1
|
Salem EM, Rizk H, Abouelela YS, Prince A, Tohamy AF, Lasheen NA, Ezzat BA, Mostafa S. Regenerative potentials of bone marrow mesenchymal stem cells derived exosomes or its combination with zinc in recovery of degenerated circumvallate papilla following surgical bilateral transection of glossopharyngeal nerve in rats. BMC Oral Health 2024; 24:1320. [PMID: 39478548 PMCID: PMC11523770 DOI: 10.1186/s12903-024-05050-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/14/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Taste buds' innervation is necessary to sustain their cell turnover, differentiated taste buds and nerve fibers in circumvallate papilla (CVP) disappear following glossopharyngeal nerve transection. Normally, taste buds recover to baseline number in about 70 days. Bone marrow stem cell (BM-MSC) derived exosomes or their combination with Zinc chloride are used to assess their potential to speed up the regeneration process of CVP following bilateral deafferentation. METHODS Twenty-eight male Sprague-Dawley rats were randomly divided into four groups; Group I: subjected to sham operation followed by IP injection of saline. The other experimental groups (II, III and IV) were subjected to surgical bilateral transection of glossopharyngeal nerve. Group II received single IP injection of saline. Group III received single IV injection of BM-MSC-derived exosomes (100 µg). Group IV received single IV injection of BM-MSC-derived exosomes and single IP injection of zinc chloride (5 mg/kg). After 28 days, CVP was dissected and prepared for histological and histomorphometric analysis, RT-PCR for cytokeratin 8 gene expression, ELISA to assess protein level of brain-derived neurotrophic factor, redox state analysis of malondialdehyde and glutathione content, followed by statistical analysis. RESULTS Histopathologically, group II exhibited great tissue damage with marked reduction in taste buds and signs of degeneration in the remaining ones. Group III was close to control group with marked improvement in taste buds' number and structure. Group IV showed inferior results when compared to group III, with many immature taste buds and signs of degeneration. Statistical results showed that groups I and III have significantly higher values than groups II and IV regarding taste buds' number, cytokeratin 8, and reduced glutathione. However, malondialdehyde demonstrated high significant values in group IV compared to groups I and III. Regarding brain-derived neurotrophic factor, group III had significantly higher values than group II. CONCLUSION BM-MSC-derived exosomes have superior regenerative potentials in acceleration of CVP and nerve healing following bilateral transection of glossopharyngeal nerve in contrary to its combination with zinc chloride.
Collapse
Affiliation(s)
- Eman Mohamed Salem
- Oral Biology Department, College of Oral and Dental Surgery, Misr University for Science and Technology, Giza, 12568, Egypt.
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt.
| | - Hamdy Rizk
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Yara S Abouelela
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Abdelbary Prince
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Adel Fathy Tohamy
- Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Nawal A Lasheen
- Oral Biology Department, College of Oral and Dental Surgery, Misr University for Science and Technology, Giza, 12568, Egypt
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt
| | - Bassant A Ezzat
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt
| | - Sana Mostafa
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, 115533, Egypt
| |
Collapse
|
2
|
Živančević K, Aru B, Demir A, Radenović L, Andjus P, Yanıkkaya Demirel G. Zn 0-Induced Cytotoxicity and Mitochondrial Stress in Microglia: Implications of the Protective Role of Immunoglobulin G In Vitro. Balkan Med J 2024; 41:348-356. [PMID: 39129512 DOI: 10.4274/balkanmedj.galenos.2024.2024-4-119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024] Open
Abstract
Background Zinc (Zn), an essential micronutrient, regulates and maintains neurological functions. However, both Zn deficiency and excess can cause oxidative stress and neurodegenerative diseases. As previously reported, immunoglobulin G (IgG) can modulate oxidative stress in various disorders. Aims To investigate whether IgG treatment can alleviate oxidative stress caused by Zn0 on microglia in vitro. Study Design In vitro study. Methods The feasibility of Zn0 treatment was evaluated using the MTS assay. Oxidative stress following treatment with Zn0, either alone or with IgG supplementation, was determined with dihydrorhodamine 123 staining. Flow cytometry was employed to ascertain the intracellular protein levels of TRIM21, PINK, PARKIN, MFN2, Beclin-1, and active LC3B. Methods The feasibility of Zn0 treatment was evaluated using the MTS assay. Oxidative stress following treatment with Zn0, either alone or with IgG supplementation, was determined with dihydrorhodamine 123 staining. Flow cytometry was employed to ascertain the intracellular protein levels of TRIM21, PINK, PARKIN, MFN2, Beclin-1, and active LC3B. Results: In silico screening confirmed the association between Zn0 cytotoxicity and apoptosis. Furthermore, oxidative stress was identified as a critical mechanism that underlies Zn0 neurotoxicity. The in silico analysis revealed that Zn can interact with the constant region of the Ig heavy chain, suggesting a potential role for IgG in alleviating Zn0-induced cytotoxicity. Experimental findings supported this hypothesis, as IgG administration significantly reduced Zn0-induced mitochondrial stress in a dose-dependent manner. The upregulation of PINK1 levels by Zn0 exposure suggests that mitochondrial injury promotes mitophagy. Interestingly, Zn0 decreased TRIM21 levels, which is reversed by IgG administration. Conclusion These findings elucidate the cellular responses to Zn0 and highlight the potential use of intravenous immunoglobulin in mitigating the adverse effects of acute Zn0 exposure.
Collapse
Affiliation(s)
- Katarina Živančević
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
- Department of Toxicology “Akademik Danilo Soldatović”, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
| | - Abdullah Demir
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
- Stem Cell Laboratory, Yeditepe University Training and Research Hospital, İstanbul, Türkiye
| | - Lidija Radenović
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Department for Physiology and Biochemistry, Center for Laser Microscopy, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Gülderen Yanıkkaya Demirel
- Department of Immunology, Yeditepe University Faculty of Medicine, İstanbul, Türkiye
- Stem Cell Laboratory, Yeditepe University Training and Research Hospital, İstanbul, Türkiye
| |
Collapse
|
3
|
Rahman M, Mahady Dip T, Padhye R, Houshyar S. Review on electrically conductive smart nerve guide conduit for peripheral nerve regeneration. J Biomed Mater Res A 2023; 111:1916-1950. [PMID: 37555548 DOI: 10.1002/jbm.a.37595] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/29/2023] [Accepted: 07/26/2023] [Indexed: 08/10/2023]
Abstract
At present, peripheral nerve injuries (PNIs) are one of the leading causes of substantial impairment around the globe. Complete recovery of nerve function after an injury is challenging. Currently, autologous nerve grafts are being used as a treatment; however, this has several downsides, for example, donor site morbidity, shortage of donor sites, loss of sensation, inflammation, and neuroma development. The most promising alternative is the development of a nerve guide conduit (NGC) to direct the restoration and renewal of neuronal axons from the proximal to the distal end to facilitate nerve regeneration and maximize sensory and functional recovery. Alternatively, the response of nerve cells to electrical stimulation (ES) has a substantial regenerative effect. The incorporation of electrically conductive biomaterials in the fabrication of smart NGCs facilitates the function of ES throughout the active proliferation state. This article overviews the potency of the various categories of electroactive smart biomaterials, including conductive and piezoelectric nanomaterials, piezoelectric polymers, and organic conductive polymers that researchers have employed latterly to fabricate smart NGCs and their potentiality in future clinical application. It also summarizes a comprehensive analysis of the recent research and advancements in the application of ES in the field of NGC.
Collapse
Affiliation(s)
- Mustafijur Rahman
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
- Department of Dyes and Chemical Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Tanvir Mahady Dip
- Department of Materials, University of Manchester, Manchester, UK
- Department of Yarn Engineering, Bangladesh University of Textiles, Dhaka, Bangladesh
| | - Rajiv Padhye
- Center for Materials Innovation and Future Fashion (CMIFF), School of Fashion and Textiles, RMIT University, Brunswick, Australia
| | - Shadi Houshyar
- School of Engineering, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Li C, Sun F, Tian J, Li J, Sun H, Zhang Y, Guo S, Lin Y, Sun X, Zhao Y. Continuously released Zn 2+ in 3D-printed PLGA/β-TCP/Zn scaffolds for bone defect repair by improving osteoinductive and anti-inflammatory properties. Bioact Mater 2022; 24:361-375. [PMID: 36632506 PMCID: PMC9822837 DOI: 10.1016/j.bioactmat.2022.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 01/01/2023] Open
Abstract
Long-term nonunion of bone defects has always been a major problem in orthopedic treatment. Artificial bone graft materials such as Poly (lactic-co-glycolic acid)/β-tricalcium phosphate (PLGA/β-TCP) scaffolds are expected to solve this problem due to their suitable degradation rate and good osteoconductivity. However, insufficient mechanical properties, lack of osteoinductivity and infections after implanted limit its large-scale clinical application. Hence, we proposed a novel bone repair bioscaffold by adding zinc submicron particles to PLGA/β-TCP using low temperature rapid prototyping 3D printing technology. We first screened the scaffolds with 1 wt% Zn that had good biocompatibility and could stably release a safe dose of zinc ions within 16 weeks to ensure long-term non-toxicity. As designed, the scaffold had a multi-level porous structure of biomimetic cancellous bone, and the Young's modulus (63.41 ± 1.89 MPa) and compressive strength (2.887 ± 0.025 MPa) of the scaffold were close to those of cancellous bone. In addition, after a series of in vitro and in vivo experiments, the scaffolds proved to have no adverse effects on the viability of BMSCs and promoted their adhesion and osteogenic differentiation, as well as exhibiting higher osteogenic and anti-inflammatory properties than PLGA/β-TCP scaffold without zinc particles. We also found that this osteogenic and anti-inflammatory effect might be related to Wnt/β-catenin, P38 MAPK and NFkB pathways. This study lay a foundation for the follow-up study of bone regeneration mechanism of Zn-containing biomaterials. We envision that this scaffold may become a new strategy for clinical treatment of bone defects.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Fengbo Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials, Tsinghua University, Beijing, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahao Li
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Haidan Sun
- Core Facility of Instrument, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yong Zhang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Shigong Guo
- Department of Rehabilitation Medicine, Southmead Hospital, Bristol, UK
| | - Yuanhua Lin
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials, Tsinghua University, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of Advanced Ceramics and Fine Processing, School of Materials, Tsinghua University, Beijing, China
- Corresponding author.
| | - Yu Zhao
- Department of Orthopedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Corresponding author.
| |
Collapse
|
5
|
Zhao G, Zhou H, Jin G, Jin B, Geng S, Luo Z, Ge Z, Xu F. Rational Design of Electrically Conductive Biomaterials toward Excitable Tissues Regeneration. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Mutepfa AR, Hardy JG, Adams CF. Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:693438. [PMID: 35274106 PMCID: PMC8902299 DOI: 10.3389/fmedt.2022.693438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 01/10/2022] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a serious condition caused by damage to the spinal cord through trauma or disease, often with permanent debilitating effects. Globally, the prevalence of SCI is estimated between 40 to 80 cases per million people per year. Patients with SCI can experience devastating health and socioeconomic consequences from paralysis, which is a loss of motor, sensory and autonomic nerve function below the level of the injury that often accompanies SCI. SCI carries a high mortality and increased risk of premature death due to secondary complications. The health, social and economic consequences of SCI are significant, and therefore elucidation of the complex molecular processes that occur in SCI and development of novel effective treatments is critical. Despite advances in medicine for the SCI patient such as surgery and anaesthesiology, imaging, rehabilitation and drug discovery, there have been no definitive findings toward complete functional neurologic recovery. However, the advent of neural stem cell therapy and the engineering of functionalized biomaterials to facilitate cell transplantation and promote regeneration of damaged spinal cord tissue presents a potential avenue to advance SCI research. This review will explore this emerging field and identify new lines of research.
Collapse
Affiliation(s)
- Anthea R. Mutepfa
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| | - John G. Hardy
- Department of Chemistry, Lancaster University, Lancaster, United Kingdom
- Materials Science Institute, Lancaster University, Lancaster, United Kingdom
| | - Christopher F. Adams
- Neural Tissue Engineering Keele, School of Life Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
7
|
The Role of Dietary Nutrients in Peripheral Nerve Regeneration. Int J Mol Sci 2021; 22:ijms22147417. [PMID: 34299037 PMCID: PMC8303934 DOI: 10.3390/ijms22147417] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Peripheral nerves are highly susceptible to injuries induced from everyday activities such as falling or work and sport accidents as well as more severe incidents such as car and motorcycle accidents. Many efforts have been made to improve nerve regeneration, but a satisfactory outcome is still unachieved, highlighting the need for easy to apply supportive strategies for stimulating nerve growth and functional recovery. Recent focus has been made on the effect of the consumed diet and its relation to healthy and well-functioning body systems. Normally, a balanced, healthy daily diet should provide our body with all the needed nutritional elements for maintaining correct function. The health of the central and peripheral nervous system is largely dependent on balanced nutrients supply. While already addressed in many reviews with different focus, we comprehensively review here the possible role of different nutrients in maintaining a healthy peripheral nervous system and their possible role in supporting the process of peripheral nerve regeneration. In fact, many dietary supplements have already demonstrated an important role in peripheral nerve development and regeneration; thus, a tailored dietary plan supplied to a patient following nerve injury could play a non-negotiable role in accelerating and promoting the process of nerve regeneration.
Collapse
|
8
|
Ekram B, Abd El-Hady BM, El-Kady AM, Fouad MT, Sadek ZI, Amr SM, Gabr H, Waly AI, Guirguis OW. Enhanced mesenchymal stem cells growth on antibacterial microgrooved electrospun zinc chloride/polycaprolactone conduits for peripheral nerve regeneration. J BIOACT COMPAT POL 2021. [DOI: 10.1177/0883911520988305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, we have investigated the effect of adding zinc chloride (ZnCl2) on polycaprolactone (PCL) before and after electrospinning. The rheological properties and conductivity of ZnCl2/PCL solutions were measured prior to the electrospinning process. The resultant electrospun mats were characterized by SEM, contact angle, FTIR, XRD, mechanical properties, as well as its antibacterial and stem cell proliferation assessment were tested. It was found that the fibers became finer by increasing the zinc salt content. Moreover, stability increased slightly up to 5% Zn-PCL and also the hydrophilicity has been enhanced by 52%. By adding ZnCl2, the degradation rate and mechanical properties were significantly increased. Also, the resultant mats have shown antibacterial properties against S. aureus than E. coli. From the stem cells proliferation study, it can be observed that by increasing ZnCl2, the stem cells proliferation was significantly increased. Grooved multichannel nerve conduits were successfully fabricated by rolling the electrospun mats produced on corn husks which has shown better cell alignment and attachment. Hence, adding zinc chloride is a facile biocompatible enhancement to polycaprolactone nanofibers to be used in nerve regeneration.
Collapse
Affiliation(s)
- Basma Ekram
- Polymers and Pigments Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Abeer M El-Kady
- Glass Research Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed T Fouad
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Zeinab I Sadek
- Dairy Science Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherif M Amr
- Orthopaedics and Traumatology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Hala Gabr
- Clinical Pathology Department, Faculty of Medicine, Cairo University, Manial, Cairo, Egypt
| | - Ahmed I Waly
- Textile Department, National Research Centre, Dokki, Cairo, Egypt
| | - Osiris W Guirguis
- Biophysics Department, Faculty of Science, Cairo University, Giza, Cairo, Egypt
| |
Collapse
|
9
|
Effect of electric stimulus on human adipose‐derived mesenchymal stem cells cultured in
3D
‐printed scaffolds. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Aydemir Sezer U, Ozturk Yavuz K, Ors G, Bay S, Aru B, Sogut O, Akgul Caglar T, Bozkurt MR, Cagavi E, Yanikkaya Demirel G, Sezer S, Karaca H. Zero-valent iron nanoparticles containing nanofiber scaffolds for nerve tissue engineering. J Tissue Eng Regen Med 2020; 14:1815-1826. [PMID: 33010108 DOI: 10.1002/term.3137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022]
Abstract
Regeneration of nerve tissue is a challenging issue in regenerative medicine. Especially, the peripheral nerve defects related to the accidents are one of the leading health problems. For large degeneration of peripheral nerve, nerve grafts are used in order to obtain a connection. These grafts should be biodegradable to prevent second surgical intervention. In order to make more effective nerve tissue engineering materials, nanotechnological improvements were used. Especially, the addition of electrically conductive and biocompatible metallic particles and carbon structures has essential roles in the stimulation of nerves. However, the metabolizing of these structures remains to wonder because of their nondegradable nature. In this study, biodegradable and conductive nerve tissue engineering materials containing zero-valent iron (Fe) nanoparticles were developed and investigated under in vitro conditions. By using electrospinning technique, fibrous mats composed of electrospun poly(ε-caprolactone) (PCL) nanofibers and Fe nanoparticles were obtained. Both electrical conductivity and mechanical properties increased compared with control group that does not contain nanoparticles. Conductivity of PCL/Fe5 and PCL/Fe10 increased to 0.0041 and 0.0152 from 0.0013 Scm-1 , respectively. Cytotoxicity results indicated toxicity for composite mat containing 20% Fe nanoparticles (PCL/Fe20). SH-SY5Y cells were grown on PCL/Fe10 best, which contains 10% Fe nanoparticles. Beta III tubulin staining of dorsal root ganglion neurons seeded on mats revealed higher cell number on PCL/Fe10. This study demonstrated the impact of zero-valent Fe nanoparticles on nerve regeneration. The results showed the efficacy of the conductive nanoparticles, and the amount in the composition has essential roles in the promotion of the neurites.
Collapse
Affiliation(s)
- Umran Aydemir Sezer
- Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey.,Department of Regenerative Medicine, Institute of Health Sciences, Isparta, Turkey.,Semical Technology Industry and Trade Co. Ltd., Suleyman Demirel University, Lake District Technopark, Isparta, Turkey
| | | | - Gizem Ors
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Sadık Bay
- Neuroscience PhD Programme, Institute of Health, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Basak Aru
- Faculty of Medicine, Immunology Department, Yeditepe University, Istanbul, Turkey
| | - Oguz Sogut
- Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey
| | - Tuba Akgul Caglar
- Neuroscience PhD Programme, Institute of Health, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | - Mehmet Recep Bozkurt
- Department of Electrical and Electronics Engineering, Sakarya University, Sakarya, Turkey
| | - Esra Cagavi
- Department of Medical Biology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
| | | | - Serdar Sezer
- Faculty of Medicine, Department of Pharmacology, Medicine, Medical Devices and Dermocosmetic Research and Application Laboratory (IDAL), Suleyman Demirel University, Isparta, Turkey.,Department of Regenerative Medicine, Institute of Health Sciences, Isparta, Turkey.,Semical Technology Industry and Trade Co. Ltd., Suleyman Demirel University, Lake District Technopark, Isparta, Turkey
| | - Huseyin Karaca
- Department of Chemistry, Sakarya University, Sakarya, Turkey
| |
Collapse
|
11
|
3D Printing of Polycaprolactone-Polyaniline Electroactive Scaffolds for Bone Tissue Engineering. MATERIALS 2020; 13:ma13030512. [PMID: 31978961 PMCID: PMC7040705 DOI: 10.3390/ma13030512] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 12/14/2022]
Abstract
Electrostimulation and electroactive scaffolds can positively influence and guide cellular behaviour and thus has been garnering interest as a key tissue engineering strategy. The development of conducting polymers such as polyaniline enables the fabrication of conductive polymeric composite scaffolds. In this study, we report on the initial development of a polycaprolactone scaffold incorporating different weight loadings of a polyaniline microparticle filler. The scaffolds are fabricated using screw-assisted extrusion-based 3D printing and are characterised for their morphological, mechanical, conductivity, and preliminary biological properties. The conductivity of the polycaprolactone scaffolds increases with the inclusion of polyaniline. The in vitro cytocompatibility of the scaffolds was assessed using human adipose-derived stem cells to determine cell viability and proliferation up to 21 days. A cytotoxicity threshold was reached at 1% wt. polyaniline loading. Scaffolds with 0.1% wt. polyaniline showed suitable compressive strength (6.45 ± 0.16 MPa) and conductivity (2.46 ± 0.65 × 10−4 S/cm) for bone tissue engineering applications and demonstrated the highest cell viability at day 1 (88%) with cytocompatibility for up to 21 days in cell culture.
Collapse
|
12
|
Filippi M, Born G, Felder-Flesch D, Scherberich A. Use of nanoparticles in skeletal tissue regeneration and engineering. Histol Histopathol 2019; 35:331-350. [PMID: 31721139 DOI: 10.14670/hh-18-184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bone and osteochondral defects represent one of the major causes of disabilities in the world. Derived from traumas and degenerative pathologies, these lesions cause severe pain, joint deformity, and loss of joint motion. The standard treatments in clinical practice present several limitations. By producing functional substitutes for damaged tissues, tissue engineering has emerged as an alternative in the treatment of defects in the skeletal system. Despite promising preliminary clinical outcomes, several limitations remain. Nanotechnologies could offer new solutions to overcome those limitations, generating materials more closely mimicking the structures present in naturally occurring systems. Nanostructures comparable in size to those appearing in natural bone and cartilage have thus become relevant in skeletal tissue engineering. In particular, nanoparticles allow for a unique combination of approaches (e.g. cell labelling, scaffold modification or drug and gene delivery) inside single integrated systems for optimized tissue regeneration. In the present review, the main types of nanoparticles and the current strategies for their application to skeletal tissue engineering are described. The collection of studies herein considered confirms that advanced nanomaterials will be determinant in the design of regenerative therapeutic protocols for skeletal lesions in the future.
Collapse
Affiliation(s)
- Miriam Filippi
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Gordian Born
- Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.,Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Delphine Felder-Flesch
- Institut de Physique et Chimie des Matériaux Strasbourg, UMR CNRS-Université de Strasbourg, Strasbourg, France
| | - Arnaud Scherberich
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Allschwil, Basel, Switzerland.
| |
Collapse
|
13
|
Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:471-491. [PMID: 31452463 DOI: 10.1089/ten.teb.2019.0182] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Spinal cord injury (SCI) is a serious problem that primarily affects younger and middle-aged adults at its onset. To date, no effective regenerative treatment has been developed. Over the last decade, researchers have made significant advances in stem cell technology, biomaterials, nanotechnology, and immune engineering, which may be applied as regenerative therapies for the spinal cord. Although the results of clinical trials using specific cell-based therapies have proven safe, their efficacy has not yet been demonstrated. The pathophysiology of SCI is multifaceted, complex and yet to be fully understood. Thus, combinatorial therapies that simultaneously leverage multiple approaches will likely be required to achieve satisfactory outcomes. Although combinations of biomaterials with pharmacologic agents or cells have been explored, few studies have combined these modalities in a systematic way. For most strategies, clinical translation will be facilitated by the use of minimally invasive therapies, which are the focus of this review. In addition, this review discusses previously explored therapies designed to promote neuroregeneration and neuroprotection after SCI, while highlighting present challenges and future directions. Impact Statement To date there are no effective treatments that can regenerate the spinal cord after injury. Although there have been significant preclinical advances in bioengineering and regenerative medicine over the last decade, these have not translated into effective clinical therapies for spinal cord injury. This review focuses on minimally invasive therapies, providing extensive background as well as updates on recent technological developments and current clinical trials. This review is a comprehensive resource for researchers working towards regenerative therapies for spinal cord injury that will help guide future innovation.
Collapse
Affiliation(s)
- Nureddin Ashammakhi
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland.,Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | - Han-Jun Kim
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California
| | | | | | - Outi Kaarela
- Division of Plastic Surgery, Department of Surgery, Oulu University, Oulu, Finland
| | - Chengbin Xue
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, P.R. China.,Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, P.R. China
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Department of Radiological Sciences, University of California, Los Angeles, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, California.,Center of Nanotechnology, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemical and Biological Engineering, University of California, Los Angeles, California
| | - Stephanie K Seidlits
- Center for Minimally Invasive Therapeutics (C-MIT), Los Angeles, California.,California NanoSystems Institute (CNSI), Los Angeles, California.,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California.,Broad Stem Cell Research Center, University of California, Los Angeles, Los Angeles, California.,Brain Research Institute, University of California, Los Angeles, Los Angeles, California
| |
Collapse
|
14
|
Homocianu M, Pascariu P. Electrospun Polymer-Inorganic Nanostructured Materials and Their Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1676776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | - Petronela Pascariu
- “Petru Poni” Institute of Macromolecular Chemistry, Iasi, Romania
- Faculty of Electrical Engineering and Computer Science & MANSiD Research Center, Stefan cel Mare University, Suceava, Romania
| |
Collapse
|
15
|
Ferrone E, Araneo R, Notargiacomo A, Pea M, Rinaldi A. ZnO Nanostructures and Electrospun ZnO-Polymeric Hybrid Nanomaterials in Biomedical, Health, and Sustainability Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1449. [PMID: 31614707 PMCID: PMC6835458 DOI: 10.3390/nano9101449] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/03/2019] [Accepted: 10/03/2019] [Indexed: 12/12/2022]
Abstract
ZnO-based nanomaterials are a subject of increasing interest within current research, because of their multifunctional properties, such as piezoelectricity, semi-conductivity, ultraviolet absorption, optical transparency, and photoluminescence, as well as their low toxicity, biodegradability, low cost, and versatility in achieving diverse shapes. Among the numerous fields of application, the use of nanostructured ZnO is increasingly widespread also in the biomedical and healthcare sectors, thanks to its antiseptic and antibacterial properties, role as a promoter in tissue regeneration, selectivity for specific cell lines, and drug delivery function, as well as its electrochemical and optical properties, which make it a good candidate for biomedical applications. Because of its growing use, understanding the toxicity of ZnO nanomaterials and their interaction with biological systems is crucial for manufacturing relevant engineering materials. In the last few years, ZnO nanostructures were also used to functionalize polymer matrices to produce hybrid composite materials with new properties. Among the numerous manufacturing methods, electrospinning is becoming a mainstream technique for the production of scaffolds and mats made of polymeric and metal-oxide nanofibers. In this review, we focus on toxicological aspects and recent developments in the use of ZnO-based nanomaterials for biomedical, healthcare, and sustainability applications, either alone or loaded inside polymeric matrices to make electrospun composite nanomaterials. Bibliographic data were compared and analyzed with the aim of giving homogeneity to the results and highlighting reference trends useful for obtaining a fresh perspective about the toxicity of ZnO nanostructures and their underlying mechanisms for the materials and engineering community.
Collapse
Affiliation(s)
- Eloisa Ferrone
- Department of Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy.
| | - Rodolfo Araneo
- Department of Electrical Engineering, University of Rome Sapienza, 00184 Rome, Italy.
| | | | - Marialilia Pea
- Institute for Photonics and Nanotechnologies-CNR, 00156 Rome, Italy.
| | - Antonio Rinaldi
- Sustainability Department, ENEA, C.R. Casaccia, Santa Maria di Galeria, Rome 00123, Italy.
| |
Collapse
|
16
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
17
|
Hosoyama K, Ahumada M, Goel K, Ruel M, Suuronen EJ, Alarcon EI. Electroconductive materials as biomimetic platforms for tissue regeneration. Biotechnol Adv 2019; 37:444-458. [DOI: 10.1016/j.biotechadv.2019.02.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
|
18
|
A Review on Biomaterials for 3D Conductive Scaffolds for Stimulating and Monitoring Cellular Activities. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9050961] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During the last years, scientific research in biotechnology has been reporting a considerable boost forward due to many advances marked in different technological areas. Researchers working in the field of regenerative medicine, mechanobiology and pharmacology have been constantly looking for non-invasive methods able to track tissue development, monitor biological processes and check effectiveness in treatments. The possibility to control cell cultures and quantify their products represents indeed one of the most promising and exciting hurdles. In this perspective, the use of conductive materials able to map cell activity in a three-dimensional environment represents the most interesting approach. The greatest potential of this strategy relies on the possibility to correlate measurable changes in electrical parameters with specific cell cycle events, without affecting their maturation process and considering a physiological-like setting. Up to now, several conductive materials has been identified and validated as possible solutions in scaffold development, but still few works have stressed the possibility to use conductive scaffolds for non-invasive electrical cell monitoring. In this picture, the main objective of this review was to define the state-of-the-art concerning conductive biomaterials to provide researchers with practical guidelines for developing specific applications addressing cell growth and differentiation monitoring. Therefore, a comprehensive review of all the available conductive biomaterials (polymers, carbon-based, and metals) was given in terms of their main electric characteristics and range of applications.
Collapse
|
19
|
Bhattarai RS, Bachu RD, Boddu SHS, Bhaduri S. Biomedical Applications of Electrospun Nanofibers: Drug and Nanoparticle Delivery. Pharmaceutics 2018; 11:E5. [PMID: 30586852 PMCID: PMC6358861 DOI: 10.3390/pharmaceutics11010005] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/11/2018] [Accepted: 10/26/2018] [Indexed: 01/26/2023] Open
Abstract
The electrospinning process has gained popularity due to its ease of use, simplicity and diverse applications. The properties of electrospun fibers can be controlled by modifying either process variables (e.g., applied voltage, solution flow rate, and distance between charged capillary and collector) or polymeric solution properties (e.g., concentration, molecular weight, viscosity, surface tension, solvent volatility, conductivity, and surface charge density). However, many variables affecting electrospinning are interdependent. An optimized electrospinning process is one in which these parameters remain constant and continuously produce nanofibers consistent in physicochemical properties. In addition, nozzle configurations, such as single nozzle, coaxial, multi-jet electrospinning, have an impact on the fiber characteristics. The polymeric solution could be aqueous, a polymeric melt or an emulsion, which in turn leads to different types of nanofiber formation. Nanofiber properties can also be modified by polarity inversion and by varying the collector design. The active moiety is incorporated into polymeric fibers by blending, surface modification or emulsion formation. The nanofibers can be further modified to deliver multiple drugs, and multilayer polymer coating allows sustained release of the incorporated active moiety. Electrospun nanofibers prepared from polymers are used to deliver antibiotic and anticancer agents, DNA, RNA, proteins and growth factors. This review provides a compilation of studies involving the use of electrospun fibers in biomedical applications with emphasis on nanoparticle-impregnated nanofibers.
Collapse
Affiliation(s)
- Rajan Sharma Bhattarai
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Rinda Devi Bachu
- College of Pharmacy and Pharmaceutical Sciences, The University of Toledo Health Science Campus, Toledo, OH 43614, USA.
| | - Sai H S Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman 2758, UAE.
| | - Sarit Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH 43614, USA.
- Department of Surgery (Dentistry), University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
20
|
Khan FA, Almohazey D, Alomari M, Almofty SA. Impact of nanoparticles on neuron biology: current research trends. Int J Nanomedicine 2018; 13:2767-2776. [PMID: 29780247 PMCID: PMC5951135 DOI: 10.2147/ijn.s165675] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Nanoparticles have enormous applications in textiles, cosmetics, electronics, and pharmaceuticals. But due to their exceptional physical and chemical properties, particularly antimicrobial, anticancer, antibacterial, anti-inflammatory properties, nanoparticles have many potential applications in diagnosis as well as in the treatment of various diseases. Over the past few years, nanoparticles have been extensively used to investigate their response on the neuronal cells. These nanoparticles cause stem cells to differentiate into neuronal cells and promote neuronal cell survivability and neuronal cell growth and expansion. The nanoparticles have been tested both in in vitro and in vivo models. The nanoparticles with various shapes, sizes, and chemical compositions mostly produced stimulatory effects on neuronal cells, but there are few that can cause inhibitory effects on the neuronal cells. In this review, we discuss stimulatory and inhibitory effects of various nanoparticles on the neuronal cells. The aim of this review was to summarize different effects of nanoparticles on the neuronal cells and try to understand the differential response of various nanoparticles. This review provides a bird's eye view approach on the effects of various nanoparticles on neuronal differentiation, neuronal survivability, neuronal growth, neuronal cell adhesion, and functional and behavioral recovery. Finally, this review helps the researchers to understand the different roles of nanoparticles (stimulatory and inhibitory) in neuronal cells to develop effective therapeutic and diagnostic strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Munthar Alomari
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| | - Sarah Ameen Almofty
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Kingdom of Saudi Arabia
| |
Collapse
|
21
|
Qian Y, Song J, Zhao X, Chen W, Ouyang Y, Yuan W, Fan C. 3D Fabrication with Integration Molding of a Graphene Oxide/Polycaprolactone Nanoscaffold for Neurite Regeneration and Angiogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2018; 5:1700499. [PMID: 29721407 PMCID: PMC5908351 DOI: 10.1002/advs.201700499] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/02/2017] [Indexed: 05/17/2023]
Abstract
Treating peripheral nerve injury faces major challenges and may benefit from bioactive scaffolds due to the limited autograft resources. Graphene oxide (GO) has emerged as a promising nanomaterial with excellent physical and chemical properties. GO has functional groups that confer biocompatibility that is better than that of graphene. Here, GO/polycaprolactone (PCL) nanoscaffolds are fabricated using an integration molding method. The nanoscaffolds exhibit many merits, including even GO nanoparticle distribution, macroporous structure, and strong mechanical support. Additionally, the process enables excellent quality control. In vitro studies confirm the advantages of the GO/PCL nanoscaffolds in terms of Schwann cell proliferation, viability, and attachment, as well as neural characteristics maintenance. This is the first study to evaluate the in vivo performance of GO-based nanoscaffolds in this context. GO release and PCL biodegradation is analyzed after long-term in vivo study. It is also found that the GO/PCL nerve guidance conduit could successfully repair a 15 mm sciatic nerve defect. The pro-angiogenic characteristic of GO is evaluated in vivo using immunohistochemistry. In addition, the AKT-endothelial nitric oxide synthase (eNOS)-vascular endothelial growth factor (VEGF) signaling pathway might play a major role in the angiogenic process. These findings demonstrate that the GO/PCL nanoscaffold efficiently promotes functional and morphological recovery in peripheral nerve regeneration, indicating its promise for tissue engineering applications.
Collapse
Affiliation(s)
- Yun Qian
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Shanghai Sixth People's Hospital East CampusShanghai University of Medicine and HealthShanghai201306China
| | - Jialin Song
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Xiaotian Zhao
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Wei Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| | - Yuanming Ouyang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
- Shanghai Sixth People's Hospital East CampusShanghai University of Medicine and HealthShanghai201306China
| | - Weien Yuan
- School of PharmacyShanghai Jiao Tong UniversityNo. 800 Dongchuan RoadShanghai200240China
| | - Cunyi Fan
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital600 Yishan RoadShanghai200233China
| |
Collapse
|