1
|
Wang P, Zhang L, Chen S, Li R, Liu P, Li X, Luo H, Huo Y, Zhang Z, Cai Y, Liu X, Huang J, Zhou G, Sun Z, Ding S, Shi J, Zhou Z, Yuan R, Liu L, Wu S, Wang G. ANT2 functions as a translocon for mitochondrial cross-membrane translocation of RNAs. Cell Res 2024; 34:504-521. [PMID: 38811766 PMCID: PMC11217343 DOI: 10.1038/s41422-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
Bidirectional transcription of mammalian mitochondrial DNA generates overlapping transcripts that are capable of forming double-stranded RNA (dsRNA) structures. Release of mitochondrial dsRNA into the cytosol activates the dsRNA-sensing immune signaling, which is a defense mechanism against microbial and viral attack and possibly cancer, but could cause autoimmune diseases when unchecked. A better understanding of the process is vital in therapeutic application of this defense mechanism and treatment of cognate human diseases. In addition to exporting dsRNAs, mitochondria also export and import a variety of non-coding RNAs. However, little is known about how these RNAs are transported across mitochondrial membranes. Here we provide direct evidence showing that adenine nucleotide translocase-2 (ANT2) functions as a mammalian RNA translocon in the mitochondrial inner membrane, independent of its ADP/ATP translocase activity. We also show that mitochondrial dsRNA efflux through ANT2 triggers innate immunity. Inhibiting this process alleviates inflammation in vivo, providing a potential therapeutic approach for treating autoimmune diseases.
Collapse
Affiliation(s)
- Pengcheng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Lixiao Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Siyi Chen
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Renjian Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Peipei Liu
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiang Li
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Hongdi Luo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yujia Huo
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhirong Zhang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Yiqi Cai
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Xu Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jinliang Huang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Guangkeng Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zhe Sun
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Shanwei Ding
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Jiahao Shi
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Zizhuo Zhou
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Ruoxi Yuan
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Liang Liu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China
| | - Sipeng Wu
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| | - Geng Wang
- State Key Laboratory for Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Fujian, China.
| |
Collapse
|
2
|
Ren C, Sun Z, Chen Y, Chen J, Wang S, Liu Q, Wang P, Cheng X, Zhang Z, Wang Q. Identification of Biomarkers Affecting Cryopreservation Recovery Ratio in Ram Spermatozoa Using Tandem Mass Tags (TMT)-Based Quantitative Proteomics Approach. Animals (Basel) 2023; 13:2368. [PMID: 37508145 PMCID: PMC10376853 DOI: 10.3390/ani13142368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Sperm proteins play vital roles in improving sperm freezing resilience in domestic animals. However, it remains poorly defined which proteins regulate the freezing resilience of spermatozoa in rams (Ovis aries). Here, we compared the proteome of ram sperm with a high cryopreservation recovery ratio (HCR) with that of ram sperm with a low cryopreservation recovery ratio (LCR) using a tandem mass tag-based quantitative proteomics approach. Bioinformatic analysis was performed to evaluate differentially expressed proteins (DEPs). A total of 2464 proteins were identified, and 184 DEPs were screened. Seventy-two proteins were higher in the LCR group. One hundred and twelve proteins were more abundant in the HCR group, and they were mainly involved in the regulation of oxidative phosphorylation and thermogenesis pathways. Proteins in high abundance in the HCR group included the S100A family, such as S100A8, S100A9, S100A14, and S100A16, effectively controlling for CA2+ and maintaining flagella structure; HYOU1 and PRDX1, which participate in antioxidant protection and anti-apoptosis to prevent cell death; and HSP90B1, which maintains cell activity and immune response. Our results could help illuminate the molecular mechanisms underlying cryopreservation of ram semen and expand the potential direction of cryopreservation of high-quality semen.
Collapse
Affiliation(s)
- Chunhuan Ren
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zhipeng Sun
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Yale Chen
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Jiahong Chen
- New Rural Develop Research Institute, Anhui Agricultural University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Shijia Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Qingqing Liu
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Penghui Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Xiao Cheng
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
- Center of Agriculture Technology Cooperation and Promotion of Dingyuan County, Dingyuan 233200, China
| | - Qiangjun Wang
- College of Animal Science and Technology, Anhui Agriculture University, Hefei 230036, China
| |
Collapse
|
3
|
Xu YY, Liu Y, Cui L, Wu WB, Quinn MJ, Menon R, Zhang HJ. Hypoxic effects on the mitochondrial content and functions of the placenta in fetal growth restriction. Placenta 2021; 114:100-107. [PMID: 34509037 DOI: 10.1016/j.placenta.2021.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION In this study we examined the hypothesis that a hypoxic intrauterine environment causes mitochondrial dysfunction of trophoblasts in fetal growth restriction (FGR). METHODS The mtDNA content, mRNA levels of mitochondrial encoded genes (ND6, COX I), mitochondrial membrane proteins (COX I, COX IV and VDAC), HIF-1α and BINP3 (mitophagy receptor) protein levels were examined in FGR placentas and normal placentas. The mitochondrial function (ATP production and mitochondrial membrane potential-ΔΨm) and above related proteins were further examined in hypoxic HTR-8/SVneo cells induced by cobalt chloride (CoCl2). Mitophagy and its regulating mechanism under hypoxia in FGR was also investigated. RESULTS Compared with normal controls, both FGR placentas and CoCl2-treated trophoblast cells demonstrated statistically lower mtDNA content, reduced mRNAs of mitochondrial encoding genes, and decreased mitochondrial membrane proteins, accompanied by increased HIF-1α. Mitochondrial functions were impaired as demonstrated by decreased ATP production, and, reduced ΔΨm in CoCl2-treated cells. Meanwhile, mitophagy was markedly enhanced as indicated by increased LC3 fluorescent puncta in mitochondria of hypoxic trophoblastic cells. The upregulated BINP3 expression was demonstrated in FGR placentas as well as in hypoxic trophoblastic cells. DISCUSSION We demonstrated that hypoxic conditions lead to impaired mitochondrial function in trophoblasts in FGR. Reduced mtDNA may be associated with enhanced mitophagy via activating HIF-1α/BINP3 signalling pathway, that may, in turn, affect nutrition and energy transfer to the growth-restricted fetus.
Collapse
Affiliation(s)
- Yue-Ying Xu
- Departments of Pathology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yuan Liu
- Departments of Pathology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ling Cui
- Departments of Pathology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Wei-Bin Wu
- Biobank, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Martin John Quinn
- Departments of Pathology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine and Perinatal Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Hui-Juan Zhang
- Departments of Pathology, International Peace Maternity and Child Health Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
4
|
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int J Mol Sci 2021; 22:ijms22063034. [PMID: 33809742 PMCID: PMC8002290 DOI: 10.3390/ijms22063034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
The voltage-dependent anion channel (VDAC) is the major pathway for metabolites and ions transport through the mitochondrial outer membrane. It can regulate the flow of solutes by switching to a low conductance state correlated with a selectivity reversal, or by a selectivity inversion of its open state. The later one was observed in non-plant VDACs and is poorly characterized. We aim at investigating the selectivity inversion of the open state using plant VDAC purified from Phaseolus coccineus (PcVDAC) to evaluate its physiological role. Our main findings are: (1) The VDAC selectivity inversion of the open state occurs in PcVDAC, (2) Ion concentration and stigmasterol affect the occurrence of the open state selectivity inversion and stigmasterol appears to interact directly with PcVDAC. Interestingly, electrophysiological data concerning the selectivity inversion of the PcVDAC open state suggests that the phenomenon probably does not have a significant physiological effect in vivo.
Collapse
Affiliation(s)
- Hayet Saidani
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Laboratory of Functional Neurophysiology and Pathology, Research Unit, UR/11ES09, Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, 1068 Tunis, Tunisia
| | - Marc Léonetti
- Université de. Grenoble Alpes, CNRS, LRP, 38000 Grenoble, France;
| | - Hanna Kmita
- Department of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland;
| | - Fabrice Homblé
- Structure et Fonction des Membranes Biologiques, Université Libre de Bruxelles (ULB), Boulevard du Triomphe CP 206/2, B-1050 Bruxelles, Belgium;
- Correspondence: ; Tel.: +32-2-650-5383
| |
Collapse
|
5
|
Voltage-dependent anion channel isoform 3 as a potential male contraceptive drug target. Future Med Chem 2019; 11:857-867. [PMID: 30998114 DOI: 10.4155/fmc-2018-0328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Voltage-dependent anion channel isoform 3 (VDAC3), a channel in the mitochondrial outer membrane, has been suggested to play a role in the regulation of ATP transport and Ca2+ homeostasis. These processes are regarded as important for spermatozoa motility. Accordingly, in previous years, mutations in the VDAC3-encoding gene were detected in spermatozoa with low motility from infertile patients. Therefore, it can be assumed that these mutations would cause alteration of the structure and/or charge of the VDAC3 channel. The review is focused on current knowledge about contribution of VDAC3 activity to human spermatozoa motility and morphology. We also discuss the possibility of designing new molecules that could specifically block the VDAC3 channel and consequently act as male contraceptives.
Collapse
|
6
|
Marginedas-Freixa I, Alvarez CL, Moras M, Leal Denis MF, Hattab C, Halle F, Bihel F, Mouro-Chanteloup I, Lefevre SD, Le Van Kim C, Schwarzbaum PJ, Ostuni MA. Human erythrocytes release ATP by a novel pathway involving VDAC oligomerization independent of pannexin-1. Sci Rep 2018; 8:11384. [PMID: 30061676 PMCID: PMC6065367 DOI: 10.1038/s41598-018-29885-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/20/2018] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that the translocase protein TSPO2 together with the voltage-dependent anion channel (VDAC) and adenine nucleotide transporter (ANT) were involved in a membrane transport complex in human red blood cells (RBCs). Because VDAC was proposed as a channel mediating ATP release in RBCs, we used TSPO ligands together with VDAC and ANT inhibitors to test this hypothesis. ATP release was activated by TSPO ligands, and blocked by inhibitors of VDAC and ANT, while it was insensitive to pannexin-1 blockers. TSPO ligand increased extracellular ATP (ATPe) concentration by 24–59% over the basal values, displaying an acute increase in [ATPe] to a maximal value, which remained constant thereafter. ATPe kinetics were compatible with VDAC mediating a fast but transient ATP efflux. ATP release was strongly inhibited by PKC and PKA inhibitors as well as by depleting intracellular cAMP or extracellular Ca2+, suggesting a mechanism involving protein kinases. TSPO ligands favoured VDAC polymerization yielding significantly higher densities of oligomeric bands than in unstimulated cells. Polymerization was partially inhibited by decreasing Ca2+ and cAMP contents. The present results show that TSPO ligands induce polymerization of VDAC, coupled to activation of ATP release by a supramolecular complex involving VDAC, TSPO2 and ANT.
Collapse
Affiliation(s)
- Irene Marginedas-Freixa
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Cora Lilia Alvarez
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina.,Universidad de Buenos Aires. Facultad Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Martina Moras
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - María Florencia Leal Denis
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica, Buenos Aires, Argentina
| | - Claude Hattab
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - François Halle
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, 67400, Illkirch Graffenstaden, France
| | - Frédéric Bihel
- UMR7200, Laboratoire d'Innovation Thérapeutique, Faculty of Pharmacy, University of Strasbourg, CNRS, 67400, Illkirch Graffenstaden, France
| | - Isabelle Mouro-Chanteloup
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Sophie Denise Lefevre
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Caroline Le Van Kim
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France.,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France
| | - Pablo Julio Schwarzbaum
- Instituto de Química y Fisico-Química Biológicas "Prof. Alejandro C. Paladini", UBA, CONICET, Facultad de Farmacia y Bioquímica, Junín 956, Buenos Aires, Argentina.,Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Biológica. Cátedra de Química Biológica Superior, Buenos Aires, Argentina
| | - Mariano Anibal Ostuni
- UMR-S1134, Integrated Biology of Red Blood Cells, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Université de la Réunion, Université des Antilles, F-75015, Paris, France. .,Institut National de la Transfusion Sanguine, Laboratoire d'Excellence GR-Ex, F-75015, Paris, France.
| |
Collapse
|
7
|
Karachitos A, Grobys D, Kulczyńska K, Sobusiak A, Kmita H. The Association of VDAC with Cell Viability of PC12 Model of Huntington's Disease. Front Oncol 2016; 6:238. [PMID: 27891320 PMCID: PMC5104952 DOI: 10.3389/fonc.2016.00238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/26/2016] [Indexed: 12/18/2022] Open
Abstract
It is becoming increasingly apparent that mitochondria dysfunction plays an important role in the pathogenesis of Huntington’s disease (HD), but the underlying mechanism is still elusive. Thus, there is a still need for further studies concerning the upstream events in the mitochondria dysfunction that could contribute to cell death observed in HD. Taking into account the fundamental role of the voltage-dependent anion-selective channel (VDAC) in mitochondria functioning, it is reasonable to consider the channel as a crucial element in HD etiology. Therefore, we applied inducible PC12 cell model of HD to determine the relationship between the effect of expression of wild type and mutant huntingtin (Htt and mHtt, respectively) on cell survival and mitochondria functioning in intact cells under conditions of undergoing cell divisions. Because after 48 h of Htt and mHtt expression differences in mitochondria functioning co-occurred with differences in the cell viability, we decided to estimate the effect of Htt and mHtt expression lasted for 48 h on VDAC functioning. Therefore, we isolated VDAC from the cells and tested the preparations by black lipid membrane system. We observed that the expression of mHtt, but not Htt, resulted in changes of the open state conductance and voltage-dependence when compared to control cells cultured in the absence of the expression. Importantly, for all the VDAC preparations, we observed a dominant quantitative content of VDAC1, and the quantitative relationships between VDAC isoforms were not changed by Htt and mHtt expression. Thus, Htt and mHtt-mediated functional changes of VDAC, being predominantly VDAC1, which occur shortly after these protein appearances in cells, may result in differences concerning mitochondria functioning and viability of cells expressing Htt and mHtt. The assumption is important for better understanding of cytotoxicity as well as cytoprotection mechanisms of potential clinical application.
Collapse
Affiliation(s)
- Andonis Karachitos
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Daria Grobys
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Klaudia Kulczyńska
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Adrian Sobusiak
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| | - Hanna Kmita
- Laboratory of Bioenergetics, Faculty of Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań , Poznań , Poland
| |
Collapse
|
8
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
9
|
VDAC2-specific cellular functions and the underlying structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2503-14. [PMID: 27116927 DOI: 10.1016/j.bbamcr.2016.04.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 01/30/2023]
Abstract
Voltage Dependent Anion-selective Channel 2 (VDAC2) contributes to oxidative metabolism by sharing a role in solute transport across the outer mitochondrial membrane (OMM) with other isoforms of the VDAC family, VDAC1 and VDAC3. Recent studies revealed that VDAC2 also has a distinctive role in mediating sarcoplasmic reticulum to mitochondria local Ca(2+) transport at least in cardiomyocytes, which is unlikely to be explained simply by the expression level of VDAC2. Furthermore, a strictly isoform-dependent VDAC2 function was revealed in the mitochondrial import and OMM-permeabilizing function of pro-apoptotic Bcl-2 family proteins, primarily Bak in many cell types. In addition, emerging evidence indicates a variety of other isoform-specific engagements for VDAC2. Since VDAC isoforms display 75% sequence similarity, the distinctive structure underlying VDAC2-specific functions is an intriguing problem. In this paper we summarize studies of VDAC2 structure and functions, which suggest a fundamental and exclusive role for VDAC2 in health and disease. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
|
10
|
Karachitos A, Grobys D, Antoniewicz M, Jedut S, Jordan J, Kmita H. Human VDAC isoforms differ in their capability to interact with minocycline and to contribute to its cytoprotective activity. Mitochondrion 2016; 28:38-48. [PMID: 26994639 DOI: 10.1016/j.mito.2016.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/21/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
Abstract
It has been previously demonstrated that cytoprotective activity displayed by minocycline in the case of the yeast Saccharomyces cerevisiae cells pretreated with H2O2 requires the presence of functional VDAC (YVDAC1). Thus, we decided to transform YVDAC1-depleted yeast cells (Δpor1 cells) with plasmids expressing human VDAC isoforms (HVDAC1, HVDAC2, HVDAC3) to estimate their involvement in the minocycline cytoprotective effect. We observed that only expression of HVDAC3 in Δpor1 cells provided minocycline-mediated cytoprotection against H2O2 although all human isoforms are functional in Δpor1 cells. The observation appears to be important for on-going discussion concerning VDAC isoform roles in mitochondria and cell functioning.
Collapse
Affiliation(s)
- Andonis Karachitos
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Daria Grobys
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Monika Antoniewicz
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Sylwia Jedut
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Joaquin Jordan
- Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine, Albacete, Spain
| | - Hanna Kmita
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
11
|
Jonas EA, Porter GA, Alavian KN. Bcl-xL in neuroprotection and plasticity. Front Physiol 2014; 5:355. [PMID: 25278904 PMCID: PMC4166110 DOI: 10.3389/fphys.2014.00355] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/02/2014] [Indexed: 01/14/2023] Open
Abstract
Accepted features of neurodegenerative disease include mitochondrial and protein folding dysfunction and activation of pro-death factors. Neurons that experience high metabolic demand or those found in organisms with genetic mutations in proteins that control cell stress may be more susceptible to aging and neurodegenerative disease. In neurons, events that normally promote growth, synapse formation, and plasticity are also often deployed to control neurotoxicity. Such protective strategies are coordinated by master stress-fighting proteins. One such specialized protein is the anti-cell death Bcl-2 family member Bcl-xL, whose myriad death-protecting functions include enhancement of bioenergetic efficiency, prevention of mitochondrial permeability transition channel activity, protection from mitochondrial outer membrane permeabilization (MOMP) to pro-apoptotic factors, and improvement in the rate of vesicular trafficking. Synapse formation and normal neuronal activity provide protection from neuronal death. Therefore, Bcl-xL brings about synapse formation as a neuroprotective strategy. In this review we will consider how this multi-functional master regulator protein uses many strategies to enhance synaptic and neuronal function and thus counteracts neurodegenerative stimuli.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Section of Endocrinology, Department of Internal Medicine, Yale University New Haven, CT, USA ; Department of Neurobiology, Yale University New Haven, CT, USA
| | - George A Porter
- Departments of Pediatrics (Cardiology), University of Rochester Medical Center Rochester, NY, USA ; Internal Medicine (Aab Cardiovascular Research Institute), University of Rochester Medical Center Rochester, NY, USA ; Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, NY, USA
| | - Kambiz N Alavian
- Division of Brain Sciences, Department of Medicine, Imperial College London London, UK
| |
Collapse
|
12
|
Jonas EA. Contributions of Bcl-xL to acute and long term changes in bioenergetics during neuronal plasticity. Biochim Biophys Acta Mol Basis Dis 2013; 1842:1168-78. [PMID: 24240091 DOI: 10.1016/j.bbadis.2013.11.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/05/2013] [Accepted: 11/07/2013] [Indexed: 12/23/2022]
Abstract
Mitochondria manufacture and release metabolites and manage calcium during neuronal activity and synaptic transmission, but whether long term alterations in mitochondrial function contribute to the neuronal plasticity underlying changes in organism behavior patterns is still poorly understood. Although normal neuronal plasticity may determine learning, in contrast a persistent decline in synaptic strength or neuronal excitability may portend neurite retraction and eventual somatic death. Anti-death proteins such as Bcl-xL not only provide neuroprotection at the neuronal soma during cell death stimuli, but also appear to enhance neurotransmitter release and synaptic growth and development. It is proposed that Bcl-xL performs these functions through its ability to regulate mitochondrial release of bioenergetic metabolites and calcium, and through its ability to rapidly alter mitochondrial positioning and morphology. Bcl-xL also interacts with proteins that directly alter synaptic vesicle recycling. Bcl-xL translocates acutely to sub-cellular membranes during neuronal activity to achieve changes in synaptic efficacy. After stressful stimuli, pro-apoptotic cleaved delta N Bcl-xL (ΔN Bcl-xL) induces mitochondrial ion channel activity leading to synaptic depression and this is regulated by caspase activation. During physiological states of decreased synaptic stimulation, loss of mitochondrial Bcl-xL and low level caspase activation occur prior to the onset of long term decline in synaptic efficacy. The degree to which Bcl-xL changes mitochondrial membrane permeability may control the direction of change in synaptic strength. The small molecule Bcl-xL inhibitor ABT-737 has been useful in defining the role of Bcl-xL in synaptic processes. Bcl-xL is crucial to the normal health of neurons and synapses and its malfunction may contribute to neurodegenerative disease.
Collapse
Affiliation(s)
- Elizabeth A Jonas
- Dept. of Internal Medicine, P.O. Box 208001, Yale University School of Medicine, New Haven, CT 06520, USA; Dept. of Neurobiology, P.O. Box 208020, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
13
|
Li J, Yu L, Gu X, Ma Y, Pasqualini R, Arap W, Snyder EY, Sidman RL. Tissue plasminogen activator regulates Purkinje neuron development and survival. Proc Natl Acad Sci U S A 2013; 110:E2410-9. [PMID: 23674688 PMCID: PMC3696779 DOI: 10.1073/pnas.1305010110] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The cerebellar cortex is centrally involved in motor coordination and learning, and its sole output is provided by Purkinje neurons (PNs). Growth of PN dendrites and their major synaptic input from granule cell parallel fiber axons takes place almost entirely in the first several postnatal weeks. PNs are more vulnerable to cell death than most other neurons, but the mechanisms remain unclear. We find that the homozygous nervous (nr) mutant mouse's 10-fold-increased cerebellar tissue plasminogen activator (tPA), a part of the tPA/plasmin proteolytic system, influences several different molecular mechanisms, each regulating a key aspect of postnatal PN development, followed by selective PN necrosis, as follows. (i) Excess endogenous or exogenous tPA inhibits dendritic growth in vivo and in vitro by activating protein kinase Cγ and phosphorylation of microtubule-associated protein 2. (ii) tPA/plasmin proteolysis impairs parallel fiber-PN synaptogenesis by blocking brain-derived neurotrophic factor/tyrosine kinase receptor B signaling. (iii) Voltage-dependent anion channel 1 (a mitochondrial and plasma membrane protein) bound with kringle 5 (a peptide derived from the excess plasminogen) promotes pathological enlargement and rounding of PN mitochondria, reduces mitochondrial membrane potential, and damages plasma membranes. These abnormalities culminate in young nr PN necrosis that can be mimicked in wild-type PNs by exogenous tPA injection into cerebellum or prevented by endogenous tPA deletion in nr:tPA-knockout double mutants. In sum, excess tPA/plasmin, through separate downstream molecular mechanisms, regulates postnatal PN dendritogenesis, synaptogenesis, mitochondrial structure and function, and selective PN viability.
Collapse
Affiliation(s)
| | - Lili Yu
- Department of Anatomy and Neurobiology, Boston University Medical School, Boston, MA 02118
| | - Xuesong Gu
- Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Yinghua Ma
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, NY 10065
| | - Renata Pasqualini
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Wadih Arap
- David H. Koch Center, the University of Texas M. D. Anderson Cancer Center, Houston, TX 77030; and
| | - Evan Y. Snyder
- Program in Stem Cell and Regenerative Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037
| | | |
Collapse
|
14
|
Alavian KN, Dworetzky SI, Bonanni L, Zhang P, Sacchetti S, Mariggio MA, Onofrj M, Thomas A, Li H, Mangold JE, Signore AP, Demarco U, Demady DR, Nabili P, Lazrove E, Smith PJS, Gribkoff VK, Jonas EA. Effects of dexpramipexole on brain mitochondrial conductances and cellular bioenergetic efficiency. Brain Res 2012; 1446:1-11. [PMID: 22364637 DOI: 10.1016/j.brainres.2012.01.046] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 01/18/2012] [Indexed: 02/01/2023]
Abstract
Cellular stress or injury can result in mitochondrial dysfunction, which has been linked to many chronic neurological disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Stressed and dysfunctional mitochondria exhibit an increase in large conductance mitochondrial membrane currents and a decrease in bioenergetic efficiency. Inefficient energy production puts cells, and particularly neurons, at risk of death when energy demands exceed cellular energy production. Here we show that the candidate ALS drug dexpramipexole (DEX; KNS-760704; ((6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine) and cyclosporine A (CSA) inhibited increases in ion conductance in whole rat brain-derived mitochondria induced by calcium or treatment with a proteasome inhibitor, although only CSA inhibited calcium-induced permeability transition in liver-derived mitochondria. In several cell lines, including cortical neurons in culture, DEX significantly decreased oxygen consumption while maintaining or increasing production of adenosine triphosphate (ATP). DEX also normalized the metabolic profile of injured cells and was protective against the cytotoxic effects of proteasome inhibition. These data indicate that DEX increases the efficiency of oxidative phosphorylation, possibly by inhibition of a CSA-sensitive mitochondrial conductance.
Collapse
Affiliation(s)
- Kambiz N Alavian
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Wojtkowska M, Jąkalski M, Pieńkowska JR, Stobienia O, Karachitos A, Przytycka TM, Weiner J, Kmita H, Makałowski W. Phylogenetic analysis of mitochondrial outer membrane β-barrel channels. Genome Biol Evol 2011; 4:110-25. [PMID: 22155732 PMCID: PMC3273162 DOI: 10.1093/gbe/evr130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chou JL, Shenoy DV, Thomas N, Choudhary PK, Laferla FM, Goodman SR, Breen GAM. Early dysregulation of the mitochondrial proteome in a mouse model of Alzheimer's disease. J Proteomics 2011; 74:466-79. [PMID: 21237293 DOI: 10.1016/j.jprot.2010.12.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/09/2010] [Accepted: 12/23/2010] [Indexed: 01/10/2023]
Abstract
Mitochondrial structural and functional alterations appear to play to an important role in the pathogenesis of Alzheimer's disease (AD). In the present study, we used a quantitative comparative proteomic profiling approach to analyze changes in the mitochondrial proteome in AD. A triple transgenic mouse model of AD (3xTg-AD) which harbors mutations in three human transgenes, APP(Swe), PS1(M146V) and Tau(P301L), was used in these experiments. Quantitative differences in the mitochondrial proteome between the cerebral cortices of 6-month-old male 3xTg-AD and non-transgenic mice were determined by using two-dimensional difference gel electrophoresis (2D-DIGE) and tandem mass spectrometry. We identified 23 different proteins whose expression levels differed significantly between triple transgenic and non-transgenic mitochondria. Both down-regulated and up-regulated mitochondrial proteins were observed in transgenic AD cortices. Proteins which were dysregulated in 3xTg-AD cortices functioned in a wide variety of metabolic pathways, including the citric acid cycle, oxidative phosphorylation, pyruvate metabolism, glycolysis, oxidative stress, fatty acid oxidation, ketone body metabolism, ion transport, apoptosis, and mitochondrial protein synthesis. These alterations in the mitochondrial proteome of the cerebral cortices of triple transgenic AD mice occurred before the development of significant amyloid plaque and neurofibrillary tangles, indicating that mitochondrial dysregulation is an early event in AD.
Collapse
Affiliation(s)
- Jose L Chou
- Department of Molecular and Cell Biology, The University of Texas at Dallas, Richardson, TX 75080, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Gałgańska H, Antoniewicz M, Budzińska M, Gałgański L, Kmita H. VDAC contributes to mRNA levels in Saccharomyces cerevisiae cells by the intracellular reduction/oxidation state dependent and independent mechanisms. J Bioenerg Biomembr 2010; 42:483-9. [PMID: 21072575 DOI: 10.1007/s10863-010-9315-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/19/2010] [Indexed: 02/07/2023]
Abstract
Available data suggest that voltage-dependent anion selective channel (VDAC) constitutes an important component of a cellular regulatory mechanism based on the intracellular reduction/oxidation (redox) state. Here, using quantitative RT-PCR, we demonstrated that depletion of VDAC1 (termed here VDAC) in Saccharomyces cerevisiae cells distinctly affected levels of mRNAs encoding nuclear proteins sensitive to changes of the intracellular redox state including the nuclear transcription factors important for adaptation to the redox state and proteins involved in communication between mitochondria and the nucleus. We also revealed that the changes of the studied protein transcript levels generally correlated with changes of the intracellular redox state although VDAC appears also to affect mRNA levels by a mechanism not based on changes of the intracellular redox states. Thus, VDAC seems to be an important element of the intracellular signaling network.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | | | | | | | | |
Collapse
|
18
|
Abstract
SOD1 is a cause of the fatal, paralytic disorder ALS. Although mechanisms underlying mutant SOD1 neurotoxicity remain uncertain, this protein associates with mitochondria. In this issue of Neuron, Israelson et al. show that mutant SOD1 binds and inhibits the mitochondrial channel VDAC1. This finding sheds light onto possible molecular links between mutant SOD1, mitochondrial dysfunction, and spinal motor neuron degeneration in inherited ALS.
Collapse
Affiliation(s)
- Virginia Le Verche
- Department of Neurology, Pathology, and Cell Biology and the Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
19
|
Gałgańska H, Karachitos A, Baranek M, Budzińska M, Jordán J, Kmita H. Viability of Saccharomyces cerevisiae cells following exposure to H2O2 and protective effect of minocycline depend on the presence of VDAC. Eur J Pharmacol 2010; 643:42-7. [PMID: 20599912 DOI: 10.1016/j.ejphar.2010.06.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Accepted: 06/17/2010] [Indexed: 12/24/2022]
Abstract
Proteins involved in apoptosis are still a matter of debate. Therefore, we decided to check the effect of the presence of VDAC (voltage dependent anion selective channel) on viability of Saccharomyces cerevisiae cells following their exposure to H(2)O(2) that is known to induce apoptosis both in S. cerevisiae and in mammalian cells. Mitochondria of S. cerevisiae contain only one channel-forming VDAC isoform (VDAC1), which simplifies studies on the channel. Using S. cerevisiae mutant depleted of VDAC1 (termed here VDAC) and the isogenic wild type, we have shown that VDAC is important for protection of S. cerevisiae cells against H(2)O(2) treatment, particularly in exponential growth phase that is known to be more affected by H(2)O(2). The increased viability of H(2)O(2) pretreated exponentially growing cells containing VDAC was accompanied by clear changes of the cytosol redox state and was potentiated by minocycline, an antibiotic of the tetracycline family that displays cytoprotective potency. The protective effect of minocycline also coincided with distinct changes of cytosol redox state. Thus, we conclude that the ability to change the cytosol redox state following exposure to H(2)O(2) or/and minocycline appears to be an intrinsic feature of exponentially growing cells (young cells) containing VDAC. Moreover, the ability seems to be crucial for both cell viability and protective effect of minocycline.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Mathupala SP, Pedersen PL. Voltage dependent anion channel-1 (VDAC-1) as an anti-cancer target. Cancer Biol Ther 2010; 9:1053-6. [PMID: 20581475 DOI: 10.4161/cbt.9.12.12451] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Saroj P Mathupala
- Department of Neurological Surgery and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI, USA.
| | | |
Collapse
|
21
|
Fieni F, Parkar A, Misgeld T, Kerschensteiner M, Lichtman JW, Pasinelli P, Trotti D. Voltage-dependent inwardly rectifying potassium conductance in the outer membrane of neuronal mitochondria. J Biol Chem 2010; 285:27411-27417. [PMID: 20551319 DOI: 10.1074/jbc.m110.131243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Potassium fluxes integrate mitochondria into cellular activities, controlling their volume homeostasis and structural integrity in many pathophysiological mechanisms. The outer mitochondrial membrane (OMM) is thought to play a passive role in this process because K(+) is believed to equilibrate freely between the cytosol and mitochondrial intermembrane space. By patch clamping mitochondria isolated from the central nervous systems of adult mitoCFP transgenic mice, we discovered the existence of I(OMMKi), a novel voltage-dependent inwardly rectifying K(+) conductance located in the OMM. I(OMMKi) is regulated by osmolarity, potentiated by cAMP, and activated at physiological negative potentials, allowing K(+) to enter the mitochondrial intermembrane space in a controlled regulated fashion. The identification of I(OMMKi) in the OMM supports the notion that a membrane potential could exist across this membrane in vivo and suggests that the OMM possesses regulated pathways for K(+) uptake.
Collapse
Affiliation(s)
- Francesca Fieni
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Anjum Parkar
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Thomas Misgeld
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Martin Kerschensteiner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Piera Pasinelli
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Davide Trotti
- Department of Neuroscience, Weinberg Unit for ALS Research, and Farber Institute for Neurosciences, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
22
|
Peixoto PM, Ryu SY, Kinnally KW. Mitochondrial ion channels as therapeutic targets. FEBS Lett 2010; 584:2142-52. [PMID: 20178788 PMCID: PMC2872129 DOI: 10.1016/j.febslet.2010.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Shin-Young Ryu
- New York University College of Dentistry, New York, NY, 10002
| | | |
Collapse
|
23
|
Structure and evolution of mitochondrial outer membrane proteins of beta-barrel topology. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1292-9. [PMID: 20450883 DOI: 10.1016/j.bbabio.2010.04.019] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 04/25/2010] [Accepted: 04/27/2010] [Indexed: 11/22/2022]
Abstract
Gram-negative bacteria are the ancestors of mitochondrial organelles. Consequently, both entities contain two surrounding lipid bilayers known as the inner and outer membranes. While protein synthesis in bacteria is accomplished in the cytoplasm, mitochondria import 90-99% of their protein ensemble from the cytosol in the opposite direction. Three protein families including Sam50, VDAC and Tom40 together with Mdm10 compose the set of integral beta-barrel proteins embedded in the mitochondrial outer membrane in S. cerevisiae (MOM). The 16-stranded Sam50 protein forms part of the sorting and assembly machinery (SAM) and shows a clear evolutionary relationship to members of the bacterial Omp85 family. By contrast, the evolution of VDAC and Tom40, both adopting the same fold cannot be traced to any bacterial precursor. This finding is in agreement with the specific function of Tom40 in the TOM complex not existent in the enslaved bacterial precursor cell. Models of Tom40 and Sam50 have been developed using X-ray structures of related proteins. These models are analyzed with respect to properties such as conservation and charge distribution yielding features related to their individual functions.
Collapse
|
24
|
Perevoshchikova IV, Zorov SD, Kotova EA, Zorov DB, Antonenko YN. Hexokinase inhibits flux of fluorescently labeled ATP through mitochondrial outer membrane porin. FEBS Lett 2010; 584:2397-402. [DOI: 10.1016/j.febslet.2010.04.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 12/23/2022]
|
25
|
Galganska H, Karachitos A, Wojtkowska M, Stobienia O, Budzinska M, Kmita H. Communication between mitochondria and nucleus: putative role for VDAC in reduction/oxidation mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1276-80. [PMID: 20144586 DOI: 10.1016/j.bbabio.2010.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2009] [Revised: 02/01/2010] [Accepted: 02/01/2010] [Indexed: 02/04/2023]
Abstract
Voltage dependent anion channel (VDAC) was identified in 1976 and since that time has been extensively studied. It is well known that VDAC transports metabolites across the outer mitochondrial membrane. The simple transport function is indispensable for proper mitochondria functions and, consequently for cell activity, and makes VDAC crucial for a range of cellular processes including ATP rationing, Ca2+ homeostasis and apoptosis execution. Here, we review recent data obtained for Saccharomyces cerevisiae cells used as a model system concerning the putative role of VDAC in communication between mitochondria and the nucleus. The S. cerevisiae VDAC isoform known as VDAC1 (termed here YVDAC) mediates the cytosol reduction/oxidation (redox) state that contributes to regulation of expression and activity of cellular proteins including proteins that participate in protein import into mitochondria and antioxidant enzymes. Simultaneously, copper-and-zinc-containing superoxide dismutase (CuZnSOD) plays an important role in controlling YVDAC activity and expression levels. Thus, it is proposed that VDAC constitutes an important component of a regulatory mechanism based on the cytosol redox state.
Collapse
Affiliation(s)
- Hanna Galganska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Ryu SY, Beutner G, Dirksen RT, Kinnally KW, Sheu SS. Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett 2010; 584:1948-55. [PMID: 20096690 DOI: 10.1016/j.febslet.2010.01.032] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Revised: 01/11/2010] [Accepted: 01/18/2010] [Indexed: 01/06/2023]
Abstract
Ca(2+) channels that underlie mitochondrial Ca(2+) transport first reported decades ago have now just recently been precisely characterized electrophysiologically. Numerous data indicate that mitochondrial Ca(2+) uptake via these channels regulates multiple intracellular processes by shaping cytosolic and mitochondrial Ca(2+) transients, as well as altering the cellular metabolic and redox state. On the other hand, mitochondrial Ca(2+) overload also initiates a cascade of events that leads to cell death. Thus, characterization of mitochondrial Ca(2+) channels is central to a comprehensive understanding of cell signaling. Here, we discuss recent progresses in the biophysical and electrophysiological characterization of several distinct mitochondrial Ca(2+) channels.
Collapse
Affiliation(s)
- Shin-Young Ryu
- Department of Pharmacology and Physiology, and Mitochondrial Research Innovation Group, University of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
27
|
Shore GC. Apoptosis: it's BAK to VDAC. EMBO Rep 2009; 10:1311-3. [PMID: 19949413 DOI: 10.1038/embor.2009.249] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 10/25/2009] [Indexed: 10/20/2022] Open
Affiliation(s)
- Gordon C Shore
- Department of Biochemistry and Goodman Cancer Center, McGill University, McIntyre Medical Building, Room 906B, 3,655 Promenade Sir William Osler, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
28
|
Ferrer I. Altered mitochondria, energy metabolism, voltage-dependent anion channel, and lipid rafts converge to exhaust neurons in Alzheimer’s disease. J Bioenerg Biomembr 2009; 41:425-31. [DOI: 10.1007/s10863-009-9243-5] [Citation(s) in RCA: 135] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
29
|
Budzińska M, Gałgańska H, Karachitos A, Wojtkowska M, Kmita H. The TOM complex is involved in the release of superoxide anion from mitochondria. J Bioenerg Biomembr 2009; 41:361-7. [PMID: 19690949 DOI: 10.1007/s10863-009-9231-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 07/31/2009] [Indexed: 02/07/2023]
Abstract
Available data indicate that superoxide anion (O(2)(*-) ) is released from mitochondria, but apart from VDAC (voltage dependent anion channel), the proteins involved in its transport across the mitochondrial outer membrane still remain elusive. Using mitochondria of the yeast Saccharomyces cerevisiae mutant depleted of VDAC (Deltapor1 mutant) and the isogenic wild type, we studied the role of the TOM complex (translocase of the outer membrane) in the efflux of O(2)(*-) from the mitochondria. We found that blocking the TOM complex with the fusion protein pb(2)-DHFR decreased O(2)(*-) release, particularly in the case of Deltapor1 mitochondria. We also observed that the effect of the TOM complex blockage on O(2)(*-) release from mitochondria coincided with the levels of O(2)(*-) release as well as with levels of Tom40 expression in the mitochondria. Thus, we conclude that the TOM complex participates in O(2)(*-) release from mitochondria.
Collapse
Affiliation(s)
- Małgorzata Budzińska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Umultowska 89, 61-614, Poznań, Poland
| | | | | | | | | |
Collapse
|
30
|
Garcia-Martinez EM, Sanz-Blasco S, Karachitos A, Bandez MJ, Fernandez-Gomez FJ, Perez-Alvarez S, de Mera RMMF, Jordan MJ, Aguirre N, Galindo MF, Villalobos C, Navarro A, Kmita H, Jordán J. Mitochondria and calcium flux as targets of neuroprotection caused by minocycline in cerebellar granule cells. Biochem Pharmacol 2009; 79:239-50. [PMID: 19682437 DOI: 10.1016/j.bcp.2009.07.028] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 07/29/2009] [Accepted: 07/29/2009] [Indexed: 11/28/2022]
Abstract
Minocycline, an antibiotic of the tetracycline family, has attracted considerable interest for its theoretical therapeutic applications in neurodegenerative diseases. However, the mechanism of action underlying its effect remains elusive. Here we have studied the effect of minocycline under excitotoxic conditions. Fluorescence and bioluminescence imaging studies in rat cerebellar granular neuron cultures using fura2/AM and mitochondria-targeted aequorin revealed that minocycline, at concentrations higher than those shown to block inflammation and inflammation-induced neuronal death, inhibited NMDA-induced cytosolic and mitochondrial rises in Ca(2+) concentrations in a reversible manner. Moreover, minocycline added in the course of NMDA stimulation decreased Ca(2+) intracellular levels, but not when induced by depolarization with a high K(+) medium. We also found that minocycline, at the same concentrations, partially depolarized mitochondria by about 5-30 mV, prevented mitochondrial Ca(2+) uptake under conditions of environmental stress, and abrogated NMDA-induced reactive oxygen species (ROS) formation. Consistently, minocycline also abrogates the rise in ROS induced by 75 microM Ca(2+) in isolated brain mitochondria. In search for the mechanism of mitochondrial depolarization, we found that minocycline markedly inhibited state 3 respiration of rat brain mitochondria, although distinctly increased oxygen uptake in state 4. Minocycline inhibited NADH-cytochrome c reductase and cytochrome c oxidase activities, whereas the activity of succinate-cytochrome c reductase was not modified, suggesting selective inhibition of complexes I and IV. Finally, minocycline affected activity of voltage-dependent anion channel (VDAC) as determined in the reconstituted system. Taken together, our results indicate that mitochondria are a critical factor in minocycline-mediated neuroprotection.
Collapse
|