1
|
Nieto-Panqueva F, Rubalcava-Gracia D, Hamel PP, González-Halphen D. The constraints of allotopic expression. Mitochondrion 2023; 73:30-50. [PMID: 37739243 DOI: 10.1016/j.mito.2023.09.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/28/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Allotopic expression is the functional transfer of an organellar gene to the nucleus, followed by synthesis of the gene product in the cytosol and import into the appropriate organellar sub compartment. Here, we focus on mitochondrial genes encoding OXPHOS subunits that were naturally transferred to the nucleus, and critically review experimental evidence that claim their allotopic expression. We emphasize aspects that may have been overlooked before, i.e., when modifying a mitochondrial gene for allotopic expression━besides adapting the codon usage and including sequences encoding mitochondrial targeting signals━three additional constraints should be considered: (i) the average apparent free energy of membrane insertion (μΔGapp) of the transmembrane stretches (TMS) in proteins earmarked for the inner mitochondrial membrane, (ii) the final, functional topology attained by each membrane-bound OXPHOS subunit; and (iii) the defined mechanism by which the protein translocator TIM23 sorts cytosol-synthesized precursors. The mechanistic constraints imposed by TIM23 dictate the operation of two pathways through which alpha-helices in TMS are sorted, that eventually determine the final topology of membrane proteins. We used the biological hydrophobicity scale to assign an average apparent free energy of membrane insertion (μΔGapp) and a "traffic light" color code to all TMS of OXPHOS membrane proteins, thereby predicting which are more likely to be internalized into mitochondria if allotopically produced. We propose that the design of proteins for allotopic expression must make allowance for μΔGapp maximization of highly hydrophobic TMS in polypeptides whose corresponding genes have not been transferred to the nucleus in some organisms.
Collapse
Affiliation(s)
- Felipe Nieto-Panqueva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Diana Rubalcava-Gracia
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico; Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrice P Hamel
- Department of Molecular Genetics and Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA; Vellore Institute of Technology (VIT), School of BioScience and Technology, Vellore, Tamil Nadu, India
| | - Diego González-Halphen
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
2
|
Zhang QL, Zhang L, Zhao TX, Wang J, Zhu QH, Chen JY, Yuan ML. Gene sequence variations and expression patterns of mitochondrial genes are associated with the adaptive evolution of two Gynaephora species (Lepidoptera: Lymantriinae) living in different high-elevation environments. Gene 2017; 610:148-155. [DOI: 10.1016/j.gene.2017.02.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 01/05/2017] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
|
3
|
Martín-Navarro A, Gaudioso-Simón A, Álvarez-Jarreta J, Montoya J, Mayordomo E, Ruiz-Pesini E. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides. BMC Bioinformatics 2017; 18:158. [PMID: 28270093 PMCID: PMC5341421 DOI: 10.1186/s12859-017-1562-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/24/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. RESULTS We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. CONCLUSIONS Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.
Collapse
Affiliation(s)
- Antonio Martín-Navarro
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain.,Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, C/ María de Luna 1, Zaragoza, 50018, Spain
| | - Andrés Gaudioso-Simón
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain
| | - Jorge Álvarez-Jarreta
- Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, C/ María de Luna 1, Zaragoza, 50018, Spain.,Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain
| | - Julio Montoya
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain.,Instituto de Investigación Sanitaria de Aragón (IISA), Universidad de Zaragoza, Zaragoza, Spain.,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, Zaragoza, Spain
| | - Elvira Mayordomo
- Departamento de Informática e Ingeniería de Sistemas, Universidad de Zaragoza, C/ María de Luna 1, Zaragoza, 50018, Spain. .,Instituto de Investigación en Ingeniería de Aragón (I3A), Universidad de Zaragoza, Zaragoza, Spain.
| | - Eduardo Ruiz-Pesini
- Departamento de Bioquímica, Biología Molecular y Celular, Universidad de Zaragoza, C/ Miguel Servet 177, Zaragoza, 50013, Spain. .,Instituto de Investigación Sanitaria de Aragón (IISA), Universidad de Zaragoza, Zaragoza, Spain. .,Centro de Investigaciones Biomédicas en Red de Enfermedades Raras (CIBERER), Universidad de Zaragoza, Zaragoza, Spain. .,Fundación ARAID, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
4
|
Zhang H, Luo Q, Sun J, Liu F, Wu G, Yu J, Wang W. Mitochondrial genome sequences of Artemia tibetiana and Artemia urmiana: assessing molecular changes for high plateau adaptation. SCIENCE CHINA-LIFE SCIENCES 2013; 56:440-52. [PMID: 23633076 DOI: 10.1007/s11427-013-4474-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 03/19/2013] [Indexed: 12/26/2022]
Abstract
Brine shrimps, Artemia (Crustacea, Anostraca), inhabit hypersaline environments and have a broad geographical distribution from sea level to high plateaus. Artemia therefore possess significant genetic diversity, which gives them their outstanding adaptability. To understand this remarkable plasticity, we sequenced the mitochondrial genomes of two Artemia tibetiana isolates from the Tibetan Plateau in China and one Artemia urmiana isolate from Lake Urmia in Iran and compared them with the genome of a low-altitude Artemia, A. franciscana. We compared the ratio of the rate of nonsynonymous (Ka) and synonymous (Ks) substitutions (Ka/Ks ratio) in the mitochondrial protein-coding gene sequences and found that atp8 had the highest Ka/Ks ratios in comparisons of A. franciscana with either A. tibetiana or A. urmiana and that atp6 had the highest Ka/Ks ratio between A. tibetiana and A. urmiana. Atp6 may have experienced strong selective pressure for high-altitude adaptation because although A. tibetiana and A. urmiana are closely related they live at different altitudes. We identified two extended termination-associated sequences and three conserved sequence blocks in the D-loop region of the mitochondrial genomes. We propose that sequence variations in the D-loop region and in the subunits of the respiratory chain complexes independently or collectively contribute to the adaptation of Artemia to different altitudes.
Collapse
Affiliation(s)
- Hangxiao Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 101300, China
| | | | | | | | | | | | | |
Collapse
|
5
|
Chen YB, Aon MA, Hsu YT, Soane L, Teng X, McCaffery JM, Cheng WC, Qi B, Li H, Alavian KN, Dayhoff-Brannigan M, Zou S, Pineda FJ, O'Rourke B, Ko YH, Pedersen PL, Kaczmarek LK, Jonas EA, Hardwick JM. Bcl-xL regulates mitochondrial energetics by stabilizing the inner membrane potential. ACTA ACUST UNITED AC 2011; 195:263-76. [PMID: 21987637 PMCID: PMC3198165 DOI: 10.1083/jcb.201108059] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To promote cell survival, the antiapoptotic factor Bcl-xL both
inhibits Bax-induced mitochondrial outer membrane permeabilization and
stabilizes mitochondrial inner membrane ion flux and thus overall mitochondrial
energetic capacity. Mammalian Bcl-xL protein localizes to the outer mitochondrial
membrane, where it inhibits apoptosis by binding Bax and inhibiting Bax-induced
outer membrane permeabilization. Contrary to expectation, we found by electron
microscopy and biochemical approaches that endogenous Bcl-xL also
localized to inner mitochondrial cristae. Two-photon microscopy of cultured
neurons revealed large fluctuations in inner mitochondrial membrane potential
when Bcl-xL was genetically deleted or pharmacologically inhibited,
indicating increased total ion flux into and out of mitochondria. Computational,
biochemical, and genetic evidence indicated that Bcl-xL reduces
futile ion flux across the inner mitochondrial membrane to prevent a wasteful
drain on cellular resources, thereby preventing an energetic crisis during
stress. Given that F1FO–ATP synthase directly
affects mitochondrial membrane potential and having identified the mitochondrial
ATP synthase β subunit in a screen for Bcl-xL–binding
partners, we tested and found that Bcl-xL failed to protect β
subunit–deficient yeast. Thus, by bolstering mitochondrial energetic
capacity, Bcl-xL may contribute importantly to cell survival
independently of other Bcl-2 family proteins.
Collapse
Affiliation(s)
- Ying-Bei Chen
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Eynon N, Morán M, Birk R, Lucia A. The champions' mitochondria: is it genetically determined? A review on mitochondrial DNA and elite athletic performance. Physiol Genomics 2011; 43:789-98. [DOI: 10.1152/physiolgenomics.00029.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aerobic ATP generation by the mitochondrial respiratory oxidative phosphorylation system (OXPHOS) is a vital metabolic process for endurance exercise. Notably, mitochondrial DNA (mtDNA) codifies 13 of the 83 polypeptides implied in the respiratory chain. As such, there is a strong rationale for identifying an association between mtDNA variants and “aerobic” (endurance) exercise phenotypes. The aim of this review is to summarize current knowledge on the association between mtDNA, nuclear genes involved in mitochondriogenesis, and elite endurance athletic status. Several studies in nonathletic people have demonstrated an association between certain mtDNA lineages and aerobic performance, characterized by maximal oxygen uptake (V̇o2max). Whether mtDNA haplogroups are also associated with the status of being an elite endurance athlete is more controversial, with differences between studies arising from the different ethnic backgrounds of the athletic cohorts (Caucasian of mixed geographic origin, Asiatic, or East African).
Collapse
Affiliation(s)
- Nir Eynon
- Faculty of Health Sciences, Department of Nutrition, Ariel University Center, Israel; and
| | - María Morán
- Centro de Investigación Hospital 12 de Octubre and CIBERER and
| | - Ruth Birk
- Faculty of Health Sciences, Department of Nutrition, Ariel University Center, Israel; and
| | | |
Collapse
|
7
|
Zickermann V, Angerer H, Ding MG, Nübel E, Brandt U. Small single transmembrane domain (STMD) proteins organize the hydrophobic subunits of large membrane protein complexes. FEBS Lett 2010; 584:2516-25. [PMID: 20398659 DOI: 10.1016/j.febslet.2010.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 03/30/2010] [Accepted: 04/09/2010] [Indexed: 11/24/2022]
Abstract
The large membrane protein complexes of mitochondrial oxidative phosphorylation are composed of central subunits that are essential for their bioenergetic core function and accessory subunits that may assist in regulation, assembly or stabilization. Although sequence conservation is low, a significant proportion of the accessory subunits is characterized by a common single transmembrane (STMD) topology. The STMD signature is also found in subunits of other membrane protein complexes. We hypothesize that the general function of STMD subunits is to organize the hydrophobic subunits of large membrane protein complexes in specialized environments like the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Volker Zickermann
- Goethe-Universität, Fachbereich Medizin, Molekulare Bioenergetik, Cluster of Excellence Frankfurt "Macromolecular Complexes", Frankfurt am Main, Germany
| | | | | | | | | |
Collapse
|
8
|
Abstract
Since the early studies on the resolution and reconstitution of the oxidative phosphorylation system from animal mitochondria, coupling factor B was recognized as an essential component of the machinery responsible for energy-driven ATP synthesis. At the phenomenological level, factor B was agreed to lie at the interface of energy transfer between the respiratory chain and the ATP synthase complex. However, biochemical characterization of the factor B polypeptide has proved difficult. It was not until 1990 that the N-terminal amino acid sequence of bovine mitochondrial factor B was reported, which followed, a decade later, by the report describing the amino acid sequence of full-length human factor B and its functional characterization. The present review summarizes the recent advances in structure-functional studies of factor B, including its recently determined crystal structure at 0.96 A resolution. Ectopic expression of human factor B in cultured animal cells has unexpectedly revealed its role in shaping mitochondrial morphology. The supramolecular assembly of ATP synthase as dimer ribbons at highly curved apices of the mitochondrial cristae was recently suggested to optimize ATP synthesis under proton-limited conditions. We propose that the binding of the ATP synthase dimers with factor B tetramers could be a means to enhance the efficiency of the terminal step of oxidative phosphorylation in animal mitochondria.
Collapse
|
9
|
Di Rocco F, Zambelli AD, Vidal Rioja LB. Identification of camelid specific residues in mitochondrial ATP synthase subunits. J Bioenerg Biomembr 2009; 41:223-8. [PMID: 19578988 DOI: 10.1007/s10863-009-9221-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 05/28/2009] [Indexed: 10/20/2022]
Abstract
ATP synthase is an enzyme involved in oxidative phosphorylation from prokaryotic to eukaryotic cells. In mammals it comprises at least 16 subunits from which the mitochondrial encoded ATP6 and ATP8 are essential. Mitochondrial genes variations have been suggested to allow rapid human and animal adaptation to new climates and dietary conditions (Mishmar et al. 2003). Camelidae taxa are uniquely adapted to extremely hot and dry climates of African-Asian territories and to cold and hypoxic environments of the South American Andean region. We sequenced and analyzed ATP6 and ATP8 genes in all camelid species. Based on the available structural data and evolutionary conservation of the deduced proteins we identified features proper of the group. In Old World camels the ATP8, important in the assembly of the F0 complex, showed a number of positively charged residues higher than in the other aligned species. In ATP6 we found the camelid specific substitutions Q47H and I106V that occur in sites highly conserved in other species. We speculate that these changes may have functional importance.
Collapse
Affiliation(s)
- F Di Rocco
- Laboratory of Molecular Genetics, Instituto Multidisciplinario de Biología Celular (IMBICE), La Plata, Argentina
| | | | | |
Collapse
|
10
|
Belogrudov GI. The proximal N-terminal amino acid residues are required for the coupling activity of the bovine heart mitochondrial factor B. Arch Biochem Biophys 2008; 473:76-87. [PMID: 18319055 DOI: 10.1016/j.abb.2008.02.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/12/2008] [Accepted: 02/16/2008] [Indexed: 11/24/2022]
Abstract
Treatment of the recombinant bovine factor B with trypsin yielded a fragment (amino acid residues 62-175) devoid of coupling activity. Removal of the N-terminal Trp2-Gly3-Trp4 peptide resulted in a significant loss of coupling activity in the FB(DeltaW)(2)(-W)(4) deletion mutant. Sucrose density gradient centrifugation demonstrated co-sedimentation of recombinant factor B with the ADP/ATP carrier, which is present in preparations of H(+)-translocating F(0)F(1)-ATPase, but not in preparations of complex V. The N-terminally truncated factor B mutant FB(DeltaW)(2)(-W)(4) did not co-sediment with the ADP/ATP carrier. Recombinant factor B co-sedimented with partially purified membrane sector F(0), extracted from F(1)-stripped bovine submitochondrial particles with n-dodecyl-beta-d-maltoside. Factor B inhibited the passive proton conductance catalyzed by F(0) reconstituted into asolectin liposomes. A factor B mutant, bearing a photoreactive unnatural amino acid pbenzoyl-l-phenylalanine (pBpa) substituted for Trp2, cross-linked with F(0) subunits e and g as well as the ADP/ATP carrier. These results suggest that the N-terminal domain and, in particular, the proximal N-terminal amino acids are important for the coupling activity and protein-protein interactions of bovine factor B.
Collapse
Affiliation(s)
- Grigory I Belogrudov
- Department of Physiology, David Geffen School of Medicine, University of California at Los Angeles, VA Greater Los Angeles Healthcare System, Rm. 324, Los Angeles, CA 90073, USA.
| |
Collapse
|
11
|
Saddar S, Stuart RA. The yeast F(1)F(0)-ATP synthase: analysis of the molecular organization of subunit g and the importance of a conserved GXXXG motif. J Biol Chem 2005; 280:24435-42. [PMID: 15886192 DOI: 10.1074/jbc.m502804200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The F(1)F(0)-ATP synthase enzyme is located in the inner mitochondrial membrane, where it forms dimeric complexes. Dimerization of the ATP synthase involves the physical association of the neighboring membrane-embedded F(0)-sectors. In yeast, the F(0)-sector subunits g and e (Su g and Su e, respectively) play a key role in supporting the formation of ATP synthase dimers. In this study we have focused on Su g to gain a better understanding of the function and the molecular organization of this subunit within the ATP synthase complex. Su g proteins contain a GXXXG motif (G is glycine, and X is any amino acid) in their single transmembrane segment. GXXXG can be a dimerization motif that supports helix-helix interactions between neighboring transmembrane segments. We demonstrate here that the GXXXG motif is important for the function and in particular for the stability of Su g within the ATP synthase. Using site-directed mutagenesis and cross-linking approaches, we demonstrate that Su g and Su e interact, and our findings emphasize the importance of the membrane anchor regions of these proteins for their interaction. Su e also contains a conserved GXXXG motif in its membrane anchor. However, data presented here would suggest that an intact GXXXG motif in Su g is not essential for the Su g-Su e interaction. We suggest that the GXXXG motif may not be the sole basis for a Su g-Su e interaction, and possibly these dimerization motifs may enable both Su g and Su e to interact with another mitochondrial protein.
Collapse
Affiliation(s)
- Sonika Saddar
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin 53233, USA
| | | |
Collapse
|