1
|
Banihashemian SA, Zamanlui Benisi S, Hosseinzadeh S, Shojaei S, Abbaszadeh HA. Chitosan/Hyaluronan and Alginate-Nanohydroxyapatite Biphasic Scaffold as a Promising Matrix for Osteoarthritis Disorders. Adv Pharm Bull 2024; 14:176-191. [PMID: 38585453 PMCID: PMC10997938 DOI: 10.34172/apb.2024.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 06/24/2023] [Accepted: 07/19/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Regenerative medicine offers new techniques for osteoarthritis (OA) disorders, especially while considering simultaneous chondral and subchondral regenerations. Methods Chitosan and hyaluronan were chemically bound as the chondral phase and the osteogenic layer was prepared with alginate and nano-hydroxyapatite (nHAP). These scaffolds were fixed by fibrin glue as a biphasic scaffold and then examined. Results Scanning electron microscopy (SEM) confirmed the porosity of 61.45±4.51 and 44.145±2.81 % for the subchondral and chondral layers, respectively. The composition analysis by energy dispersive X-ray (EDAX) indicated the various elements of both hydrogels. Also, their mechanical properties indicated that the highest modulus and resistance values corresponded to the biphasic hydrogel as 108.33±5.56 and 721.135±8.21 kPa, despite the same strain value as other groups. Their individual examinations demonstrated the proteoglycan synthesis of the chondral layer and also, the alkaline phosphatase (ALP) activity of the subchondral layer as 13.3±2.2 ng. After 21 days, the cells showed a mineralized surface and a polygonal phenotype, confirming their commitment to bone and cartilage tissues, respectively. Immunostaining of collagen I and II represented greater extracellular matrix (ECM) secretion in the biphasic composite group due to the paracrine effect of the two cell types on each other. Conclusion For the first time, the ability of this biphasic scaffold to regenerate both tissue types was evaluated and the results showed satisfactory cellular commitment to bone and cartilage tissues. Thus, this scaffold can be considered a new strategy for the preparation of implants for OA.
Collapse
Affiliation(s)
- Seyed Abdolvahab Banihashemian
- Advanced Medical Sciences and Technologies Department, Faculty of Biomedical Engineering, Central Tehran Branch Islamic Azad University, Tehran, Iran
| | - Soheila Zamanlui Benisi
- Stem Cell Research Center, Tissue Engineering and Regenerative Medicine Institute, Tehran Central Branch, Islamic Azad University, Tehran, Iran
| | - Simzar Hosseinzadeh
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahrokh Shojaei
- Islamic Azad University Central Tehran Branch, Department of Biomedical Engineering, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Haki M, Shamloo A, Eslami SS, Mir-Mohammad-Sadeghi F, Maleki S, Hajizadeh A. Fabrication and characterization of an antibacterial chitosan-coated allantoin-loaded NaCMC/SA skin scaffold for wound healing applications. Int J Biol Macromol 2023; 253:127051. [PMID: 37748589 DOI: 10.1016/j.ijbiomac.2023.127051] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/27/2023]
Abstract
The field of tissue engineering has recently emerged as one of the most promising approaches to address the limitations of conventional tissue replacements for severe injuries. This study introduces a chitosan-coated porous skin scaffold based on sodium carboxymethyl cellulose (NaCMC) and sodium alginate (SA) hydrogels, incorporating allantoin (AL) as an antibacterial agent. The NaCMC/SA hydrogel was cross-linked with epichlorohydrin (ECH) and freeze-dried to obtain a three-dimensional porous structure. The coated and non-coated scaffolds underwent comprehensive evaluation and characterization through various in-vitro analyses, including SEM imaging, swelling, degradation, and mechanical assessments. Furthermore, the scaffolds were studied regarding their allantoin (AL) release profiles, antibacterial properties, cell viability, and cell adhesion. The in-vitro analyses revealed that adding a chitosan (CS) coating and allantoin (AL) to the NaCMC/SA hydrogel significantly improved the scaffolds' antibacterial properties and cell viability. It was observed that the NaCMC:SA ratio and ECH concentration influenced the swelling capacity, biodegradation, drug release profile, and mechanical properties of the scaffolds. Samples with higher NaCMC content exhibited enhanced swelling capacity, more controlled allantoin (AL) release, and improved mechanical strength. Furthermore, the in-vivo results demonstrated that the proposed skin scaffold exhibited satisfactory biocompatibility and supported cell viability during wound healing in Wistar rats, highlighting its potential for clinical applications.
Collapse
Affiliation(s)
- Mohammad Haki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
| | - Sara-Sadat Eslami
- Department of Chemical Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Sasan Maleki
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| | - Arman Hajizadeh
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran; Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
3
|
Kokorev OV, Marchenko ES, Khlusov IA, Volinsky AA, Yasenchuk YF, Monogenov AN. Engineered Fibrous NiTi Scaffolds with Cultured Hepatocytes for Liver Regeneration in Rats. ACS Biomater Sci Eng 2023; 9:1558-1569. [PMID: 36802492 DOI: 10.1021/acsbiomaterials.2c01268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
At present, the use of alternative systems to replenish the lost functions of hepatic metabolism and partial replacement of liver organ failure is relevant, due to an increase in the incidence of various liver disorders, insufficiency, and cost of organs for transplantation, as well as the high cost of using the artificial liver systems. The development of low-cost intracorporeal systems for maintaining hepatic metabolism using tissue engineering, as a bridge before liver transplantation or completely replacing liver function, deserves special attention. In vivo applications of intracorporeal fibrous nickel-titanium scaffolds (FNTSs) with cultured hepatocytes are described. Hepatocytes cultured in FNTSs are superior to their injections in terms of liver function, survival time, and recovery in a CCl4-induced cirrhosis rats' model. 232 animals were divided into 5 groups: control, CCl4-induced cirrhosis, CCl4-induced cirrhosis followed by implantation of cell-free FNTSs (sham surgery), CCl4-induced cirrhosis followed by infusion of hepatocytes (2 mL, 107 cells/mL), and CCl4-induced cirrhosis followed by FNTS implantation with hepatocytes. Restoration of hepatocyte function in the FNTS implantation with the hepatocytes group was accompanied by a significant decrease in the level of aspartate aminotransferase (AsAT) in blood serum compared to the cirrhosis group. A significant decrease in the level of AsAT was noted after 15 days in the infused hepatocytes group. However, on the 30th day, the AsAT level increased and was close to the cirrhosis group due to the short-term effect after the introduction of hepatocytes without a scaffold. The changes in alanine aminotransferase (AlAT), alkaline phosphatase (AlP), total and direct bilirubin, serum protein, triacylglycerol, lactate, albumin, and lipoproteins were similar to those in AsAT. The survival time of animals was significantly longer in the FNTS implantation with hepatocytes group. The obtained results showed the scaffolds' ability to support hepatocellular metabolism. The development of hepatocytes in FNTS was studied in vivo using 12 animals using scanning electron microscopy. Hepatocytes demonstrated good adhesion to the scaffold wireframe and survival in allogeneic conditions. Mature tissue, including cellular and fibrous, filled the scaffold space by 98% in 28 days. The study shows the extent to which an implantable "auxiliary liver" compensates for the lack of liver function without replacement in rats.
Collapse
Affiliation(s)
- Oleg V Kokorev
- National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
- Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
| | | | - Igor A Khlusov
- Siberian State Medical University, 2 Moskovsky Trakt, Tomsk 634050, Russia
| | - Alex A Volinsky
- National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
- Department of Mechanical Engineering, University of South Florida, 4202 E. Fowler Ave. ENG030, Tampa, Florida 33620, United States
| | - Yuri F Yasenchuk
- National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | | |
Collapse
|
4
|
Aswathy J, Resmi R, Joseph J, Joseph R, John A, Abraham A. Calotropis gigantea incorporated alginate dialdehyde-gelatin hydrogels for cartilage tissue regeneration in Osteoarthritis. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
5
|
From Biomedical Applications of Alginate towards CVD Implications Linked to COVID-19. Pharmaceuticals (Basel) 2022; 15:ph15030318. [PMID: 35337116 PMCID: PMC8955152 DOI: 10.3390/ph15030318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022] Open
Abstract
In the past year, researchers have focused their attention on developing new strategies for understanding how the coronavirus affects human health and developing novel biomaterials to help patients with cardiovascular disease, which greatly increases the risk of complications from the virus. Natural biopolymers have been investigated, and it has been proven that alginate-based materials have important features. This review presents an overview of alginate-based materials used for developing innovative biomaterial platforms for biomedical applications to mitigate the effects of the coronavirus. As presented in this review, COVID-19 affects the cardiovascular system, not only the lungs. The first part of the review presents an introduction to cardiovascular diseases and describes how they have become an important problem worldwide. In the second part of the review, the origin and unique properties of the alginate biopolymer are presented. Among the properties of alginate, the most important are its biocompatibility, biodegradability, low cost, nontoxicity, unique structure, and interesting features after chemical modification. The third section of the review illustrates some of the functions of alginate in biomedical, pharmaceutical, and drug delivery applications. Researchers are using alginate to develop new devices and materials for repairing heart tissues that have been damaged by the coronavirus. Further, insights regarding how cardiovascular disease affects COVID-19 patients are also discussed. Finally, we conclude the review by presenting a summary of the impacts of COVID-19 on cardiovascular patients, their implications, and several hypothetical alginate-based treatments for infected patients.
Collapse
|
6
|
Kang Y, Xu C, Meng L, Dong X, Qi M, Jiang D. Exosome-functionalized magnesium-organic framework-based scaffolds with osteogenic, angiogenic and anti-inflammatory properties for accelerated bone regeneration. Bioact Mater 2022; 18:26-41. [PMID: 35387167 PMCID: PMC8961306 DOI: 10.1016/j.bioactmat.2022.02.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 12/12/2022] Open
Abstract
Exosomes derived from human adipose-derived stem cells (hADSCs-Exos) have shown potential as an effective therapeutic tool for repairing bone defects. Although metal-organic framework (MOF) scaffolds are promising strategies for bone tissue regeneration, their potential use for exosome loading remains unexplored. In this study, motivated by the potential advantages of hADSCs-Exos and Mg-GA MOF, we designed and synthesized an exosome-functionalized cell-free PLGA/Mg-GA MOF (PLGA/Exo-Mg-GA MOF) scaffold, taking using of the benefits of hADSCs-Exos, Mg2+, and gallic acid (GA) to construct unique nanostructural interfaces to enhance osteogenic, angiogenic and anti-inflammatory capabilities simultaneously. Our in vitro work demonstrated the beneficial effects of PLGA/Exo-Mg-GA MOF composite scaffolds on the osteogenic effects in human bone marrow-derived mesenchymal stem cells (hBMSCs) and angiogenic effects in human umbilical endothelial cells (HUVECs). Slowly released hADSCs-Exos from composite scaffolds were phagocytosed by co-cultured cells, stabilized the bone graft environment, ensured blood supply, promoted osteogenic differentiation, and accelerated bone reconstruction. Furthermore, our in vivo experiments with rat calvarial defect model showed that PLGA/Exo-Mg-GA MOF scaffolds promoted new bone formation and satisfactory osseointegration. Overall, we provide valuable new insights for designing exosome-coated nanocomposite scaffolds with enhanced osteogenesis property. PLGA/Exo-Mg-GA MOF scaffolds with nanostructures were synthesized, on which exosomes were densely deposited on the above scaffolds. Composite scaffolds with exosomes can actualize the slow release of exosomes, Mg ions and gallic acid. PLGA/Exo-Mg-GA MOF scaffolds exhibit great biocompatibility and osteogenic differentiation of hBMSCs. PLGA/Exo-Mg-GA MOF scaffolds have excellent osteogenic, pro-angiogenic and anti-inflammatory activity.
Collapse
|
7
|
Application of Alginate Hydrogels for Next-Generation Articular Cartilage Regeneration. Int J Mol Sci 2022; 23:ijms23031147. [PMID: 35163071 PMCID: PMC8835677 DOI: 10.3390/ijms23031147] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
The articular cartilage has insufficient intrinsic healing abilities, and articular cartilage injuries often progress to osteoarthritis. Alginate-based scaffolds are attractive biomaterials for cartilage repair and regeneration, allowing for the delivery of cells and therapeutic drugs and gene sequences. In light of the heterogeneity of findings reporting the benefits of using alginate for cartilage regeneration, a better understanding of alginate-based systems is needed in order to improve the approaches aiming to enhance cartilage regeneration with this compound. This review provides an in-depth evaluation of the literature, focusing on the manipulation of alginate as a tool to support the processes involved in cartilage healing in order to demonstrate how such a material, used as a direct compound or combined with cell and gene therapy and with scaffold-guided gene transfer procedures, may assist cartilage regeneration in an optimal manner for future applications in patients.
Collapse
|
8
|
Rogulska OY, Trufanova NA, Petrenko YA, Repin NV, Grischuk VP, Ashukina NO, Bondarenko SY, Ivanov GV, Podorozhko EA, Lozinsky VI, Petrenko AY. Generation of bone grafts using cryopreserved mesenchymal stromal cells and macroporous collagen-nanohydroxyapatite cryogels. J Biomed Mater Res B Appl Biomater 2021; 110:489-499. [PMID: 34387944 DOI: 10.1002/jbm.b.34927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/27/2021] [Accepted: 08/01/2021] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering strategy involves the 3D scaffolds and appropriate cell types promoting the replacement of the damaged area. In this work, we aimed to develop a fast and reliable clinically relevant protocol for engineering viable bone grafts, using cryopreserved adipose tissue-derived mesenchymal stromal cells (MSCs) and composite 3D collagen-nano-hydroxyapatite (nanoHA) scaffolds. Xeno- and DMSO-free cryopreserved MSCs were perfusion-seeded into the biomimetic collagen/nanoHA scaffolds manufactured by cryotropic gelation and their osteoregenerative potential was assessed in vitro and in vivo. Cryopreserved MSCs retained the ability to homogenously repopulate the whole volume of the scaffolds during 7 days of post-thaw culture. Moreover, the scaffold provided a suitable microenvironment for induced osteogenic differentiation of cells, confirmed by alkaline phosphatase activity and mineralization. Implantation of collagen-nanoHA cryogels with cryopreserved MSCs accelerated woven bone tissue formation, maturation of bone trabeculae, and vascularization of femur defects in immunosuppressed rats compared to cell-free collagen-nanoHA scaffolds. The established combination of xeno-free cell culture and cryopreservation techniques together with an appropriate scaffold design and cell repopulation approach accelerated the generation of viable bone grafts.
Collapse
Affiliation(s)
- Olena Y Rogulska
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.,Biochemistry department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| | - Nataliya A Trufanova
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Yuriy A Petrenko
- Neuroregeneration department, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| | - Nikolay V Repin
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Victor P Grischuk
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine
| | - Nataliya O Ashukina
- Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - Stanislav Y Bondarenko
- Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - Gennadiy V Ivanov
- Laboratory of Connective Tissue Morphology, Department of transplantology and experimental modeling with an experimental biological clinic, Department of Joint Pathology, Sytenko Institute of Spine and Joint Pathology National Academy of Medical Sciences of Ukraine, Kharkiv, Ukraine
| | - Elena A Podorozhko
- Laboratory for Cryochemistry of BioPolymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Vladimir I Lozinsky
- Laboratory for Cryochemistry of BioPolymers, A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander Y Petrenko
- Biochemistry department, Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Kharkiv, Ukraine.,Biochemistry department, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine
| |
Collapse
|
9
|
Raghav S, Jain P, Kumar D. Alginates: Properties and Applications. POLYSACCHARIDES 2021. [DOI: 10.1002/9781119711414.ch19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
10
|
Krasnov MS, Shaikhaliev AI, Korshakov EV, Gasbanov GA, Korgoloev RS, Sinitskaya ES, Sidorskii EV, Yamskova VP, Lozinsky VI. Changes in Rat Bone Tissue at the Site of the Defect In Vivo under the Effect of a Cryogenically Structured Albumin Sponge Containing a Bioregulator. Bull Exp Biol Med 2021; 170:805-808. [PMID: 33893964 DOI: 10.1007/s10517-021-05160-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Indexed: 12/21/2022]
Abstract
We performed a morphological study of the bone tissue after implantation of a cryogenically structured albumin sponge containing a bioregulator isolated from blood serum into an extensive experimental defect of the femur. By day 90, no complete reparation of the bone tissue was achieved in the control group (without implantation of 3D carrier), a loose spongy bone is formed at the site of the defect. After implantation of the 3D carrier without serum bioregulator, the defect was closed, but the formed bone was loose and contained no inflammation foci. After the defect was filed with the albumin sponge with the bioregulator, the repair pattern corresponded to the processes of epimorphic tissue regeneration. The results suggest that cryogenically structured protein material in combination with a serum bioregulator ensured complete restoration of the bone tissue.
Collapse
Affiliation(s)
- M S Krasnov
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia.
| | - A I Shaikhaliev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E V Korshakov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - G A Gasbanov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - R S Korgoloev
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - E S Sinitskaya
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - E V Sidorskii
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| | - V P Yamskova
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - V I Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
11
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 55. Retrospective View on the More than 40 Years of Studies Performed in the A.N.Nesmeyanov Institute of Organoelement Compounds with Respect of the Cryostructuring Processes in Polymeric Systems. Gels 2020; 6:E29. [PMID: 32927850 PMCID: PMC7559272 DOI: 10.3390/gels6030029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 02/06/2023] Open
Abstract
The processes of cryostructuring in polymeric systems, the techniques of the preparation of diverse cryogels and cryostructurates, the physico-chemical mechanisms of their formation, and the applied potential of these advanced polymer materials are all of high scientific and practical interest in many countries. This review article describes and discusses the results of more than 40 years of studies in this field performed by the researchers from the A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences-one of the key centers, where such investigations are carried out. The review includes brief historical information, the description of the main effects and trends characteristic of the cryostructuring processes, the data on the morphological specifics inherent in the polymeric cryogels and cryostructurates, and examples of their implementation for solving certain applied tasks.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia
| |
Collapse
|
12
|
Influence of succinylation of a wide-pore albumin cryogels on their properties, structure, biodegradability, and release dynamics of dioxidine loaded in such spongy carriers. Int J Biol Macromol 2020; 160:583-592. [PMID: 32479937 DOI: 10.1016/j.ijbiomac.2020.05.251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/14/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022]
Abstract
The goal of this study was to reveal how the chemical modification, succinylation in this case, of the wide-pore serum-albumin-based cryogels affects on their osmotic characteristics (swelling extent), biodegradability and ability to be loaded with the bactericide substance - dioxidine, as well as on its release. The cryogels were prepared via the cryogenic processing (freezing - frozen storage - thawing) of aqueous solutions containing bovine serum albumin (50 g/L), denaturant (urea or guanidine hydrochloride, 1.0 mol/L) and reductant (cysteine, 0.01 mol/L). Freezing/frozen storage temperatures were either -15, or -20, or -25 °C. After defrosting, spongy cryogels were obtained that possessed the system of interconnected gross pores, whose shape and dimensions were dependent on the freezing temperature and on the type of denaturant introduced in the feed solution. Subsequent succinylation of the resultant cryogels caused the growth of the swelling degree of the pore walls of these spongy materials, resulted in strengthening of their resistance against of trypsinolysis and gave rise to an increase in their loading capacity with respect to dioxidine. With that, the microbiological tests showed a higher bactericidal activity of the dioxidine-loaded sponges based on the succinylated albumin cryogels as compared to that of the drug-carriers based on the non-modified protein sponges.
Collapse
|
13
|
Afjoul H, Shamloo A, Kamali A. Freeze-gelled alginate/gelatin scaffolds for wound healing applications: An in vitro, in vivo study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110957. [PMID: 32487379 DOI: 10.1016/j.msec.2020.110957] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
In this study, fabrication of a three-dimensional porous scaffold was performed using freeze gelation method. Recently, fabrication of scaffolds using polymer blends has become common for many tissue engineering applications due to their unique tunable properties. In this work, we fabricated alginate-gelatin porous hydrogels for wound healing application using a new method based on some modifications to the freeze-gelation method. Alginate and gelatin were mixed in three different ratios and the resulting solutions underwent freeze gelation to obtain 3D porous matrices. We analyzed the samples using different characterization tests. The scanning electron microscopy (SEM) results indicated that the freeze gelation method was successful in obtaining porous morphologies for all the fabricated alginate-gelatin samples as previously was seen in single-polymer fabrication using this method. The alginate to gelatin ratio affected swelling, biodegradation, cell culture and mechanical properties of the matrices. The scaffold with the lowest content of gelatin had the highest swelling ratio while biodegradation and cell proliferation and viability were increased with the gelatin content. Regarding the mechanical properties, as the gelatin content increased, the scaffold became more ductile and showed higher tensile strength. The in-vivo results also showed the biocompatibility of the blend scaffold and its positive role in wound healing process in rats. The low-cost procedure used in this study to fabricate the porous alginate-gelatin scaffolds can be adapted and modified to suit different tissue engineering applications.
Collapse
Affiliation(s)
- Homa Afjoul
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Ali Kamali
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
14
|
Induction of Osteogenesis in Rat Bone Tissue Using Cryogenically Structured Porous 3D Materials Containing a Bioregulator. Bull Exp Biol Med 2019; 168:99-103. [DOI: 10.1007/s10517-019-04657-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Indexed: 12/20/2022]
|
15
|
Zvukova ND, Klimova TP, Ivanov RV, Ryabev AN, Tsiskarashvili AV, Lozinsky VI. Cryostructuring of Polymeric Systems. 52. Properties, Microstructure and an Example of a Potential Biomedical Use of the Wide-Pore Alginate Cryostructurates. Gels 2019; 5:E25. [PMID: 31075923 PMCID: PMC6630887 DOI: 10.3390/gels5020025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022] Open
Abstract
Wide-pore cryostructurates were prepared via freezing sodium alginate aqueous solutions with subsequent ice sublimation from the frozen samples, followed by their incubation in the ethanol solutions of calcium chloride or sulfuric acid, rinsing, and final drying. Such sequence of operations resulted in the calcium alginate or alginic acid sponges, respectively. The swelling degree of the walls of macropores in such matrices decreased with increasing polymer concentration in the initial solution. The dependence of the degree of swelling on the cryogenic processing temperature had a bell-like character with a maximum for the samples formed at -20 °C. According to 1H NMR spectroscopy, the content of mobile (non-frozen) water in the frozen water-sodium alginate systems also depended on the initial polymer concentration and freezing temperature. The cryostructurates obtained did not lose their integrity in water, saline, in an acidic medium at pH 2 for at least three weeks. Under alkaline conditions at pH 12 the first signs of dissolution of the Ca-alginate sponge arose only after a week of incubation. Microbiological testing of the model depot form of the antibiotics entrapped in the Ca-alginate cryostructurate demonstrated the efficiency of this system as the antibacterial material.
Collapse
Affiliation(s)
- Natalia D Zvukova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Tamara P Klimova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Roman V Ivanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Andrei N Ryabev
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| | - Archil V Tsiskarashvili
- N.N. Priorov National Medical Research Center of Traumatology and Orthopedics, Ministry of Health of the Russian Federation, Priorov Street, 10., 127299 Moscow, Russia.
| | - Vladimir I Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russia.
| |
Collapse
|
16
|
Sazhnev NA, Drozdova MG, Rodionov IA, Kil’deeva NR, Balabanova TV, Markvicheva EA, Lozinsky VI. Preparation of Chitosan Cryostructurates with Controlled Porous Morphology and Their Use as 3D-Scaffolds for the Cultivation of Animal Cells. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818050162] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Lozinsky VI. Cryostructuring of Polymeric Systems. 50. † Cryogels and Cryotropic Gel-Formation: Terms and Definitions. Gels 2018; 4:E77. [PMID: 30674853 PMCID: PMC6209254 DOI: 10.3390/gels4030077] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/31/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023] Open
Abstract
A variety of cryogenically-structured polymeric materials are of significant scientific and applied interest in various areas. However, in spite of considerable attention to these materials and intensive elaboration of their new examples, as well as the impressive growth in the number of the publications and patents on this topic over the past two decades, a marked variability of the used terminology and definitions is frequently met with in the papers, reviews, theses, patents, conference presentations, advertising materials and so forth. Therefore, the aim of this brief communication is to specify the basic terms and definitions in the particular field of macromolecular science.
Collapse
Affiliation(s)
- Vladimir I Lozinsky
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russia.
| |
Collapse
|
18
|
Mehedi Hasan M, Nuruzzaman Khan M, Haque P, Rahman MM. Novel alginate-di-aldehyde cross-linked gelatin/nano-hydroxyapatite bioscaffolds for soft tissue regeneration. Int J Biol Macromol 2018; 117:1110-1117. [PMID: 29885393 DOI: 10.1016/j.ijbiomac.2018.06.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/05/2018] [Indexed: 12/20/2022]
Abstract
The present study describes the fabrication of a novel alginate-di-aldehyde (ADA) cross-linked gelatin (GEL)/nano-hydroxyapatite (nHAp) bioscaffold by lyophilization process. The physico-chemical properties of the scaffolds were evaluated in order to assess its suitability for tissue engineering application. ADA was prepared from periodate oxidation of alginate which facilitate the crosslinking between free amino group of gelatin and available aldehyde group of ADA through Schiff's base formation. nHAp was synthesized from waste egg-shells by wet chemical method. The synthesized HAp was found crystalline and nanosize (~45 nm) by XRD and TEM analysis respectively. Ca to P ratio of nHAp is 1.51 as observed by EDX confirmed the suitability of the scaffold for biomedical application. The crosslinked ADA increases thermal stability of scaffolds. Water uptake and degradation ability significantly reduced with the increase of nHAp in the scaffold due to the higher stiffness contributed by nHAp. SEM analysis revealed that the pore size and porosity of the scaffolds declines with the proliferation of nHAp in the scaffolds. XRD analysis of the scaffolds shows the increase of crystallinity in the composites due to incorporation of nHAp and ADA. Cytotoxicity of the all scaffolds were examined by normal kidney epithelial cells (Vero cells) and the results confirmed the non-toxicity of the scaffolds, which proved it is extremely cytocompatible. These tunable physical properties and enhance biocompatibility of prepared scaffold offer advance application in soft tissue regeneration and could be a promising candidate for biomedical application.
Collapse
Affiliation(s)
- M Mehedi Hasan
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - M Nuruzzaman Khan
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Papia Haque
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Mohammed Mizanur Rahman
- Department of Applied Chemistry and Chemical Engineering, Faculty of Engineering and Technology, University of Dhaka, Dhaka 1000, Bangladesh.
| |
Collapse
|
19
|
Natural Origin Materials for Osteochondral Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1058:3-30. [DOI: 10.1007/978-3-319-76711-6_1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
20
|
Cryochemical synthesis and antibacterial activity of hybrid nanocomposites based on dioxidine containing Ag and Cu nanoparticles incorporated in biopolymer cryostructurates. Russ Chem Bull 2018. [DOI: 10.1007/s11172-017-1996-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
21
|
Lozinsky VI, Kulakova VK, Ivanov RV, Petrenko AY, Rogulska OY, Petrenko YA. Cryostructuring of polymer systems. 47. Preparation of wide porous gelatin-based cryostructurates in sterilizing organic media and assessment of the suitability of thus formed matrices as spongy scaffolds for 3D cell culturing. E-POLYMERS 2018. [DOI: 10.1515/epoly-2017-0151] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
AbstractNew gelatin-based cryostructurates have been elaborated and tested as scaffolds for three-dimensional (3D) cell culturing. Scaffold preparation included dissolution of Type A gelatin in dimethylsulfoxide, freezing of such solution, cryoextraction of crystalline phase with cold ethanol, cross-linking of gelatin with carbodiimide in ethanol medium, treatment of the matrix with ethanolic solution of Tris and tanning of the matrix with formaldehyde dissolved in ethanol. The use of organic media during all the preparation stages ensured the sterility of the scaffolds. The matrices thus prepared were seeded with human adipose tissue multipotent mesenchymal stromal cells to confirm the biocompatibility of scaffolds and their possibility to provide necessary environment for the cell growth and differentiation. The cells attached onto the surface of the pore walls, proliferated and differentiated into osteogenic and adipogenic lineages. These results demonstrate that gelatin-based cryostructurates prepared in the sterility ensuring organic media can be used as scaffolds for tissue engineering purposes.
Collapse
Affiliation(s)
- Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Valentina K. Kulakova
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Roman V. Ivanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street 28, 119991 Moscow, Russian Federation
| | - Alexander Yu. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academic of Sciences of Ukraine, 23 Peryaslavskaya Str., 61015, Kharkov, Ukraine
| | - Olena Yu. Rogulska
- Institute for Problems of Cryobiology and Cryomedicine, National Academic of Sciences of Ukraine, 23 Peryaslavskaya Str., 61015, Kharkov, Ukraine
| | - Yuriy A. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine, National Academic of Sciences of Ukraine, 23 Peryaslavskaya Str., 61015, Kharkov, Ukraine
| |
Collapse
|
22
|
Alginate Utilization in Tissue Engineering and Cell Therapy. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Alginate Processing Routes to Fabricate Bioinspired Platforms for Tissue Engineering and Drug Delivery. SPRINGER SERIES IN BIOMATERIALS SCIENCE AND ENGINEERING 2018. [DOI: 10.1007/978-981-10-6910-9_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
24
|
Ondrésik M, Oliveira JM, Reis RL. Advances for Treatment of Knee OC Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1059:3-24. [PMID: 29736567 DOI: 10.1007/978-3-319-76735-2_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Osteochondral (OC) defects are prevalent among young adults and are notorious for being unable to heal. Although they are traumatic in nature, they often develop silently. Detection of many OC defects is challenging, despite the criticality of early care. Current repair approaches face limitations and cannot provide regenerative or long-standing solution. Clinicians and researchers are working together in order to develop approaches that can regenerate the damaged tissues and protect the joint from developing osteoarthritis. The current concepts of tissue engineering and regenerative medicine, which have brought many promising applications to OC management, are overviewed herein. We will also review the types of stem cells that aim to provide sustainable cell sources overcoming the limitation of autologous chondrocyte-based applications. The various scaffolding materials that can be used as extracellular matrix mimetic and having functional properties similar to the OC unit are also discussed.
Collapse
Affiliation(s)
- Marta Ondrésik
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Barco, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Barco, Guimarães, Portugal
| |
Collapse
|
25
|
Ghaderi Gandomani M, Sahebghadam Lotfi A, Kordi Tamandani D, Arjmand S, Alizadeh S. The enhancement of differentiating adipose derived mesenchymal stem cells toward hepatocyte like cells using gelatin cryogel scaffold. Biochem Biophys Res Commun 2017; 491:1000-1006. [PMID: 28778389 DOI: 10.1016/j.bbrc.2017.07.167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/18/2022]
Abstract
Liver tissue engineering creates a promising methodology for developing functional tissue to restore or improve the function of lost or damaged liver by using appropriate cells and biologically compatible scaffolds. The present paper aims to study the hepatogenic potential of human adipose derived mesenchymal stem cells (hADSCs) on a 3D gelatin scaffold in vitro. For this purpose, mesenchymal stem cells were isolated from human adipose tissue and characterized by flowcytometry analysis and mesodermal lineage differentiation capacity. Then, porous cryogel scaffolds were fabricated by cryogelating the gelatin using glutaraldehyde as the crosslinking agent. The structure of the scaffolds as well as the adhesion and proliferation of the cells were then determined by Scanning Electron Microscopy (SEM) analysis and MTT assay, respectively. The efficiency of hepatic differentiation of hADSCs on 2D and 3D culture systems has been assessed by means of morphological, cytological, molecular and biochemical approaches. Based on the results of flowcytometry, the isolated cells were positive for hMSC specific markers and negative for hematopoietic markers. Further, the multipotency of these cells was confirmed by adipogenic and osteogenic differentiation and the highly porous structure of scaffolds was characterized by SEM images. Biocompatibility was observed in the fabricated gelatin scaffolds and the adhesion and proliferation of hADSCs were promoted without any cytotoxicity effects. In addition, compared to 2D TCPS, the fabricated scaffolds provided more appropriate microenvironment resulting in promoting the differentiation of hADSCs toward hepatocyte-like cells with higher expression of hepatocyte-specific markers and appropriate functional characteristics such as increased levels of urea biosynthesis and glycogen storage. Finally, the created 3D gelatin scaffold could provide an appropriate matrix for hepatogenic differentiation of hADSCs, which could be considered for liver tissue engineering applications.
Collapse
Affiliation(s)
| | - Abbas Sahebghadam Lotfi
- Department of Clinical Biochemistry, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | | | - Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, G. C., Tehran, Iran
| | - Shaban Alizadeh
- Hematology department, Allied medical school, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
26
|
Abstract
This review focuses on developments in the field of bioprinting for musculoskeletal tissue engineering, along with discussion on the various approaches for bone, cartilage and connective tissue fabrication. All approaches (cell-laden, cell-free and a combination of both) aim to obtain complex, living tissues able to develop and mature, using the same fundamental technology. To date, co-printing of cell-laden and cell-free materials has been revealed to be the most promising approach for musculoskeletal applications because materials with good bioactivity and good mechanical strength can be combined within the same constructs. Bioprinting for musculoskeletal applications is a developing field, and detailed discussion on the current challenges and future perspectives is also presented in this review.
Collapse
Affiliation(s)
- Alexander Popov
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Sara Malferrari
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| | - Deepak M Kalaskar
- Institute of Orthopaedics & Musculoskeletal Science, Division of Surgery & Interventional Science, University College London, Royal National Orthopaedic Hospital, Brockley Hill, Stanmore, Middlesex HA7 4LP, UK
| |
Collapse
|
27
|
Kiroshka VV, Petrova VA, Chernyakov DD, Bozhkova YO, Kiroshka KV, Baklagina YG, Romanov DP, Kremnev RV, Skorik YA. Influence of chitosan-chitin nanofiber composites on cytoskeleton structure and the proliferation of rat bone marrow stromal cells. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:21. [PMID: 28012155 DOI: 10.1007/s10856-016-5822-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 11/28/2016] [Indexed: 06/06/2023]
Abstract
Chitosan scaffolds have gained much attention in various tissue engineering applications, but the effect of their microstructure on cell-material spatial interactions remains unclear. Our objective was to evaluate the effect of chitosan-based matrices doping with chitin nano-whiskers (CNW) on adhesion, spreading, cytoskeleton structure, and proliferation of rat bone marrow stromal cells (BMSCs). The behavior of BMSCs during culture on chitosan-CNW films was determined by the molecular mass, hydrophobicity, porosity, crosslinking degree, protonation degree and molecular structure of the composite chitosan-CNW films. The shape, spreading area, cytoskeleton structure, and proliferation of BMSCs on chitosan matrices with a crystalline structure and high porosity were similar to that observed for BMSCs cultured on polystyrene tissue culture plates. The amorphous polymer structure and high swelling led to a decrease in the spreading area and cell proliferation. Thus, we can control the behavior of cells in culture (adhesion, spreading, and proliferation) by changing the physico-chemical properties of the chitosan-CNW films.
Collapse
Affiliation(s)
- Victoria V Kiroshka
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Pereyaslavskaya ul. 23, Kharkov, 61015, Ukraine
| | - Valentina A Petrova
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg, 199004, Russian Federation
| | - Daniil D Chernyakov
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg, 199004, Russian Federation
| | - Yulia O Bozhkova
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Pereyaslavskaya ul. 23, Kharkov, 61015, Ukraine
| | - Katerina V Kiroshka
- Institute for Problems of Cryobiology and Cryomedicine of the National Academy of Sciences of Ukraine, Pereyaslavskaya ul. 23, Kharkov, 61015, Ukraine
| | - Yulia G Baklagina
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg, 199004, Russian Federation
| | - Dmitry P Romanov
- Institute of Silicate Chemistry of the Russian Academy of Sciences, Adm. Makarova nab. 2, St. Petersburg, 199034, Russian Federation
| | - Roman V Kremnev
- Institute of Chemistry, St. Petersburg State University, Universitetskii pr. 26, Petrodvorets, St. Petersburg, 198504, Russian Federation
| | - Yury A Skorik
- Institute of Macromolecular Compounds of the Russian Academy of Sciences, Bolshoi pr. VO 31, St. Petersburg, 199004, Russian Federation.
| |
Collapse
|
28
|
de la Portilla F, Pereira S, Molero M, De Marco F, Perez-Puyana V, Guerrero A, Romero A. Microstructural, mechanical, and histological evaluation of modified alginate-based scaffolds. J Biomed Mater Res A 2016; 104:3107-3114. [PMID: 27506966 DOI: 10.1002/jbm.a.35857] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/16/2022]
Abstract
Scaffolds are three-dimensional structures used for tissue regeneration being the base in tissue engineering. These scaffolds are obtained from natural and/or synthetic polymers and they should satisfy some specific requirements such as biocompatibility, suitable mechanical, and microstructural properties to favor cellular adhesion and neovascularization. This work shows a preclinic study about the production of low and medium molecular weight alginate through the use of calcium salts (calcium glutamate). The results showed prove that better structures, distribution, and pore sizes as well as better mechanical properties correspond to medium molecular weight alginate and higher calcium salts concentration. This type of scaffold, after muscular cells cultivation, has been proved as an excellent material for muscle growth. The histopathological analysis shows a low inflammatory response, without a foreign body reaction, suitable neovascularization and good fibroblasts incorporation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3107-3114, 2016.
Collapse
Affiliation(s)
- F de la Portilla
- Department of General and Digestive Surgery, Unit Colorrectal Surgery, "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD o Ciberehd), Instituto de Salud Carlos III, Spain
| | - S Pereira
- Institute of Biomedicine of Seville (IBiS), "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - M Molero
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - F De Marco
- Institute of Biomedicine of Seville (IBiS), "Virgen del Rocío" University Hospital/IBiS/CSIC/University of Seville, Seville, Spain
| | - V Perez-Puyana
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - A Guerrero
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, Sevilla, Spain
| | - A Romero
- Department of Chemical Engineering, Faculty of Chemistry, University of Seville, Sevilla, Spain.
| |
Collapse
|
29
|
Kumari J, Karande AA, Kumar A. Combined Effect of Cryogel Matrix and Temperature-Reversible Soluble-Insoluble Polymer for the Development of in Vitro Human Liver Tissue. ACS APPLIED MATERIALS & INTERFACES 2016; 8:264-277. [PMID: 26654271 DOI: 10.1021/acsami.5b08607] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hepatic cell culture on a three-dimensional (3D) matrix or as a hepatosphere appears to be a promising in vitro biomimetic system for liver tissue engineering applications. In this study, we have combined the concept of a 3D scaffold and a spheroid culture to develop an in vitro model to engineer liver tissue for drug screening. We have evaluated the potential of poly(ethylene glycol)-alginate-gelatin (PAG) cryogel matrix for in vitro culture of human liver cell lines. The synthesized cryogel matrix has a flow rate of 7 mL/min and water uptake capacity of 94% that enables easy nutrient transportation in the in vitro cell culture. Young's modulus of 2.4 kPa and viscoelastic property determine the soft and elastic nature of synthesized cryogel. Biocompatibility of PAG cryogel was evaluated through MTT assay of HepG2 and Huh-7 cells on matrices. The proliferation and functionality of the liver cells were enhanced by culturing hepatic cells as spheroids (hepatospheres) on the PAG cryogel using temperature-reversible soluble-insoluble polymer, poly(N-isopropylacrylamide) (PNIPAAm). Pore size of the cryogel above 100 μm modulated spheroid size that can prevent hypoxia condition within the spheroid culture. Both the hepatic cells have shown a significant difference (P < 0.05) in terms of cell number and functionality when cultured with PNIPAAm. After 10 days of culture using 0.05% PNIPAAm, the cell number increased by 11- and 7-fold in case of HepG2 and Huh-7 cells, respectively. Similarly, after 10 days of hepatic spheroids culture on PAG cryogel, the albumin production, urea secretion, and CYP450 activity were significantly higher in case of culture with PNIPAAm. The developed tissue mass on the PAG cryogel in the presence of PNIPAAm possess polarity, which was confirmed using F-actin staining and by presence of intercellular bile canalicular lumen. The developed cryogel matrix supports liver cells proliferation and functionality and therefore can be used for in vitro and in vivo drug testing.
Collapse
Affiliation(s)
- Jyoti Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, 208016 UP, India
| | - Anjali A Karande
- Department of Biochemistry, Indian Institute of Sciences , Bangalore 560012, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur , Kanpur, 208016 UP, India
| |
Collapse
|
30
|
Yousefi AM, James PF, Akbarzadeh R, Subramanian A, Flavin C, Oudadesse H. Prospect of Stem Cells in Bone Tissue Engineering: A Review. Stem Cells Int 2016; 2016:6180487. [PMID: 26880976 PMCID: PMC4736569 DOI: 10.1155/2016/6180487] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been the subject of many studies in recent years, ranging from basic science that looks into MSCs properties to studies that aim for developing bioengineered tissues and organs. Adult bone marrow-derived mesenchymal stem cells (BM-MSCs) have been the focus of most studies due to the inherent potential of these cells to differentiate into various cell types. Although, the discovery of induced pluripotent stem cells (iPSCs) represents a paradigm shift in our understanding of cellular differentiation. These cells are another attractive stem cell source because of their ability to be reprogramed, allowing the generation of multiple cell types from a single cell. This paper briefly covers various types of stem cell sources that have been used for tissue engineering applications, with a focus on bone regeneration. Then, an overview of some recent studies making use of MSC-seeded 3D scaffold systems for bone tissue engineering has been presented. The emphasis has been placed on the reported scaffold properties that tend to improve MSCs adhesion, proliferation, and osteogenic differentiation outcomes.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Paul F. James
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Rosa Akbarzadeh
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Aswati Subramanian
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Conor Flavin
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, OH 45056, USA
| | - Hassane Oudadesse
- Sciences Chimiques, University of Rennes 1, UMR CNRS 6226, 35042 Rennes, France
| |
Collapse
|
31
|
Huang Z, Nooeaid P, Kohl B, Roether JA, Schubert DW, Meier C, Boccaccini AR, Godkin O, Ertel W, Arens S, Schulze-Tanzil G. Chondrogenesis of human bone marrow mesenchymal stromal cells in highly porous alginate-foams supplemented with chondroitin sulfate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 50:160-72. [DOI: 10.1016/j.msec.2015.01.082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 11/15/2014] [Accepted: 01/24/2015] [Indexed: 01/14/2023]
|
32
|
Yousefi AM, Hoque ME, Prasad RGSV, Uth N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J Biomed Mater Res A 2014; 103:2460-81. [PMID: 25345589 DOI: 10.1002/jbm.a.35356] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 10/04/2014] [Accepted: 10/12/2014] [Indexed: 12/23/2022]
Abstract
The repair of osteochondral defects requires a tissue engineering approach that aims at mimicking the physiological properties and structure of two different tissues (cartilage and bone) using specifically designed scaffold-cell constructs. Biphasic and triphasic approaches utilize two or three different architectures, materials, or composites to produce a multilayered construct. This article gives an overview of some of the current strategies in multiphasic/gradient-based scaffold architectures and compositions for tissue engineering of osteochondral defects. In addition, the application of finite element analysis (FEA) in scaffold design and simulation of in vitro and in vivo cell growth outcomes has been briefly covered. FEA-based approaches can potentially be coupled with computer-assisted fabrication systems for controlled deposition and additive manufacturing of the simulated patterns. Finally, a summary of the existing challenges associated with the repair of osteochondral defects as well as some recommendations for future directions have been brought up in the concluding section of this article.
Collapse
Affiliation(s)
- Azizeh-Mitra Yousefi
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| | - Md Enamul Hoque
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Malaysia Campus, Malaysia
| | - Rangabhatala G S V Prasad
- Biomedical and Pharmaceutical Technology Research Group, Nano Research for Advanced Materials, Bangalore, Karnataka, India
| | - Nicholas Uth
- Department of Chemical, Paper and Biomedical Engineering, Miami University, Oxford, Ohio, 45056
| |
Collapse
|
33
|
Lin YH, Feng CL, Lai CH, Lin JH, Chen HY. Preparation of epigallocatechin gallate-loaded nanoparticles and characterization of their inhibitory effects on Helicobacter pylori growth in vitro and in vivo. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:045006. [PMID: 27877707 PMCID: PMC5090695 DOI: 10.1088/1468-6996/15/4/045006] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 08/05/2014] [Accepted: 07/10/2014] [Indexed: 06/06/2023]
Abstract
A variety of approaches have been proposed for overcoming the unpleasant side effects associated with antibiotics treatment of Helicobacter pylori (H. pylori) infections. Research has shown that epigallocatechin-3-gallate (EGCG), a major ingredient in green tea, has antibacterial activity for antiurease activity against H. pylori. Oral EGCG is not good because of its digestive instability and the fact that it often cannot reach the targeted site of antibacterial activity. To localize EGCG to H. pylori infection site, this study developed a fucose-chitosan/gelatin nanoparticle to encapsulate EGCG at the target and make direct contact with the region of microorganisms on the gastric epithelium. Analysis of a simulated gastrointestinal medium indicated that the proposed in vitro nanocarrier system effectively controls the release of EGCG, which interacts directly with the intercellular space at the site of H. pylori infection. Meanwhile, results of in vivo clearance assays indicated that our prepared fucose-chitosan/gelatin/EGCG nanoparticles had a significantly greater H. pylori clearance effect and more effectively reduced H. pylori-associated gastric inflammation in the gastric-infected mouse model than the EGCG solution alone.
Collapse
Affiliation(s)
- Yu-Hsin Lin
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chun-Lung Feng
- Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Jui-Hsiang Lin
- Bio-Medical Carbon Technology Co., Ltd, Taichung, Taiwan
| | - Hao-Yun Chen
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| |
Collapse
|
34
|
Self-crosslinked oxidized alginate/gelatin hydrogel as injectable, adhesive biomimetic scaffolds for cartilage regeneration. Acta Biomater 2014; 10:3650-63. [PMID: 24811827 DOI: 10.1016/j.actbio.2014.04.031] [Citation(s) in RCA: 275] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/16/2014] [Accepted: 04/28/2014] [Indexed: 12/30/2022]
Abstract
Biopolymeric hydrogels that mimic the properties of extracellular matrix have great potential in promoting cellular migration and proliferation for tissue regeneration. The authors reported earlier that rapidly gelling, biodegradable, injectable hydrogels can be prepared by self-crosslinking of periodate oxidized alginate and gelatin in the presence of borax, without using any toxic crosslinking agents. The present paper investigates the suitability of this hydrogel as a minimally invasive injectable, cell-attractive and adhesive scaffold for cartilage tissue engineering for the treatment of osteoarthritis. Time and frequency sweep rheology analysis confirmed gel formation within 20s. The hydrogel integrated well with the cartilage tissue, with a burst pressure of 70±3mmHg, indicating its adhesive nature. Hydrogel induced negligible inflammatory and oxidative stress responses, a prerequisite for the management and treatment of osteoarthritis. Scanning electron microscopy images of primary murine chondrocytes encapsulated within the matrix revealed attachment of cells onto the hydrogel matrix. Chondrocytes demonstrated viability, proliferation and migration within the matrix, while maintaining their phenotype, as seen by expression of collagen type II and aggrecan, and functionality, as seen by enhanced glycosoaminoglycan (GAG) deposition with time. DNA content and GAG deposition of chondrocytes within the matrix can be tuned by incorporation of bioactive signaling molecules such as dexamethasone, chondroitin sulphate, platelet derived growth factor (PDGF-BB) and combination of these three agents. The results suggest that self-crosslinked oxidized alginate/gelatin hydrogel may be a promising injectable, cell-attracting adhesive matrix for neo-cartilage formation in the management and treatment of osteoarthritis.
Collapse
|
35
|
Seo SJ, Mahapatra C, Singh RK, Knowles JC, Kim HW. Strategies for osteochondral repair: Focus on scaffolds. J Tissue Eng 2014; 5:2041731414541850. [PMID: 25343021 PMCID: PMC4206689 DOI: 10.1177/2041731414541850] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 06/06/2014] [Indexed: 01/27/2023] Open
Abstract
Interest in osteochondral repair has been increasing with the growing number of sports-related injuries, accident traumas, and congenital diseases and disorders. Although therapeutic interventions are entering an advanced stage, current surgical procedures are still in their infancy. Unlike other tissues, the osteochondral zone shows a high level of gradient and interfacial tissue organization between bone and cartilage, and thus has unique characteristics related to the ability to resist mechanical compression and restoration. Among the possible therapies, tissue engineering of osteochondral tissues has shown considerable promise where multiple approaches of utilizing cells, scaffolds, and signaling molecules have been pursued. This review focuses particularly on the importance of scaffold design and its role in the success of osteochondral tissue engineering. Biphasic and gradient composition with proper pore configurations are the basic design consideration for scaffolds. Surface modification is an essential technique to improve the scaffold function associated with cell regulation or delivery of signaling molecules. The use of functional scaffolds with a controllable delivery strategy of multiple signaling molecules is also considered a promising therapeutic approach. In this review, we updated the recent advances in scaffolding approaches for osteochondral tissue engineering.
Collapse
Affiliation(s)
- Seog-Jin Seo
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Chinmaya Mahapatra
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Rajendra K Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jonathan C Knowles
- Division of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, Republic of Korea ; Department of Nanobiomedical Science, BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea ; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
36
|
Induction of reparative dentin formation on exposed dental pulp by dentin phosphophoryn/collagen composite. BIOMED RESEARCH INTERNATIONAL 2014; 2014:745139. [PMID: 24804241 PMCID: PMC3997146 DOI: 10.1155/2014/745139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 02/25/2014] [Indexed: 11/25/2022]
Abstract
The ultimate goal of vital pulp therapy is to regenerate rapidly dentin possessing an excellent quality using a biocompatible, bioactive agent. Dentin phosphophoryn (DPP), the most abundant noncollagenous polyanionic protein in dentin, cross-linked to atelocollagen fibrils was applied to direct pulp capping in rats. After 1, 2, and 3 weeks, the teeth applied were examined on the induction of reparative dentin formation and the response of pulp tissue, compared to calcium hydroxide-based agent conventionally used. The reparative dentin formation induced by DPP/collagen composite was more rapid than by calcium hydroxide. In the morphometrical analysis, the formation rate of reparative dentin by DPP/collagen composite was approximately the same as that by calcium hydroxide at 3 weeks. Nevertheless, the compactness of reparative dentin formed by DPP/collagen composite was much superior to what resulted from calcium hydroxide. Also, DPP/collagen composite showed high covering ability of exposed pulp. Moreover, DPP/collagen composite led only to slight pulp inflammation at the beginning whereas calcium hydroxide formed necrotic layer adjacent to the material and induced severe inflammation in pulp tissue at 1 week. The present study demonstrates a potential for DPP/collagen composite as a rapid biocompatible inducer for the formation of reparative dentin of excellent quality in rats.
Collapse
|
37
|
Katsen-Globa A, Meiser I, Petrenko YA, Ivanov RV, Lozinsky VI, Zimmermann H, Petrenko AY. Towards ready-to-use 3-D scaffolds for regenerative medicine: adhesion-based cryopreservation of human mesenchymal stem cells attached and spread within alginate-gelatin cryogel scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:857-71. [PMID: 24297514 PMCID: PMC3942626 DOI: 10.1007/s10856-013-5108-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 11/25/2013] [Indexed: 05/18/2023]
Abstract
Cultivation and proliferation of stem cells in three-dimensional (3-D) scaffolds is a promising strategy for regenerative medicine. Mesenchymal stem cells with their potential to differentiate in various cell types, cryopreserved adhesion-based in fabricated scaffolds of biocompatible materials can serve as ready-to-use transplantation units for tissue repair, where pores allow a direct contact of graft cells and recipient tissue without further preparation. A successful cryopreservation of adherent cells depends on attachment and spreading processes that start directly after cell seeding. Here, we analyzed different cultivation times (0.5, 2, 24 h) prior to adhesion-based cryopreservation of human mesenchymal stem cells within alginate-gelatin cryogel scaffolds and its influence on cell viability, recovery and functionality at recovery times (0, 24, 48 h) in comparison to non-frozen control. Analysis with confocal laser scanning microscopy and scanning electron microscopy indicated that 2 h cultivation time enhanced cryopreservation success: cell number, visual cell contacts, membrane integrity, motility, as well as spreading were comparable to control. In contrast, cell number by short cultivation time (0.5 h) reduced dramatically after thawing and expanded cultivation time (24 h) decreased cell viability. Our results provide necessary information to enhance the production and to store ready-to-use transplantation units for application in bone, cartilage or skin regenerative therapy.
Collapse
Affiliation(s)
- Alisa Katsen-Globa
- Department for Biophysics and Cryotechnology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany
| | - Ina Meiser
- Department for Biophysics and Cryotechnology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany
| | - Yuriy A. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine NAS Ukraine, 23 PeryaslavskayaStr, Kharkiv, 61015 Ukraine
| | - Roman V. Ivanov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russian Federation
| | - Vladimir I. Lozinsky
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilov Street, 28, 119991 Moscow, Russian Federation
| | - Heiko Zimmermann
- Department for Biophysics and Cryotechnology, Fraunhofer Institute for Biomedical Engineering, Ensheimer Str. 48, 66386 St. Ingbert, Germany
- Chair of Molecular and Cellular Biotechnology/Nanotechnology, Saarland University, PO Box 151150, 66041 Saarbrücken, Germany
| | - Alexander Yu. Petrenko
- Institute for Problems of Cryobiology and Cryomedicine NAS Ukraine, 23 PeryaslavskayaStr, Kharkiv, 61015 Ukraine
| |
Collapse
|
38
|
|
39
|
Rossi F, Santoro M, Perale G. Polymeric scaffolds as stem cell carriers in bone repair. J Tissue Eng Regen Med 2013; 9:1093-119. [DOI: 10.1002/term.1827] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 07/29/2013] [Accepted: 08/30/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
| | - Marco Santoro
- Department of Chemical and Biomolecular Engineering; Rice University; Houston TX USA
| | - Giuseppe Perale
- Department of Chemistry, Materials and Chemical Engineering; 'Giulio Natta' Politecnico di Milano; Milan Italy
- Department of Innovative Technologies; University of Southern Switzerland; Manno Switzerland
- Swiss Institute for Regenerative Medicine; Taverne Switzerland
| |
Collapse
|
40
|
Tripathi A, Vishnoi T, Singh D, Kumar A. Modulated crosslinking of macroporous polymeric cryogel affects in vitro cell adhesion and growth. Macromol Biosci 2013; 13:838-50. [PMID: 23650251 DOI: 10.1002/mabi.201200398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Revised: 02/04/2013] [Indexed: 11/06/2022]
Abstract
Cell to matrix interactions affect in vitro cell adherence and proliferation and further decide the fate of tissue development for biomedical applications. This study demonstrates the role of crosslinking in altering the surface properties of 3D porous cryogel matrices. Glutaraldehyde and 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide crosslinkers are used separately for the crosslinking of alginate and gelatin (i.e., AG(G) and AG(EN)), respectively. The difference in crosslinking affects the physiochemical properties of these matrices leading to variable cell behavior as demonstrated using four different cell types, which show homogeneous cell growth in AG(G) and spheroid cell growth in AG(EN). The present study shows successful use of controlled crosslinking in directing the cell growth for tissue engineering.
Collapse
Affiliation(s)
- Anuj Tripathi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur-208016, UP, India
| | | | | | | |
Collapse
|
41
|
Gun'ko VM, Savina IN, Mikhalovsky SV. Cryogels: morphological, structural and adsorption characterisation. Adv Colloid Interface Sci 2013; 187-188:1-46. [PMID: 23218507 DOI: 10.1016/j.cis.2012.11.001] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/02/2012] [Accepted: 11/01/2012] [Indexed: 12/21/2022]
Abstract
Experimental results on polymer, protein, and composite cryogels and data treatment methods used for morphological, textural, structural, adsorption and diffusion characterisation of the materials are analysed and compared. Treatment of microscopic images with specific software gives quantitative structural information on both native cryogels and freeze-dried materials that is useful to analyse the drying effects on their structure. A combination of cryoporometry, relaxometry, thermoporometry, small angle X-ray scattering (SAXS), equilibrium and kinetic adsorption of low and high-molecular weight compounds, diffusion breakthrough of macromolecules within macroporous cryogel membranes, studying interactions of cells with cryogels provides a consistent and comprehensive picture of textural, structural and adsorption properties of a variety of cryogels. This analysis allows us to establish certain regularities in the cryogel properties related to narrow (diameter 0.4<d<2 nm), middle (2<d<50 nm) and broad (50<d<100 nm) nanopores, micropores (100 nm<d<100 μm) and macropores (d>100 μm) with boundary sizes within modified life science pore classification. Particular attention is paid to water bound in cryogels in native superhydrated or freeze-dried states. At least, five states of water - free unbound, weakly bound (changes in the Gibbs free energy-ΔG<0.5-0.8 kJ/mol) and strongly bound (-ΔG>0.8 kJ/mol), and weakly associated (chemical shift of the proton resonance δ(H)=1-2 ppm) and strongly associated (δ(H)=3-6 ppm) waters can be distinguished in hydrated cryogels using (1)H NMR, DSC, TSDC, TG and other methods. Different software for image treatment or developed to analyse the data obtained with the adsorption, diffusion, SAXS, cryoporometry and thermoporometry methods and based on regularisation algorithms is analysed and used for the quantitative morphological, structural and adsorption characterisation of individual and composite cryogels, including polymers filled with solid nano- or microparticles.
Collapse
Affiliation(s)
- Vladimir M Gun'ko
- Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine.
| | | | | |
Collapse
|
42
|
Nooeaid P, Salih V, Beier JP, Boccaccini AR. Osteochondral tissue engineering: scaffolds, stem cells and applications. J Cell Mol Med 2012; 16:2247-70. [PMID: 22452848 PMCID: PMC3823419 DOI: 10.1111/j.1582-4934.2012.01571.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 03/21/2012] [Indexed: 12/17/2022] Open
Abstract
Osteochondral tissue engineering has shown an increasing development to provide suitable strategies for the regeneration of damaged cartilage and underlying subchondral bone tissue. For reasons of the limitation in the capacity of articular cartilage to self-repair, it is essential to develop approaches based on suitable scaffolds made of appropriate engineered biomaterials. The combination of biodegradable polymers and bioactive ceramics in a variety of composite structures is promising in this area, whereby the fabrication methods, associated cells and signalling factors determine the success of the strategies. The objective of this review is to present and discuss approaches being proposed in osteochondral tissue engineering, which are focused on the application of various materials forming bilayered composite scaffolds, including polymers and ceramics, discussing the variety of scaffold designs and fabrication methods being developed. Additionally, cell sources and biological protein incorporation methods are discussed, addressing their interaction with scaffolds and highlighting the potential for creating a new generation of bilayered composite scaffolds that can mimic the native interfacial tissue properties, and are able to adapt to the biological environment.
Collapse
Affiliation(s)
- Patcharakamon Nooeaid
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University of Erlangen-NürnbergErlangen, Germany
| | - Vehid Salih
- Eastman Dental Institute, UCLLondon, United Kingdom
| | - Justus P Beier
- Department of Plastic and Hand Surgery, University Hospital of Erlangen Friedrich-Alexander-University of Erlangen-NürnbergErlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering Institute of Biomaterials, Friedrich-Alexander-University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
43
|
Solorio LD, Dhami CD, Dang PN, Vieregge EL, Alsberg E. Spatiotemporal regulation of chondrogenic differentiation with controlled delivery of transforming growth factor-β1 from gelatin microspheres in mesenchymal stem cell aggregates. Stem Cells Transl Med 2012. [PMID: 23197869 DOI: 10.5966/sctm.2012-0039] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The precise spatial and temporal presentation of growth factors is critical for cartilage development, during which tightly controlled patterns of signals direct cell behavior and differentiation. Recently, chondrogenic culture of human mesenchymal stem cells (hMSCs) has been improved through the addition of polymer microspheres capable of releasing growth factors directly to cells within cellular aggregates, eliminating the need for culture in transforming growth factor-β1 (TGF-β1)-containing medium. However, the influence of specific patterns of spatiotemporal growth factor presentation on chondrogenesis within microsphere-incorporated cell systems is unclear. In this study, we examined the effects of altering the chondrogenic microenvironment within hMSC aggregates through varying microsphere amount, growth factor concentration per microsphere, and polymer degradation time. Cartilage formation was evaluated in terms of DNA, glycosaminoglycan, and type II collagen in hMSCs from three donors. Chondrogenesis equivalent to or greater than that of aggregates cultured in medium containing TGF-β1 was achieved in some conditions, with varied differentiation based on the specific conditions of microsphere incorporation. A more spatially distributed delivery of TGF-β1 from a larger mass of fast-degrading microspheres improved differentiation by comparison with delivery from a smaller mass of microspheres with a higher TGF-β1 concentration per microsphere, although the total amount of growth factor per aggregate was the same. Results also indicated that the rate and degree of chondrogenesis varied on a donor-to-donor basis. Overall, this study elucidates the effects of varied conditions of TGF-β1-loaded microsphere incorporation on hMSC chondrogenesis, demonstrating that both spatiotemporal growth factor presentation and donor variability influence chondrogenic differentiation within microsphere-incorporated cellular constructs.
Collapse
Affiliation(s)
- Loran D Solorio
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | |
Collapse
|
44
|
Huang WY, Yeh CL, Lin JH, Yang JS, Ko TH, Lin YH. Development of fibroblast culture in three-dimensional activated carbon fiber-based scaffold for wound healing. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:1465-1478. [PMID: 22415364 DOI: 10.1007/s10856-012-4608-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 02/28/2012] [Indexed: 05/31/2023]
Abstract
This work developed a novel bi-layer wound dressing composed of 3D activated carbon fibers that allows facilitates fibroblast cell growth and migration to a wound site for tissue reconstruction, and the gentamicin is incorporated into a poly(γ-glutamic acid)/gelatin membrane to prevent bacterial infection. In an in vitro, field emission scanning electron microscopy shows that rat skin fibroblasts appeared and spread on the surface of activated carbon fibers, and penetrated the interior and exterior of the 3D activated carbon fiber construct to a depth of roughly 200 μm. An in vivo analysis shows that fibroblast cells containing the proposed 3D scaffold had the potential of a biologically functionalized dressing to accelerate wound closure. Additionally, fibroblasts migrated to the wound site in a bi-layer wound dressing containing fibroblasts, enhancing fibronectin and type I collagen expression, resulting in faster skin regeneration than that achieved with a Tegaderm™ hydrocolloid dressing or gauze.
Collapse
Affiliation(s)
- Wen-Ying Huang
- Department of Applied Cosmetology and Graduate Institute of Cosmetic Science, Hungkuang University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
45
|
Pok S, Jacot JG. Biomaterials Advances in Patches for Congenital Heart Defect Repair. J Cardiovasc Transl Res 2011; 4:646-54. [DOI: 10.1007/s12265-011-9289-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 05/26/2011] [Indexed: 11/24/2022]
|