesion strength were measured as 415.0 ± 48.8 and 94.0 ± 2.8 kPa for aluminum substrate and muscle tissue in 15% xylose containing PUs (NPU-PEG-X-15%), respectively. The biodegradation of NPU-PEG-X-15% was also determined as 19.96 ± 1.04% after 8 weeks of incubation. Relative cell viability of xylose containing PU was above 86%. Moreover, 10% xylose containing NPU-PEG-X (NPU-PEG-X-10%) sample has favorable tissue response, and inflammatory reaction between 1 and 6 weeks implantation period. With high adhesiveness and biocompatibility properties, NPU-PEG-X can be used in the medical field as supporting materials for preventing the fluid leakage after abdominal surgery or wound closure.
Collapse
Affiliation(s)
- Sevgi Balcioglu
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Faculty of Medicine, Inonu University , Malatya 44280, Turkey
| | - Nigar Vardi
- Department of Histology-Embryology, Faculty of Medicine, Inonu University , Malatya 44280, Turkey
| | - Emir Baki Denkbas
- Department of Chemistry, Faculty of Science, Hacettepe University , Ankara 06800, Turkey
| | | | - Selam Gulgen
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| | - Elif Taslidere
- Department of Histology-Embryology, Faculty of Medicine, Inonu University , Malatya 44280, Turkey
| | - Suleyman Koytepe
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| | - Burhan Ates
- Department of Chemistry, Faculty of Science, Inonu University , Malatya 44280, Turkey
| |
Collapse
|
27
|
Marques D, Santos J, Ferreira P, Correia T, Correia I, Gil M, Baptista C. Photocurable bioadhesive based on lactic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:601-9. [DOI: 10.1016/j.msec.2015.09.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/26/2015] [Accepted: 09/03/2015] [Indexed: 02/06/2023]
|
28
|
|
29
|
Annabi N, Yue K, Tamayol A, Khademhosseini A. Elastic sealants for surgical applications. Eur J Pharm Biopharm 2015; 95:27-39. [PMID: 26079524 PMCID: PMC4591192 DOI: 10.1016/j.ejpb.2015.05.022] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/21/2022]
Abstract
Sealants have emerged as promising candidates for replacing sutures and staples to prevent air and liquid leakages during and after the surgeries. Their physical properties and adhesion strength to seal the wound area without limiting the tissue movement and function are key factors in their successful implementation in clinical practice. In this contribution, the advances in the development of elastic sealants formed from synthetic and natural materials are critically reviewed and their shortcomings are pointed out. In addition, we highlight the applications in which elasticity of the sealant is critical and outline the limitations of the currently available sealants. This review will provide insights for the development of novel bioadhesives with advanced functionality for surgical applications.
Collapse
Affiliation(s)
- Nasim Annabi
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115-5000, USA; Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Kan Yue
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Tamayol
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ali Khademhosseini
- Biomaterials Innovations Research Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA; Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
30
|
Scognamiglio F, Travan A, Rustighi I, Tarchi P, Palmisano S, Marsich E, Borgogna M, Donati I, de Manzini N, Paoletti S. Adhesive and sealant interfaces for general surgery applications. J Biomed Mater Res B Appl Biomater 2015; 104:626-39. [PMID: 25891348 DOI: 10.1002/jbm.b.33409] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Revised: 01/15/2015] [Accepted: 02/26/2015] [Indexed: 12/16/2022]
Abstract
The main functions of biological adhesives and sealants are to repair injured tissues, reinforce surgical wounds, or even replace common suturing techniques. In general surgery, adhesives must match several requirements taking into account clinical needs, biological effects, and material features; these requirements can be fulfilled by specific polymers. Natural or synthetic polymeric materials can be employed to generate three-dimensional networks that physically or chemically bind to the target tissues and act as hemostats, sealants, or adhesives. Among them, fibrin, gelatin, dextran, chitosan, cyanoacrylates, polyethylene glycol, and polyurethanes are the most important components of these interfaces; various aspects regarding their adhesion mechanisms, mechanical performance, and resistance to body fluids should be taken into account to choose the most suitable formulation for the target application. This review aims to describe the main adhesives and sealant materials for general surgery applications developed in the past decades and to highlight the most important aspects for the development of future formulations.
Collapse
Affiliation(s)
| | - Andrea Travan
- Department of Life Sciences, University of Trieste, Italy
| | | | - Paola Tarchi
- Department of Medical, Surgical and Health Sciences, Internal Medicine Clinic, University of Trieste, Italy
| | - Silvia Palmisano
- Department of Medical, Surgical and Health Sciences, Internal Medicine Clinic, University of Trieste, Italy
| | - Eleonora Marsich
- Department of Medical, Surgical and Health Sciences, Internal Medicine Clinic, University of Trieste, Italy
| | | | - Ivan Donati
- Department of Life Sciences, University of Trieste, Italy
| | - Nicolò de Manzini
- Department of Medical, Surgical and Health Sciences, Internal Medicine Clinic, University of Trieste, Italy
| | | |
Collapse
|
31
|
|
32
|
Lurtz C, Voss K, Hahn V, Schauer F, Wegmann J, Odermatt EK, Schmitz KP, Sternberg K. In vitro degradation and drug release of a biodegradable tissue adhesive based on functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:667-678. [PMID: 23274628 DOI: 10.1007/s10856-012-4826-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Biodegradability and adhesive-associated local drug release are important aspects of research in tissue adhesive development. Therefore, this study focuses on investigating the in vitro degradation and drug release of a tissue adhesive consisting of hexamethylene diisocyanate functionalized 1,2-ethylene glycol bis(dilactic acid) and chitosan chloride. To prevent infections, ciprofloxacin hydrochloride (CPX·HCl) was incorporated into the adhesive. The influence of CPX·HCl on the adhesive reaction and adhesive strength was analyzed by FTIR-ATR-spectroscopy and tensile tests. The CPX·HCl release was investigated by HPLC. The degradation-induced changes at 37 °C were evaluated by gravimetric/morphological analyzes and micro-computer tomography. The antibiotic potential of the CPX·HCl loaded adhesive was determined by agar diffusion tests. The degradation tests revealed a mass loss of about 78 % after 52 weeks. The adhesive reaction velocity and tensile strength were not influenced by CPX·HCl. Using a 2 mg/g CPX·HCl loaded adhesive an inhibition of all tested bacteria was observed.
Collapse
Affiliation(s)
- Claudia Lurtz
- Institute for Biomedical Engineering, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Duarte A, Coelho J, Bordado J, Cidade M, Gil M. Surgical adhesives: Systematic review of the main types and development forecast. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2011.12.003] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
34
|
Polymer brushes and self-assembled monolayers: Versatile platforms to control cell adhesion to biomaterials (Review). Biointerphases 2009; 4:FA3-16. [DOI: 10.1116/1.3089252] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|