1
|
Sharma Y, Gupta JK, Babu MA, Singh S, Sindhu RK. Signaling Pathways Concerning Mitochondrial Dysfunction: Implications in Neurodegeneration and Possible Molecular Targets. J Mol Neurosci 2024; 74:101. [PMID: 39466510 DOI: 10.1007/s12031-024-02269-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/16/2024] [Indexed: 10/30/2024]
Abstract
Mitochondrion is an important organelle present in our cells responsible for meeting energy requirements. All higher organisms rely on efficient mitochondrial bioenergetic machinery to sustain life. No other respiratory process can produce as much power as generated by mitochondria in the form of ATPs. This review is written in order to get an insight into the magnificent working of mitochondrion and its implications in cellular homeostasis, bioenergetics, redox, calcium signaling, and cell death. However, if this machinery gets faulty, it may lead to several disease states. Mitochondrial dysfunctioning is of growing concern today as it is seen in the pathogenesis of several diseases which includes neurodegenerative disorders, cardiovascular disorders, diabetes mellitus, skeletal muscle defects, liver diseases, and so on. To cover all these aspects is beyond the scope of this article; hence, our study is restricted to neurodegenerative disorders only. Moreover, faulty functioning of this organelle can be one of the causes of early ageing in individuals. This review emphasizes mutations in the mitochondrial DNA, defects in oxidative phosphorylation, generation of ROS, and apoptosis. Researchers have looked into new approaches that might be able to control mitochondrial failure and show a lot of promise as treatments.
Collapse
Affiliation(s)
- Yati Sharma
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Jeetendra Kumar Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Sumitra Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Rakesh K Sindhu
- School of Pharmacy, Sharda University, Gautam Buddha Nagar, Greater Noida, Uttar Paresdh, 201310, India.
| |
Collapse
|
2
|
Lansdon P, Kasuya J, Kitamoto T. Commensal bacteria exacerbate seizure-like phenotypes in Drosophila voltage-gated sodium channel mutants. GENES, BRAIN, AND BEHAVIOR 2024; 23:e70000. [PMID: 39231190 PMCID: PMC11373613 DOI: 10.1111/gbb.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/06/2024]
Abstract
Mutations in voltage-gated sodium (Nav) channels, which are essential for generating and propagating action potentials, can lead to serious neurological disorders, such as epilepsy. However, disease-causing Nav channel mutations do not always result in severe symptoms, suggesting that the disease conditions are significantly affected by other genetic factors and various environmental exposures, collectively known as the "exposome". Notably, recent research emphasizes the pivotal role of commensal bacteria in neural development and function. Although these bacteria typically benefit the nervous system under normal conditions, their impact during pathological states remains largely unknown. Here, we investigated the influence of commensal microbes on seizure-like phenotypes exhibited by paraShu-a gain-of-function mutant of the Drosophila Nav channel gene, paralytic. Remarkably, the elimination of endogenous bacteria considerably ameliorated neurological impairments in paraShu. Consistently, reintroducing bacteria, specifically from the Lactobacillus or Acetobacter genera, heightened the phenotypic severity in the bacteria-deprived mutants. These findings posit that particular native bacteria contribute to the severity of seizure-like phenotypes in paraShu. We further uncovered that treating paraShu with antibiotics boosted Nrf2 signaling in the gut, and that global Nrf2 activation mirrored the effects of removing bacteria from paraShu. This raises the possibility that the removal of commensal bacteria suppresses the seizure-like manifestations through augmented antioxidant responses. Since bacterial removal during development was critical for suppression of adult paraShu phenotypes, our research sets the stage for subsequent studies, aiming to elucidate the interplay between commensal bacteria and the developing nervous system in conditions predisposed to the hyperexcitable nervous system.
Collapse
Affiliation(s)
- Patrick Lansdon
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
| | - Junko Kasuya
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, Graduate College, University of Iowa, Iowa City, Iowa, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
3
|
Xie W, Koppula S, Kale MB, Ali LS, Wankhede NL, Umare MD, Upaganlawar AB, Abdeen A, Ebrahim EE, El-Sherbiny M, Behl T, Shen B, Singla RK. Unraveling the nexus of age, epilepsy, and mitochondria: exploring the dynamics of cellular energy and excitability. Front Pharmacol 2024; 15:1469053. [PMID: 39309002 PMCID: PMC11413492 DOI: 10.3389/fphar.2024.1469053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Epilepsy, a complex neurological condition marked by recurring seizures, is increasingly recognized for its intricate relationship with mitochondria, the cellular powerhouses responsible for energy production and calcium regulation. This review offers an in-depth examination of the interplay between epilepsy, mitochondrial function, and aging. Many factors might account for the correlation between epilepsy and aging. Mitochondria, integral to cellular energy dynamics and neuronal excitability, perform a critical role in the pathophysiology of epilepsy. The mechanisms linking epilepsy and mitochondria are multifaceted, involving mitochondrial dysfunction, reactive oxygen species (ROS), and mitochondrial dynamics. Mitochondrial dysfunction can trigger seizures by compromising ATP production, increasing glutamate release, and altering ion channel function. ROS, natural byproducts of mitochondrial respiration, contribute to oxidative stress and neuroinflammation, critical factors in epileptogenesis. Mitochondrial dynamics govern fusion and fission processes, influence seizure threshold and calcium buffering, and impact seizure propagation. Energy demands during seizures highlight the critical role of mitochondrial ATP generation in maintaining neuronal membrane potential. Mitochondrial calcium handling dynamically modulates neuronal excitability, affecting synaptic transmission and action potential generation. Dysregulated mitochondrial calcium handling is a hallmark of epilepsy, contributing to excitotoxicity. Epigenetic modifications in epilepsy influence mitochondrial function through histone modifications, DNA methylation, and non-coding RNA expression. Potential therapeutic avenues targeting mitochondria in epilepsy include mitochondria-targeted antioxidants, ketogenic diets, and metabolic therapies. The review concludes by outlining future directions in epilepsy research, emphasizing integrative approaches, advancements in mitochondrial research, and ethical considerations. Mitochondria emerge as central players in the complex narrative of epilepsy, offering profound insights and therapeutic potential for this challenging neurological disorder.
Collapse
Affiliation(s)
- Wen Xie
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Sushruta Koppula
- College of Biomedical and Health Sciences, Konkuk University, Chungju-Si, Republic of Korea
| | - Mayur B. Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | - Lashin S. Ali
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Mohit D. Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, India
| | | | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Elturabi E. Ebrahim
- Medical-Surgical Nursing Department, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, India
| | - Bairong Shen
- Institutes for Systems Genetics, West China Tianfu Hospital, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Department of Pharmacy and Institutes for Systems Genetics, Center for High Altitude Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
4
|
Ozdemir-Kumral ZN, Akgün T, Haşim C, Ulusoy E, Kalpakçıoğlu MK, Yüksel MF, Okumuş T, Us Z, Akakın D, Yüksel M, Gören Z, Yeğen BÇ. Intracerebroventricular administration of the exercise hormone irisin or acute strenuous exercise alleviates epileptic seizure-induced neuroinflammation and improves memory dysfunction in rats. BMC Neurosci 2024; 25:36. [PMID: 39103771 DOI: 10.1186/s12868-024-00884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/24/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Status epilepticus is a common and potentially life-threatening neurological emergency with a high risk for cognitive and neurobiological impairment. Our aim was to evaluate the neuroprotective effects of centrally administered irisin and acute exhausting exercise against oxidative brain injury and memory dysfunction due to a pentylenetetrazole (PTZ)-induced single seizure. Male Sprague Dawley rats with intracerebroventricular (icv) cannulas were randomly divided into intraperitoneally (ip) saline-injected control and PTZ-injected (45 mg/kg) seizure groups. Both the control and PTZ groups were then treated with irisin (7.5 µg/kg, 2 µl, icv), saline (2 µl, icv) or were forced to an acute bout of strenuous exercise before the ip injection of saline (control) or PTZ. Seizures were evaluated using the Racine score. To evaluate memory performance, a passive avoidance test was performed before and after PTZ injection. Following euthanasia at the 24th hour of seizure induction, brain tissues were removed for histopathological examination and for evaluating oxidative damage, antioxidant capacity, and neurotransmitter levels. RESULTS Glutamate/GABA imbalance observed in PTZ rats was corrected by irisin administration (p < 0.001/p < 0.01), while irisin prevented the generation of reactive oxygen species and lipid peroxidation (p < 0.05 - 0.001) and replenished the antioxidant catalase and glutathione levels (p < 0.01-0.01) in the cerebral tissue, and reduced the histologically evident neuronal injury due to a single seizure (p < 0.05 - 0.01). Irisin also delayed the onset of seizures (p < 0.05) and improved memory dysfunction (p < 0.05), but did not affect the severity of seizures. The acute exhaustive swimming exercise completed before PTZ-seizure depressed glutamate level (p < 0.001), maintained the oxidant/antioxidant balance, alleviated neuronal injury (p < 0.05 - 0.01) and upregulated cerebral BDNF expression (p < 0.05). CONCLUSION In conclusion, acute high-intensity exercise or exogenously administered irisin provides neuroprotection by maintaining the balance of excitatory/inhibitory neurotransmitters and oxidant/antioxidant systems.
Collapse
Affiliation(s)
- Zarife Nigâr Ozdemir-Kumral
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Tuğçe Akgün
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye
| | - Ceren Haşim
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Ezgi Ulusoy
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | | | | | - Tunahan Okumuş
- Student at Marmara University School of Medicine, İstanbul, Türkiye
| | - Zeynep Us
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Dilek Akakın
- Department of Histology and Embryology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Meral Yüksel
- Department of Medical Laboratory, Marmara University Vocational School of Health Services, İstanbul, Türkiye
| | - Zafer Gören
- Department of Pharmacology, Marmara University School of Medicine, İstanbul, Türkiye
| | - Berrak Ç Yeğen
- Department of Physiology, Marmara University School of Medicine, Basıbüyük Mah. Maltepe Basıbüyük Yolu No. 9/1, Istanbul, Maltepe, 34854, Türkiye.
| |
Collapse
|
5
|
Chidambaram SB, Anand N, Varma SR, Ramamurthy S, Vichitra C, Sharma A, Mahalakshmi AM, Essa MM. Superoxide dismutase and neurological disorders. IBRO Neurosci Rep 2024; 16:373-394. [PMID: 39007083 PMCID: PMC11240301 DOI: 10.1016/j.ibneur.2023.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 11/21/2023] [Indexed: 07/16/2024] Open
Abstract
Superoxide dismutase (SOD) is a common antioxidant enzyme found majorly in living cells. The main physiological role of SOD is detoxification and maintain the redox balance, acts as a first line of defence against Reactive nitrogen species (RNS), Reactive oxygen species (ROS), and other such potentially hazardous molecules. SOD catalyses the conversion of superoxide anion free radicals (O 2 -.) into molecular oxygen (O 2) and hydrogen peroxide (H 2O 2) in the cells. Superoxide dismutases (SODs) are expressed in neurons and glial cells throughout the CNS both intracellularly and extracellularly. Endogenous oxidative stress (OS) linked with enlarged production of reactive oxygen metabolites (ROMs), inflammation, deregulation of redox balance, mitochondrial dysfunction and bioenergetic crisis are found to be prerequisite for neuronal loss in neurological diseases. Clinical and genetic studies indicate a direct correlation between mutations in SOD gene and neurodegenerative diseases, like Amyotrophic Lateral Sclerosis (ALS), Huntington's disease (HD), Parkinson's Disease (PD) and Alzheimer's Disease (AD). Therefore, inhibitors of OS are considered as an optimistic approach to prevent neuronal loss. SOD mimetics like Metalloporphyrin Mn (II)-cyclic polyamines, Nitroxides and Mn (III)- Salen complexes are designed and used as therapeutic extensively in the treatment of neurological disorders. SODs and SOD mimetics are promising future therapeutics in the field of various diseases with OS-mediated pathology.
Collapse
Affiliation(s)
- Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Nikhilesh Anand
- Department of Pharmacology, American University of Antigua College of Medicine, University Park, Jabberwock Beach Road, Antigua, Antigua and Barbuda
| | - Sudhir Rama Varma
- Department of Clinical Sciences, College of Dentistry, Ajman University, 346 Ajman, the United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, 346 Ajman, the United Arab Emirates
| | - Srinivasan Ramamurthy
- College of Pharmacy & Health Sciences, University of Science and Technology of Fujairah, 2202 Fujairah, the United Arab Emirates
| | - Chandrasekaran Vichitra
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Ambika Sharma
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat, Oman
- Ageing and Dementia Research Group, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
6
|
Tabassum S, Shorter S, Ovsepian SV. Analysis of the action mechanisms and targets of herbal anticonvulsants highlights opportunities for therapeutic engagement with refractory epilepsy. J Mol Med (Berl) 2024; 102:761-771. [PMID: 38653825 PMCID: PMC11106186 DOI: 10.1007/s00109-024-02445-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Epilepsy is a neurological disorder characterized by spontaneous and recurring seizures. It poses significant therapeutic challenges due to diverse etiology, pathobiology, and pharmacotherapy-resistant variants. The anticonvulsive effects of herbal leads with biocompatibility and toxicity considerations have attracted much interest, inspiring mechanistic analysis with the view of their use for engagement of new targets and combination with antiseizure pharmacotherapies. This article presents a comprehensive overview of the key molecular players and putative action mechanisms of the most common antiepileptic herbals demonstrated in tissue culture and preclinical models. From the review of the literature, it emerges that their effects are mediated via five distinct mechanisms: (1) reduction of membrane excitability through inhibition of cation channels, (2) improvement of mitochondrial functions with antioxidant effects, (3) enhancement in synaptic transmission mediated by GABAA receptors, (4) improvement of immune response with anti-inflammatory action, and (5) suppression of protein synthesis and metabolism. While some of the primary targets and action mechanisms of herbal anticonvulsants (1, 3) are shared with antiseizure pharmacotherapies, herbal leads also engage with distinct mechanisms (2, 4, and 5), suggesting new drug targets and opportunities for their integration with antiseizure medications. Addressing outstanding questions through research and in silico modeling should facilitate the future use of herbals as auxiliary therapy in epilepsy and guide the development of treatment of pharmacoresistant seizures through rigorous trials and regulatory approval.
Collapse
Affiliation(s)
- Sobia Tabassum
- Department of Biological Sciences, Faculty of Sciences, International Islamic University, Islamabad, Pakistan
| | - Susan Shorter
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK
| | - Saak V Ovsepian
- Faculty of Engineering and Science, University of Greenwich London, Chatham Maritime, Kent, ME4 4TB, UK.
- Faculty of Medicine, Tbilisi State University, Tbilisi, 0177, Republic of Georgia.
| |
Collapse
|
7
|
Yang JJ, Liu YX, Wang YF, Ge BY, Wang Y, Wang QS, Li S, Zhang JJ, Jin LL, Hong JS, Yin SM, Zhao J. Anti-epileptic and Neuroprotective Effects of Ultra-low Dose NADPH Oxidase Inhibitor Dextromethorphan on Kainic Acid-induced Chronic Temporal Lobe Epilepsy in Rats. Neurosci Bull 2024; 40:577-593. [PMID: 37973720 PMCID: PMC11127903 DOI: 10.1007/s12264-023-01140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/24/2023] [Indexed: 11/19/2023] Open
Abstract
Neuroinflammation mediated by microglia and oxidative stress play pivotal roles in the development of chronic temporal lobe epilepsy (TLE). We postulated that kainic acid (KA)-Induced status epilepticus triggers microglia-dependent inflammation, leading to neuronal damage, a lowered seizure threshold, and the emergence of spontaneous recurrent seizures (SRS). Extensive evidence from our laboratory suggests that dextromethorphan (DM), even in ultra-low doses, has anti-inflammatory and neuroprotective effects in many animal models of neurodegenerative disease. Our results showed that administration of DM (10 ng/kg per day; subcutaneously via osmotic minipump for 4 weeks) significantly mitigated the residual effects of KA, including the frequency of SRS and seizure susceptibility. In addition, DM-treated rats showed improved cognitive function and reduced hippocampal neuronal loss. We found suppressed microglial activation-mediated neuroinflammation and decreased expression of hippocampal gp91phox and p47phox proteins in KA-induced chronic TLE rats. Notably, even after discontinuation of DM treatment, ultra-low doses of DM continued to confer long-term anti-seizure and neuroprotective effects, which were attributed to the inhibition of microglial NADPH oxidase 2 as revealed by mechanistic studies.
Collapse
Affiliation(s)
- Jing-Jing Yang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Ying-Xin Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Yan-Fang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Bi-Ying Ge
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Ying Wang
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Qing-Shan Wang
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
- School of Public Health, Dalian Medical University, Dalian, 116044, China
| | - Sheng Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Jian-Jie Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
- Department of Neurology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China
| | - Ling-Ling Jin
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China
| | - Jau-Shyong Hong
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, Durham, NC, 27709, USA
| | - Sheng-Ming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China.
| | - Jie Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China.
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, 116044, China.
| |
Collapse
|
8
|
Kim SK, Lee GY, Kim SK, Kwon YJ, Seo EB, Lee H, Lee SH, Kim SJ, Lee S, Ye SK. Protective Effects of Repetitive Transcranial Magnetic Stimulation Against Streptozotocin-Induced Alzheimer's Disease. Mol Neurobiol 2024; 61:1687-1703. [PMID: 37755583 PMCID: PMC10896897 DOI: 10.1007/s12035-023-03573-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/07/2023] [Indexed: 09/28/2023]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation under investigation for treatment of a wide range of neurological disorders. In particular, the therapeutic application of rTMS for neurodegenerative diseases such as Alzheimer's disease (AD) is attracting attention. However, the mechanisms underlying the therapeutic efficacy of rTMS have not yet been elucidated, and few studies have systematically analyzed the stimulation parameters. In this study, we found that treatment with rTMS contributed to restoration of memory deficits by activating genes involved in synaptic plasticity and long-term memory. We evaluated changes in several intracellular signaling pathways in response to rTMS stimulation; rTMS treatment activated STAT, MAPK, Akt/p70S6K, and CREB signaling. We also systematically investigated the influence of rTMS parameters. We found an effective range of applications for rTMS and determined the optimal combination to achieve the highest efficiency. Moreover, application of rTMS inhibited the increase in cell death induced by hydrogen peroxide. These results suggest that rTMS treatment exerts a neuroprotective effect on cellular damage induced by oxidative stress, which plays an important role in the pathogenesis of neurological disorders. rTMS treatment attenuated streptozotocin (STZ)-mediated cell death and AD-like pathology in neuronal cells. In an animal model of sporadic AD caused by intracerebroventricular STZ injection, rTMS application improved cognitive decline and showed neuroprotective effects on hippocampal histology. Overall, this study will help in the design of stimulation protocols for rTMS application and presents a novel mechanism that may explain the therapeutic effects of rTMS in neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Geun Yong Lee
- Remed Co. Ltd., 21-7, Weeleseoilo 1, Seongnam, Korea
| | - Su Kang Kim
- Department of Biomedical Laboratory Science, Catholic Kwandong University, Gangneung, Korea
| | - Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Haeri Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Song-Hee Lee
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sung Joon Kim
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Physiology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Sangsik Lee
- Department of Biomedical Engineering, Catholic Kwandong University College of Medical Convergence, Gangneung, 25601, Republic of Korea.
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
9
|
Sadier NS, El Hajjar F, Al Sabouri AAK, Abou-Abbas L, Siomava N, Almutary AG, Tambuwala MM. Irisin: An unveiled bridge between physical exercise and a healthy brain. Life Sci 2024; 339:122393. [PMID: 38176582 DOI: 10.1016/j.lfs.2023.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/06/2024]
Abstract
AIMS Physical exercise has been widely recognized for its positive effects on health and well-being. Recently, the impact of exercise on the nervous system has gained attention, with evidence indicating improvements in attention, memory, neurogenesis, and the release of "happiness hormones." One potential mediator of these benefits is Irisin, a myokine induced by exercise that can cross the blood-brain barrier, reduce neuroinflammation, and counteract neurodegeneration. The objective of this study is to conduct a systematic review of animal trials to summarize the neuroprotective effects of Irisin injection in mitigating neuroinflammation and neurodegeneration. MATERIALS AND METHODS Two independent reviewers screened three databases (PubMed, Embase, and Google Scholar) in November 2022. Animal studies assessing the neuroprotective effects of Irisin in mitigating neuroinflammation or counteracting neurodegeneration were included. The methodological quality of the included studies was assessed using SYRCLE's Risk of Bias tool. KEY FINDINGS Twelve studies met the inclusion criteria. Irisin injection in rodents significantly reduced neuroinflammation, cytokine cascades, and neurodegeneration. It also protected neurons from damage and apoptosis, reduced oxidative stress, blood-brain barrier disruption, and neurobehavioral deficits following disease or injury. Various mechanisms were suggested to be responsible for these neuroprotective effects. Most of the included studies presented a low risk of bias based on SYRCLE's Risk of Bias tool. Irisin injection demonstrated the potential to alleviate neuroinflammation and counteract neurodegeneration in rodent models through multiple pathways. However, further research is needed to fully understand its mechanism of action and its potential applications in clinical practice and drug discovery.
Collapse
Affiliation(s)
- Najwane Said Sadier
- College of Health Sciences, Abu Dhabi University, Al Ain Road, Abu Dhabi, PO Box 3838-111188, United Arab Emirates; Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon.
| | - Farah El Hajjar
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon.
| | - Amani Al Khayat Al Sabouri
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon
| | - Linda Abou-Abbas
- Neurosciences Research Center, Faculty of Medical Sciences, Lebanese University, 275 Old Saida Road, Beirut, PO Box 6573/14, Lebanon; INSPECT-LB (Institut National de Santé Publique, d'Épidémiologie Clinique et de Toxicologie-Liban), Beirut, Lebanon.
| | - Natalia Siomava
- Department of Biology, Belarusian State University, Minsk, Belarus
| | - Abdulmajeed G Almutary
- College of Health Sciences, Abu Dhabi University, Al Ain Road, Abu Dhabi, PO Box 3838-111188, United Arab Emirates; Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Saudi Arabia.
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, England, United Kingdom; College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates.
| |
Collapse
|
10
|
Lan J, Wang J, Wang S, Wang J, Huang S, Wang Y, Ma Y. The Activation of GABA AR Alleviated Cerebral Ischemic Injury via the Suppression of Oxidative Stress, Autophagy, and Apoptosis Pathways. Antioxidants (Basel) 2024; 13:194. [PMID: 38397792 PMCID: PMC10886019 DOI: 10.3390/antiox13020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke is a devastating disease leading to neurologic impairment. Compounding the issue is the very limited array of available interventions. The activation of a γ-aminobutyric acid (GABA) type A receptor (GABAAR) has been reported to produce neuroprotective properties during cerebral ischemia, but its mechanism of action is not yet fully understood. Here, in a rat model of photochemically induced cerebral ischemia, we found that muscimol, a GABAAR agonist, modulated GABAergic signaling, ameliorated anxiety-like behaviors, and attenuated neuronal damage in rats suffering cerebral ischemia. Moreover, GABAAR activation improved brain antioxidant levels, reducing the accumulation of oxidative products, which was closely associated with the NO/NOS pathway. Notably, the inhibition of autophagy markedly relieved the neuronal insult caused by cerebral ischemia. We further established an oxygen-glucose deprivation (OGD)-induced PC12 cell injury model. Both in vivo and in vitro experiments demonstrated that GABAAR activation obviously suppressed autophagy by regulating the AMPK-mTOR pathway. Additionally, GABAAR activation inhibited apoptosis through inhibiting the Bax/Bcl-2 pathway. These data suggest that GABAAR activation exerts neuroprotective effects during cerebral ischemia through improving oxidative stress and inhibiting autophagy and apoptosis. Our findings indicate that GABAAR serves as a target for treating cerebral ischemia and highlight the GABAAR-mediated autophagy signaling pathway.
Collapse
Affiliation(s)
- Jing Lan
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiaqi Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shujing Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jia Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Sijuan Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yazhou Wang
- Department of Neurobiology, School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Yunfei Ma
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
11
|
Jakovljević D, Nikolić M, Jovanović V, Vidonja Uzelac T, Nikolić-Kokić A, Novaković E, Miljević Č, Milovanović M, Blagojević D. Influence of Long-Term Anti-Seizure Medications on Redox Parameters in Human Blood. Pharmaceuticals (Basel) 2024; 17:130. [PMID: 38256963 PMCID: PMC10818330 DOI: 10.3390/ph17010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Epilepsy is a chronic brain disease affecting millions of people worldwide, but little is known about the impact of anti-seizure medications on redox homeostasis. METHODS This study aimed to compare the effects of the long-term use of oral anti-seizure medications in monotherapy (lamotrigine, carbamazepine, and valproate) on antioxidant enzymes: superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, haemoglobin, and methaemoglobin content in erythrocytes, and concentrations of total proteins and thiols, nitrites, lipid peroxides and total glutathione in the plasma of epilepsy patients and drug-naïve patients. RESULTS The results showed that lamotrigine therapy led to lower superoxide dismutase activity (p < 0.005) and lower concentrations of total thiols (p < 0.01) and lipid peroxides (p < 0.01) compared to controls. On the other hand, therapy with carbamazepine increased nitrite levels (p < 0.01) but reduced superoxide dismutase activity (p < 0.005). In the valproate group, only a decrease in catalase activity was observed (p < 0.005). Canonical discriminant analysis showed that the composition of antioxidant enzymes in erythrocytes was different for both the lamotrigine and carbamazepine groups, while the controls were separated from all others. CONCLUSIONS Monotherapy with anti-seizure medications discretely alters redox homeostasis, followed by distinct relationships between antioxidant components.
Collapse
Affiliation(s)
- Danijel Jakovljević
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Milan Nikolić
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
| | - Vesna Jovanović
- Department of Biochemistry, Faculty of Chemistry, University of Belgrade, 11158 Belgrade, Serbia; (D.J.); (M.N.); (V.J.)
| | - Teodora Vidonja Uzelac
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Aleksandra Nikolić-Kokić
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| | - Emilija Novaković
- Clinic for Mental Disorders “Dr. Laza Lazarević”, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Priština, 38220 Kosovska Mitrovica, Serbia
| | - Čedo Miljević
- Outpatient Department, Institute of Mental Health, School of Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Maja Milovanović
- Department for Epilepsy and Clinical Neurophysiology, Institute of Mental Health, Faculty for Special Education and Rehabilitation, University of Belgrade, 11000 Belgrade, Serbia;
| | - Duško Blagojević
- Department of Physiology, Institute for Biological Research “Siniša Stanković”, National Institute of Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (T.V.U.); (D.B.)
| |
Collapse
|
12
|
Kaur A, Kumar S, Goel RK. Adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy. Epilepsy Res 2023; 198:107246. [PMID: 37925976 DOI: 10.1016/j.eplepsyres.2023.107246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/15/2023] [Accepted: 10/23/2023] [Indexed: 11/07/2023]
Abstract
This study aimed to investigate the therapeutic potential of clotrimazole, an inhibitor of the transient receptor potential cation channel, for treating mitochondrial drug-resistant epilepsy and to understand its underlying neurochemical mechanisms. Adult albino mice underwent rotenone-corneal kindling, receiving daily electric shocks (15 mA, 20 V, 6-Hz for 3 s) through a corneal electrode, to induce mitochondrial drug-resistant epilepsy. The onset of drug resistance was confirmed by the significant (p < 0.05) lack of seizure control with standard antiseizure medications including levetiracetam (40 mg/kg), valproate (250 mg/kg), phenytoin (35 mg/kg), lamotrigine (15 mg/kg), and carbamazepine (40 mg/kg). Drug-resistant mice were then classified into one vehicle-treated group and three groups treated with varying doses of clotrimazole (40, 80, and 160 mg/kg orally). Neurochemical analysis of the seizurogenic hippocampus and cerebral cortex was conducted using high-performance liquid chromatography with an electrochemical detector. Administration of clotrimazole alongside standard antiseizure medications led to a significant decrease (p < 0.05) in seizure scores suggesting the restoration of antiseizure effects. Neurochemicals, including tryptophan, serotonin, kynurenine, serine, taurine, gamma-aminobutyric acid, and glutamate, were significantly restored post-clotrimazole treatment. Overall, the present study underscores the adjunct antiseizure effect of clotrimazole in a rotenone corneal kindling mouse model of mitochondrial drug-resistant epilepsy, emphasising its role in neurochemical restoration.
Collapse
Affiliation(s)
- Arvinder Kaur
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India; Department of Pharmacology, M.M. College of Pharmacy, M.M. (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India.
| |
Collapse
|
13
|
Aygun H, Akin AT, Kızılaslan N, Sumbul O, Karabulut D. Electrophysiological, histopathological, and biochemical evaluation of the protective effect of probiotic supplementation against pentylenetetrazole-induced seizures in rats. Eur J Neurol 2023; 30:3540-3550. [PMID: 35429204 DOI: 10.1111/ene.15359] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/31/2022] [Accepted: 04/06/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND PURPOSE Research on the relationship between the gut microbiome and epilepsy is accumulating. The present study was conducted to evaluate the effect of probiotic supplementation on pentylenetetrazole (PTZ)-induced seizures in rats. METHODS Twenty-one adult male Wistar albino rats were included. The animals were divided into three groups of seven rats. Group 1 was a control group, whereas Group 2 rats received PTZ treatment and Group 3 rats had PTZ+PB (probiotic) treatment. For 6 weeks, Groups 1 and 2 were given saline (1 ml), whereas Group 3 had probiotic supplement. In the 5th week, tripolar electrodes were attached to the rats. Electrophysiological, behavioral, biochemical, and immunohistochemical evaluations were performed in the 6 weeks after the treatment. RESULTS PB treatment significantly reduced seizures. In the PTZ group, expression levels of brain-derived neurotrophic factor, nerve growth factor (NGF), and Sox2 (SRY sex-determining region Y-box 2) in rat brains decreased significantly compared to the control group, whereas the expression levels of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), total oxidant status (TOS), and nitric oxide (NO) levels increased. In the PTZ+PB group, NGF expression increased significantly compared to the PTZ group, whereas TNF-α, IL-6, TOS, and NO levels decreased. In histopathological examination, an abundance of necrotic neurons was notable in the PTZ group, which was less in the PTZ+PB group. In addition, body weight of the group supplemented with probiotics decreased after the treatment. CONCLUSIONS Our results suggest that probiotic supplementation may alleviate seizure severity and exert neuroprotective effects by reducing neuroinflammation and oxidative stress and altering the expression of neurotrophins in epileptogenic brains.
Collapse
Affiliation(s)
- Hatice Aygun
- Department of Physiology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Ali Tuğrul Akin
- Department of Biology, Faculty of Science and Literature, University of Erciyes, Kayseri, Turkey
| | - Nildem Kızılaslan
- Department of Nutrition and Dietetics, Faculty of Health Sciences, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Orhan Sumbul
- Department of Neurology, Faculty of Medicine, University of Tokat Gaziosmanpasa, Tokat, Turkey
| | - Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, University of Erciyes, Kayseri, Turkey
| |
Collapse
|
14
|
Torres-Martinez N, Chabardes S, Mitrofanis J. Lights for epilepsy: can photobiomodulation reduce seizures and offer neuroprotection? Neural Regen Res 2023; 18:1423-1426. [PMID: 36571337 PMCID: PMC10075120 DOI: 10.4103/1673-5374.360288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Epilepsy is synonymous with individuals suffering repeated "fits" or seizures. The seizures are triggered by bursts of abnormal neuronal activity, across either the cerebral cortex and/or the hippocampus. In addition, the seizure sites are characterized by considerable neuronal death. Although the factors that generate this abnormal activity and death are not entirely clear, recent evidence indicates that mitochondrial dysfunction plays a central role. Current treatment options include drug therapy, which aims to suppress the abnormal neuronal activity, or surgical intervention, which involves the removal of the brain region generating the seizure activity. However, ~30% of patients are unresponsive to the drugs, while the surgery option is invasive and has a morbidity risk. Hence, there is a need for the development of an effective non-pharmacological and non-invasive treatment for this disorder, one that has few side effects. In this review, we consider the effectiveness of a potential new treatment for epilepsy, known as photobiomodulation, the use of red to near-infrared light on body tissues. Recent studies in animal models have shown that photobiomodulation reduces seizure-like activity and improves neuronal survival. Further, it has an excellent safety record, with little or no evidence of side effects, and it is non-invasive. Taken all together, this treatment appears to be an ideal treatment option for patients suffering from epilepsy, which is certainly worthy of further consideration.
Collapse
Affiliation(s)
| | - Stephan Chabardes
- University of Grenoble Alpes, FDD and CEA-LETI, Clinatec, Grenoble, France
| | - John Mitrofanis
- University of Grenoble Alpes, FDD and CEA-LETI, Clinatec, Grenoble, France
| |
Collapse
|
15
|
Alarcón R, Giménez B, Hernández AF, López-Villén A, Parrón T, García-González J, Requena M. Occupational exposure to pesticides as a potential risk factor for epilepsy. Neurotoxicology 2023; 96:166-173. [PMID: 37121439 DOI: 10.1016/j.neuro.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Epilepsy is a chronic neurological disorder in which brain activity becomes abnormal, causing seizures. In a previous study we found that environmental exposure to pesticides was associated with a greater risk of epilepsy. The present study examined possible occupational risk factors that may contribute to the occurrence of epilepsy in farmers and pesticide applicators (sprayers). A case-referent study was conducted on 19,704 individuals over a 17-year study period (2000-2016). Epilepsy cases (n = 5091) were collected from Hospital records and referents (non-epilepsy cases, n = 14.613) from the Centre for Prevention of Occupational Risks, both from Almería (South-Eastern Spain). A significant increased risk of having epilepsy was found in farmers working in intensive agriculture (high-yield greenhouse crops) compared to extensive agriculture (open-air crops). The risk was greater for farmers residing in rural areas with high pesticide use (intensive farming crops in plastic greenhouses) and for those not wearing protective gloves. As for sprayers, the greatest risk of epilepsy was observed in those not wearing face mask, and in those living in areas with high pesticide use (greenhouse intensive agriculture). Overall, this study supports previous findings on the association between epilepsy and pesticide exposure in the general population, and extends the risk to farmers occupationally exposed to pesticides, mainly those engaged in intensive agriculture.
Collapse
Affiliation(s)
- Raquel Alarcón
- University of Almería School of Health Sciences, 04120 Almería, Spain
| | - Belén Giménez
- University of Almería School of Health Sciences, 04120 Almería, Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, 18016 Granada, Spain; Institute of Biomedical Research, Granada (Instituto de Investigación Biosanitaria) ibs.GRANADA, Granada, Spain; Center for Biomedical Research in Epidemiology & Public Health Network (CIBER en Epidemiología y Salud Pública), CIBERESP, Spain.
| | | | - Tesifón Parrón
- University of Almería School of Health Sciences, 04120 Almería, Spain; Andalusian Council of Health at Almería Province, 04009 Almería, Spain
| | | | - Mar Requena
- University of Almería School of Health Sciences, 04120 Almería, Spain
| |
Collapse
|
16
|
Muñoz-Mayorga D, Tovar A, Díaz-Muñoz M, Morales T. Lactation attenuates pro-oxidant reactions in the maternal brain. Mol Cell Endocrinol 2023; 565:111888. [PMID: 36804275 DOI: 10.1016/j.mce.2023.111888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 01/28/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Reactive oxygen species (ROS) are intimately linked to bioenergetics and redox biology, contributing to cellular functioning and physiological signaling, but also acting as toxic agents during oxidative stress. Hence, the balance between pro-oxidant reactions and the activity of antioxidant defenses sustains a basal oxidative status, controls the increase of redox signaling, and mediates potential pathological events during oxidative stress. Maternal experience, especially during nursing, requires high energetic demands and expenditure to ensure the well-being of the offspring. The mother must adapt from satisfying her own needs to additionally fulfilling those of her descendants. Oxidative stress has been proposed as one of the reproductive trade-off hallmarks. However, the oxidative shielding hypothesis has also been proposed in the context of reproduction. The reproductive experience induces a wide range of well-documented changes in the female brain, which potentially lead to protection against the enhanced oxidative activity. To date, the metabolic and cellular mechanisms that underlie lactation-induced neuroprotection against oxidants are unknown. The neuroendocrine changes in the brain of the lactating dam promote diminished propensity to excitotoxic brain injury and stress, as well as enhanced neuroprotection and plasticity. In addition to review studies on the oxidant balance due to motherhood, we included new data from our laboratory, addressing the importance of measuring pro-oxidant reactions in separated brain regions. The hippocampus of lactating rats exhibits lower levels of pro-oxidant reactions than that of virgin rats, supporting the oxidative shielding hypothesis in lactation.
Collapse
Affiliation(s)
- Daniel Muñoz-Mayorga
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Adriana Tovar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Teresa Morales
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico.
| |
Collapse
|
17
|
Saris CGJ, Timmers S. Ketogenic diets and Ketone suplementation: A strategy for therapeutic intervention. Front Nutr 2022; 9:947567. [PMID: 36458166 PMCID: PMC9705794 DOI: 10.3389/fnut.2022.947567] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/13/2022] [Indexed: 07/24/2023] Open
Abstract
Ketogenic diets and orally administered exogenous ketone supplements are strategies to increase serum ketone bodies serving as an alternative energy fuel for high energy demanding tissues, such as the brain, muscles, and the heart. The ketogenic diet is a low-carbohydrate and fat-rich diet, whereas ketone supplements are usually supplied as esters or salts. Nutritional ketosis, defined as serum ketone concentrations of ≥ 0.5 mmol/L, has a fasting-like effect and results in all sorts of metabolic shifts and thereby enhancing the health status. In this review, we thus discuss the different interventions to reach nutritional ketosis, and summarize the effects on heart diseases, epilepsy, mitochondrial diseases, and neurodegenerative disorders. Interest in the proposed therapeutic benefits of nutritional ketosis has been growing the past recent years. The implication of this nutritional intervention is becoming more evident and has shown interesting potential. Mechanistic insights explaining the overall health effects of the ketogenic state, will lead to precision nutrition for the latter diseases.
Collapse
Affiliation(s)
- Christiaan G. J. Saris
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
- Radboud Center for Mitochondrial Medicine, Nijmegen, Netherlands
| | - Silvie Timmers
- Department of Human and Animal Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
18
|
Kumar A, Kumari S, Singh D. Insights into the Cellular Interactions and Molecular Mechanisms of Ketogenic Diet for Comprehensive Management of Epilepsy. Curr Neuropharmacol 2022; 20:2034-2049. [PMID: 35450526 PMCID: PMC9886834 DOI: 10.2174/1570159x20666220420130109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/27/2022] [Accepted: 03/25/2022] [Indexed: 11/22/2022] Open
Abstract
A high-fat diet with appropriate protein and low carbohydrate content, widely known as the ketogenic diet (KD), is considered as an effective non-pharmacotherapeutic treatment option for certain types of epilepsies. Several preclinical and clinical studies have been carried out to elucidate its mechanism of antiepileptic action. Ketone bodies produced after KD's breakdown interact with cellular excito-inhibitory processes and inhibit abnormal neuronal firing. The generated ketone bodies decrease glutamate release by inhibiting the vesicular glutamate transporter 1 and alter the transmembrane potential by hyperpolarization. Apart from their effect on the well-known pathogenic mechanisms of epilepsy, some recent studies have shown the interaction of KD metabolites with novel neuronal targets, particularly adenosine receptors, adenosine triphosphate-sensitive potassium channel, mammalian target of rapamycin, histone deacetylase, hydroxycarboxylic acid receptors, and the NLR family pyrin domain containing 3 inflammasomes to suppress seizures. The role of KD in augmenting gut microbiota as a potential mechanism for epileptic seizure suppression has been established. Furthermore, some recent findings also support the beneficial effect of KD against epilepsy- associated comorbidities. Despite several advantages of the KD in epilepsy management, its use is also associated with a wide range of side effects. Hypoglycemia, excessive ketosis, acidosis, renal stones, cardiomyopathies, and other metabolic disturbances are the primary adverse effects observed with the use of KD. However, in some recent studies, modified KD has been tested with lesser side effects and better tolerability. The present review discusses the molecular mechanism of KD and its role in managing epilepsy and its associated comorbidities.
Collapse
Affiliation(s)
- Amit Kumar
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Savita Kumari
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Damanpreet Singh
- Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR- Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India; ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India,Address correspondence to this author at the Pharmacology and Toxicology Laboratory, Dietetics and Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur-176061, Himachal Pradesh, India; Tel: +91-9417923132; E-mails: ;
| |
Collapse
|
19
|
Bulama I, Nasiru S, Bello A, Abbas AY, Nasiru JI, Saidu Y, Chiroma MS, Mohd Moklas MA, Mat Taib CN, Waziri A, Suleman BL. Antioxidant-based neuroprotective effect of dimethylsulfoxide against induced traumatic brain injury in a rats model. Front Pharmacol 2022; 13:998179. [PMID: 36353489 PMCID: PMC9638698 DOI: 10.3389/fphar.2022.998179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 08/03/2023] Open
Abstract
Traumatic brain injury (TBI) has been the result of neurological deficit and oxidative stress. This study evaluated the antioxidative neuroprotective property and learning and memory-enhancing effects of dimethyl sulfoxide (DMSO) in a rat model after the induction of TBI. 21 albino rats with 7 rats per group were used in this study. Group I was induced with TBI and treated with DMSO at 67.5 mg/kg orally once daily which started 30 min after the induction of TBI and lasted 21 days. Group II was induced with TBI but not treated while Group III was neither induced with TBI nor treated. Assessment of behavioral function (Learning and memory, anxiety and motor function), the level of an antioxidant enzymes and their gene expression (superoxide dismutase, catalase, glutathione peroxidase), the biomarkers of oxidative stress (malondialdehyde) and S100B levels as well as brain tissues histological studies were conducted. Administration of DMSO to rats with induced TBI has improved learning and memory, locomotor function and decreased anxiety in Group I compared to Group II. Moreover, the level of S100B was significantly (p < 0.05) lower in Group I compared to Group II. Treatment with DMSO also decreased lipid peroxidation significantly (p < 0.05) compared to Group II. There exists a significant (p < 0.05) increase in CAT, SOD, and GPX activities in Group I compared to Group II. Therefore, DMSO has demonstrated a potential antioxidative neuroprotective effect through its ability to increase the level of antioxidant enzymes which they quench and inhibit the formation of ROS, thereby improving cognitive functions.
Collapse
Affiliation(s)
- Ibrahim Bulama
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Suleiman Nasiru
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Usman Danfodiyo University, Sokoto, Nigeria
| | - Abubakar Bello
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Abdullahi Yahaya Abbas
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Jinjiri Ismail Nasiru
- Department of Surgery, Faculty of Clinical Sciences, Usman Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | - Yusuf Saidu
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| | - Musa Samaila Chiroma
- Department of Human Anatomy, Faculty of Basic Clinical Sciences, University of Maiduguri, Maiduguri, Nigeria
| | - Mohamad Aris Mohd Moklas
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Che Norma Mat Taib
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Ali Waziri
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, Nigeria
| | - Bilbis Lawal Suleman
- Department of Biochemistry, Faculty of Chemical and Life Sciences, Usman Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
20
|
The Interplay of Oxidative Stress and ROS Scavenging: Antioxidants as a Therapeutic Potential in Sepsis. Vaccines (Basel) 2022; 10:vaccines10101575. [PMID: 36298439 PMCID: PMC9609850 DOI: 10.3390/vaccines10101575] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress resulting from the disproportion of oxidants and antioxidants contributes to both physiological and pathological conditions in sepsis. To combat this, the antioxidant defense system comes into the picture, which contributes to limiting the amount of reactive oxygen species (ROS) leading to the reduction of oxidative stress. However, a strong relationship has been found between scavengers of ROS and antioxidants in preclinical in vitro and in vivo models. ROS is widely believed to cause human pathology most specifically in sepsis, where a small increase in ROS levels activates signaling pathways to initiate biological processes. An inclusive understanding of the effects of ROS scavenging in cellular antioxidant signaling is essentially lacking in sepsis. This review compiles the mechanisms of ROS scavenging as well as oxidative damage in sepsis, as well as antioxidants as a potent therapeutic. Direct interaction between ROS and cellular pathways greatly affects sepsis, but such interaction does not provide the explanation behind diverse biological outcomes. Animal models of sepsis and a number of clinical trials with septic patients exploring the efficiency of antioxidants in sepsis are reviewed. In line with this, both enzymatic and non-enzymatic antioxidants were effective, and results from recent studies are promising. The usage of these potent antioxidants in sepsis patients would greatly impact the field of medicine.
Collapse
|
21
|
Saadi A, Sandouka S, Grad E, Singh PK, Shekh-Ahmad T. Spatial, temporal, and cell-type-specific expression of NADPH Oxidase isoforms following seizure models in rats. Free Radic Biol Med 2022; 190:158-168. [PMID: 35964838 DOI: 10.1016/j.freeradbiomed.2022.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
The NADPH Oxidase (NOX) enzymes are key producers of reactive oxygen species (ROS) and consist of seven different isoforms, distributed across the tissues and cell types. The increasing level of ROS induces oxidative stress playing a crucial role in neuronal death and the development of epilepsy. Recently, NOX2 was reported as a primary source of ROS production, activated by NMDA receptor, a crucial marker of epilepsy development. Here, we demonstrate spatial, temporal, and cellular expression of NOX2 and NOX4 complexes in in-vitro and in-vivo seizure models. We showed that the expression of NOX2 and NOX4 was increased in the initial 24 h following a brief seizure induced by pentylenetetrazol. Interestingly, while this elevated level returns to baseline 48 h following seizure in the cortex, in the hippocampus these levels remain elevated up to one week following the seizure. Moreover, we showed that 1- and 2- weeks following status epilepticus (SE), expression of NOX2 and NOX4 remains significantly elevated both in the cortex and the hippocampus. Furthermore, in in-vitro seizure model, NOX2 and NOX4 isoforms were overexpressed in neurons and astrocytes following seizures. These results suggest that NOX2 and NOX4 in the brain have a transient response to seizures, and these responses temporally vary depending on, seizure duration, brain region (cortex or hippocampus), and cell types.
Collapse
Affiliation(s)
- Aseel Saadi
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Sereen Sandouka
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Etty Grad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Prince Kumar Singh
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Tawfeeq Shekh-Ahmad
- The Institute for Drug Research, The School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
22
|
Manavi MA. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 2022; 94:102250. [PMID: 35561568 DOI: 10.1016/j.npep.2022.102250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Epilepsy is a common neurological condition induced by losing equilibrium of different pathway as well as neurotransmitters that affects over 50 million people globally. Furthermore, long-term administration of anti-seizure medications has been associated with psychological adverse effects. Also, epilepsy has been related to an increased prevalence of obesity and called type 2 diabetes mellitus. On the other hand, GLP-1 receptors are located throughout the brain, including the hippocampus, which have been associated to majority of neurological conditions, such as epilepsy and psychiatric disorders. Moreover, the impact of different GLP-1 analogues on diverse neurotransmitter systems and associated cellular and molecular pathways as a potential therapeutic target for epilepsy and associated comorbidities has piqued curiosity. In this regard, the anticonvulsant effects of GLP-1 analogues have been investigated in various animal models and promising results such as anticonvulsants as well as cognitive improvements have been observed. For instance, GLP-1 analogues like liraglutide in addition to their possible anticonvulsant benefits, could be utilized to alleviate mental cognitive problems caused by both epilepsy and anti-seizure medication side effects. In this review and growing protective function of GLP-1 in epilepsy induced by disturbed neurotransmitter pathways and the probable mechanisms of action of GLP-1 analogues as well as the GLP-1 receptor in these effects have been discussed.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Bayrak G, Turkyilmaz IB, Yanardag R. The protective effect of vitamin U on pentylenetetrazole-induced brain damage in rats. J Biochem Mol Toxicol 2022; 36:e23169. [PMID: 35833322 DOI: 10.1002/jbt.23169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
Pentylenetetrazole (PTZ) is preferred for experimental epilepsy induction. PTZ damages brain and other organs by elevating oxidative substances. Vitamin U (Vit U) is sulfur derivative substance that proved to be an excellent antioxidant. The current study was intended to determine the protective role of Vit U on PTZ-induced brain damage. Male Sprague-Dawley rats were separated into four groups. The Control group (Group I), was given saline for 7 days intraperitoneally (i.p); Vit U (Group II) was given as 50 mg/kg/day for 7 days by gavage; PTZ was injected into animals (Group III) at a single dose of 60 mg/kg, by i.p; PTZ + Vit U group (Group IV) was administered PTZ and Vit U in same dose and time as aforementioned. After the experiment was terminated, brain tissues were taken for the preparation of homogenates. In the PTZ group, glutathione and lipid peroxidation levels, alkaline phosphatase, myeloperoxidase, xanthine oxidase, acetylcholine esterase, antioxidant enzyme activities, total oxidant status, oxidative stress index, reactive oxygen species, and nitric oxide levels were increased. However, total antioxidant capacity was decreased in the PTZ group. Vit U ameliorated these effects in the PTZ-induced brain damage. Consequently, we can suggest that Vit U protected brain tissue via its antioxidant feature against PTZ kindling epilepsy.
Collapse
Affiliation(s)
- Gamze Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Ismet Burcu Turkyilmaz
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| | - Refiye Yanardag
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar, Istanbul, Turkey
| |
Collapse
|
24
|
Kumar S, Ivanov S, Lagunin A, Goel RK. Bioinformatics guided rotenone adjuvant kindling in mice as a new animal model of drug-resistant epilepsy. Comput Biol Med 2022; 147:105754. [PMID: 35753090 DOI: 10.1016/j.compbiomed.2022.105754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/10/2022] [Accepted: 05/29/2022] [Indexed: 11/29/2022]
Abstract
Drug-resistant epilepsy results from multiple mechanisms which are difficult to fully acquire in animal models. Technological advances, that allow transformation of big data into novel therapies, are now assisting in identification a disease targets for animal modeling. Our goal was to transform the available genomic and proteomic data related to drug-resistant epilepsy into ubiquitous disease target using system biology and network pharmacology approaches, followed by animal modeling and assess its validity. We used a dataset of 42 antiseizure drugs, 175 drug targets, and 601 epilepsy-gene associations to create interactome of 543 diseased proteins linked to drug-resistant epilepsy. DIAMOnD algorithm and DAVID web-services were used to identify 35 disease pathways whereby mitochondrial complex-I was selected for animal modeling. Albino mice were treated with specific inhibitor of mitochondrial complex-I (i.e., rotenone 2.5 mg/kg, i.p on daily basis) along with chemical and electric kindling stimulus for 35 days and 15 days, respectively. According to our results, the rotenone kindling model with inhibited complex-I activity showed significant (P < 0.001) resistance to lamotrigine (15 mg/kg), levetiracetam (40 mg/kg), carbamazepine (40 mg/kg), zonisamide (100 mg/kg), gabapentin (224 mg/kg), pregabalin (30 mg/kg), phenytoin (35 mg/kg), topiramate (300 mg/kg), valproate (200 mg/kg), and drug combinations at doses that had significantly (P < 0.001) controlled seizure severity in lamotrigine-pentylenetetrazole and corneal kindling models. In conclusion, lamotrigine kindling model is more advantageous than earlier described lamotrigine and corneal kindling models which respond to drug combinations. As a result, pre-clinical drug screening through rotenone kindling may uncover broad spectrum drugs with novel antiseizure mechanisms which is a pressing issue to deal with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Sandeep Kumar
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, India
| | - Sergey Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia; Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexey Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Moscow, Russia; Department of Bioinformatics, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences & Drug Research, Punjabi University, Patiala, India.
| |
Collapse
|
25
|
Lupeol Treatment Attenuates Activation of Glial Cells and Oxidative-Stress-Mediated Neuropathology in Mouse Model of Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23116086. [PMID: 35682768 PMCID: PMC9181489 DOI: 10.3390/ijms23116086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) signifies a major cause of death and disability. TBI causes central nervous system (CNS) damage under a variety of mechanisms, including protein aggregation, mitochondrial dysfunction, oxidative stress, and neuroinflammation. Astrocytes and microglia, cells of the CNS, are considered the key players in initiating an inflammatory response after injury. Several evidence suggests that activation of astrocytes/microglia and ROS/LPO have the potential to cause more harmful effects in the pathological processes following traumatic brain injury (TBI). Previous studies have established that lupeol provides neuroprotection through modulation of inflammation, oxidative stress, and apoptosis in Aβ and LPS model and neurodegenerative disease. However, the effects of lupeol on apoptosis caused by inflammation and oxidative stress in TBI have not yet been investigated. Therefore, we explored the role of Lupeol on antiapoptosis, anti-inflammatory, and antioxidative stress and its potential mechanism following TBI. In these experiments, adult male mice were randomly divided into four groups: control, TBI, TBI+ Lupeol, and Sham group. Western blotting, immunofluorescence staining, and ROS/LPO assays were performed to investigate the role of lupeol against neuroinflammation, oxidative stress, and apoptosis. Lupeol treatment reversed TBI-induced behavioral and memory disturbances. Lupeol attenuated TBI-induced generation of reactive oxygen species/lipid per oxidation (ROS/LPO) and improved the antioxidant protein level, such as nuclear factor erythroid 2-related factor 2 (Nrf2) and heme-oxygenase 1 (HO-1) in the mouse brain. Similarly, our results indicated that lupeol treatment inhibited glial cell activation, p-NF-κB, and downstream signaling molecules, such as TNF-α, COX-2, and IL-1β, in the mouse cortex and hippocampus. Moreover, lupeol treatment also inhibited mitochondrial apoptotic signaling molecules, such as caspase-3, Bax, cytochrome-C, and reversed deregulated Bcl2 in TBI-treated mice. Overall, our study demonstrated that lupeol inhibits the activation of astrocytes/microglia and ROS/LPO that lead to oxidative stress, neuroinflammation, and apoptosis followed by TBI.
Collapse
|
26
|
Hindle A, Singh SP, Pradeepkiran JA, Bose C, Vijayan M, Kshirsagar S, Sawant NA, Reddy PH. Rlip76: An Unexplored Player in Neurodegeneration and Alzheimer’s Disease? Int J Mol Sci 2022; 23:ijms23116098. [PMID: 35682775 PMCID: PMC9181721 DOI: 10.3390/ijms23116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia in older people. AD is associated with the loss of synapses, oxidative stress, mitochondrial structural and functional abnormalities, microRNA deregulation, inflammatory responses, neuronal loss, accumulation of amyloid-beta (Aβ) and phosphorylated tau (p-tau). AD occurs in two forms: early onset, familial AD and late-onset, sporadic AD. Causal factors are still unknown for a vast majority of AD patients. Genetic polymorphisms are proposed to contribute to late-onset AD via age-dependent increases in oxidative stress and mitochondrial abnormalities. Recent research from our lab revealed that reduced levels of Rlip76 induce oxidative stress, mitochondrial dysfunction and synaptic damage, leading to molecular and behavioral phenotypes resembling late-onset AD. Rlip76 is a multifunctional 76 kDa protein encoded by the RALBP1 gene, located on chromosome 18. Rlip is a stress-protective ATPase of the mercapturic acid pathway that couples clathrin-dependent endocytosis with the efflux of glutathione–electrophile conjugates. Rlip is evolutionarily highly conserved across species and is ubiquitously expressed in all tissues, including AD-affected brain regions, the cerebral cortex and hippocampus, where highly active neuronal metabolisms render the cells highly susceptible to intracellular oxidative damage. In the current article, we summarize molecular and cellular features of Rlip and how depleted Rlip may exacerbate oxidative stress, mitochondrial dysfunction and synaptic damage in AD. We also discuss the possible role of Rlip in aspects of learning and memory via axonal growth, dendritic remodeling, and receptor regulation. We conclude with a discussion of the potential for the contribution of genetic polymorphisms in Rlip to AD progression and the potential for Rlip-based therapies.
Collapse
Affiliation(s)
- Ashly Hindle
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Sharda P. Singh
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Jangampalli Adi Pradeepkiran
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Chhanda Bose
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - Neha A. Sawant
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.H.); (S.P.S.); (J.A.P.); (C.B.); (M.V.); (S.K.); (N.A.S.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence:
| |
Collapse
|
27
|
Iftikhar A, Nausheen R, Muzaffar H, Naeem MA, Farooq M, Khurshid M, Almatroudi A, Alrumaihi F, Allemailem KS, Anwar H. Potential Therapeutic Benefits of Honey in Neurological Disorders: The Role of Polyphenols. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103297. [PMID: 35630774 PMCID: PMC9143627 DOI: 10.3390/molecules27103297] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Honey is the principal premier product of beekeeping familiar to Homo for centuries. In every geological era and culture, evidence can be traced to the potential usefulness of honey in several ailments. With the advent of recent scientific approaches, honey has been proclaimed as a potent complementary and alternative medicine for the management and treatment of several maladies including various neurological disorders such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis, etc. In the literature archive, oxidative stress and the deprivation of antioxidants are believed to be the paramount cause of many of these neuropathies. Since different types of honey are abundant with certain antioxidants, primarily in the form of diverse polyphenols, honey is undoubtedly a strong pharmaceutic candidate against multiple neurological diseases. In this review, we have indexed and comprehended the involved mechanisms of various constituent polyphenols including different phenolic acids, flavonoids, and other phytochemicals that manifest multiple antioxidant effects in various neurological disorders. All these mechanistic interpretations of the nutritious components of honey explain and justify the potential recommendation of sweet nectar in ameliorating the burden of neurological disorders that have significantly increased across the world in the last few decades.
Collapse
Affiliation(s)
- Arslan Iftikhar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Rimsha Nausheen
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Humaira Muzaffar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
| | - Muhammad Ahsan Naeem
- Department of Basic Sciences, KBCMA College of Veterinary and Animal Sciences, Narowal 51600, Pakistan;
| | - Muhammad Farooq
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang 35200, Pakistan;
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.); (F.A.)
- Correspondence: (H.A.); (K.S.A.)
| | - Haseeb Anwar
- Department of Physiology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.I.); (R.N.); (H.M.)
- Correspondence: (H.A.); (K.S.A.)
| |
Collapse
|
28
|
Sun H, Li J, Maimaiti B, Liu J, Li Z, Cheng Y, Zhao W, Mijiti S, Jiang T, Meng Q, Wang J, Jin Q, Meng H. Circulating malondialdehyde level in patients with epilepsy: A meta-analysis. Seizure 2022; 99:113-119. [DOI: 10.1016/j.seizure.2022.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022] Open
|
29
|
USE OF KETOGENIC DIET THERAPY IN EPILEPSY WITH MITOCHONDRIAL DYSFUNCTION: A SYSTEMATIC AND CRITICAL REVIEW. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
With the development of molecular techniques over time more than %60 of epilepsy has associated with mitochondrial (mt) dysfunction. Ketogenic diet (KD) has been used in the treatment of epilepsy since the 1920s. Aim. To evaluate the evidence behind KD in mt dysfunction in epilepsy. Methods. Databases PubMed, Google Scholar and MEDLINE were searched in an umbrella approach to 12 March 2021 in English. To identify relevant studies specific search strategies were devised for the following topics: (1) mitochondrial dysfunction (2) epilepsy (3) KD treatment. Results. From 1794 papers, 36 articles were included in analysis: 16 (%44.44) preclinical studies, 11 (%30.55) case reports, 9 (%25) clinical studies. In all the preclinic studies, KD regulated the number of mt profiles, transcripts of metabolic enzymes and encoding mt proteins, protected the mice against to seizures and had an anticonvulsant mechanism. Case reports and clinical trials have reported patients with good results in seizure control and mt functions, although not all of them give good results as well as preclinical. Conclusion. Healthcare institutions, researchers, neurologists, health promotion organizations, and dietitians should consider these results to improve KD programs and disease outcomes for mt dysfunction in epilepsy.
Collapse
|
30
|
Pale S, Neteydji S, Taiwe GS, Kouemou Emegam N, Bum EN. Anticonvulsant effects of Cymbopogon giganteus extracts with possible effects on fully kindled seizures and anxiety in experimental rodent model of mesio-temporal epilepsy induced by pilocarpine. JOURNAL OF ETHNOPHARMACOLOGY 2022; 286:114863. [PMID: 34838617 DOI: 10.1016/j.jep.2021.114863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/06/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is a neurological disorder of the brain characterized by periodic and unpredictable occurrence of a transient behavior alteration due to the rhythmic, synchronous and disordered firing of brain neuron. Worldwide, approximately 50 million people currently live with epilepsy and close to 80% of people with epilepsy live in poor countries. However, it was noticed in many countries worldwide that people with epilepsy and their families suffer from stigma and discrimination and that situation exposes them to high psychological conditions such as depression and anxiety as well as more physical problems including bruising and fractures from injuries related to seizures. However, several plants-based products used for epilepsy and anxiety treatments in different system of folk medicine have exhibited a significant anti-epileptic and antianxiety activities using animal models with fewer side effects. AIM OF THE STUDY The study aimed at evaluating the antiepileptic, status post-epilepticus and anxiolytic effects of Cymbopogon giganteus decoction in rat model induced by pilocarpine. MATERIALS AND METHODS A total of 90 rats were partitioned into 7 groups and treated as follow: animals of groups I (normal control) and II (considered the negative control) received distilled water (10 mL/kg); while groups III, IV, V, and VI were treated with the C. giganteus extract at 34, 85, 170 and 340 mg/kg p.o, respectively; and the group VII (considered positive control) received sodium valproate at 300 mg/kg, i.p. After 40 min post-treatment, a single dose of n-methyl-scopolamine (1 mg/kg, i.p) was administered to animals of groups (II, III, IV, V, VI, VII) followed by pilocarpine (360 mg/kg, i.p). Animal of group I (normal group) received distilled water. Rats were further observed for 6 h to evaluate the severity and the duration of the acute seizures of epilepsy according to Racine scale. Anxious behavior status post-epilepticus was also assessed in the same rats used above in the Elevated Plus Maze and number of entries into the open or closed arms and the time spent on either open or closed arms of the platform were recorded. Animals were also evaluated on Open Field Test and the number of rearing, crossing, grooming, defecation and center time were registered. RESULTS C. giganteus decoction significantly (P < 0.05) reduced the animal mortality, the number and duration of convulsions and effectively increased the latency of convulsions. The plant extract significantly (P < 0.05) improved GSH level and SOD activity, reduced MDA and CAT activity, increased GABA level and decreased GABA-t activity in hippocampus. The anxiety induced by pilocarpine was also significantly (P < 0.05) inhibited by the extract of the plant. CONCLUSIONS Thus, C. giganteus has demonstrated its antiepileptic and anxiolytic activities in rat model and may be used as preventive measure for patients suffering from epilepsy seizures and anxiety.
Collapse
Affiliation(s)
- Simon Pale
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon.
| | - Sidiki Neteydji
- Department of Biological Sciences, Faculty of Science, University of Ngaoundere, Cameroon
| | - Germain Sotoing Taiwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Nadège Kouemou Emegam
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, Cameroon
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, Faculty of Science, University of Maroua, Cameroon
| |
Collapse
|
31
|
Daněk J, Danačíková Š, Kala D, Svoboda J, Kapoor S, Pošusta A, Folbergrová J, Tauchmannová K, Mráček T, Otáhal J. Sulforaphane Ameliorates Metabolic Changes Associated With Status Epilepticus in Immature Rats. Front Cell Neurosci 2022; 16:855161. [PMID: 35370554 PMCID: PMC8965559 DOI: 10.3389/fncel.2022.855161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/16/2022] [Indexed: 11/24/2022] Open
Abstract
Status epilepticus (SE) is a common paediatric emergency with the highest incidence in the neonatal period and is a well-known epileptogenic insult. As previously established in various experimental and human studies, SE induces long-term alterations to brain metabolism, alterations that directly contribute to the development of epilepsy. To influence these changes, organic isothiocyanate compound sulforaphane (SFN) has been used in the present study for its known effect of enhancing antioxidative, cytoprotective, and metabolic cellular properties via the Nrf2 pathway. We have explored the effect of SFN in a model of acquired epilepsy induced by Li-Cl pilocarpine in immature rats (12 days old). Energy metabolites PCr, ATP, glucose, glycogen, and lactate were determined by enzymatic fluorimetric methods during the acute phase of SE. Protein expression was evaluated by Western blot (WB) analysis. Neuronal death was scored on the FluoroJadeB stained brain sections harvested 24 h after SE. To assess the effect of SFN on glucose metabolism we have performed a series of 18F-DG μCT/PET recordings 1 h, 1 day, and 3 weeks after the induction of SE. Responses of cerebral blood flow (CBF) to electrical stimulation and their influence by SFN were evaluated by laser Doppler flowmetry (LDF). We have demonstrated that the Nrf2 pathway is upregulated in the CNS of immature rats after SFN treatment. In the animals that had undergone SE, SFN was responsible for lowering glucose uptake in most regions 1 h after the induction of SE. Moreover, SFN partially reversed hypometabolism observed after 24 h and achieved full reversal at approximately 3 weeks after SE. Since no difference in cell death was observed in SFN treated group, these changes cannot be attributed to differences in neurodegeneration. SFN per se did not affect the glucose uptake at any given time point suggesting that SFN improves endogenous CNS ability to adapt to the epileptogenic insult. Furthermore, we had discovered that SFN improves blood flow and accelerates CBF response to electrical stimulation. Our findings suggest that SFN improves metabolic changes induced by SE which have been identified during epileptogenesis in various animal models of acquired epilepsy.
Collapse
Affiliation(s)
- Jan Daněk
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Šárka Danačíková
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - David Kala
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jan Svoboda
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
| | - Sonam Kapoor
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Antonín Pošusta
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | | | | | - Tomáš Mráček
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
| | - Jakub Otáhal
- Institute of Physiology, Czech Academy of Sciences, Prague, Czechia
- Department of Pathophysiology, Second Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Jakub Otáhal,
| |
Collapse
|
32
|
Plumbagin Alleviates Intracerebroventricular-Quinolinic Acid Induced Depression-like Behavior and Memory Deficits in Wistar Rats. Molecules 2022; 27:molecules27061834. [PMID: 35335195 PMCID: PMC8955906 DOI: 10.3390/molecules27061834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Plumbagin, a hydroxy-1,4-naphthoquinone, confers neuroprotection via antioxidant and anti-inflammatory properties. The present study aimed to assess the effect of plumbagin on behavioral and memory deficits induced by intrahippocampal administration of Quinolinic acid (QA) in male Wistar rats and reveal the associated mechanisms. QA (300 nM/4 μL in Normal saline) was administered i.c.v. in the hippocampus. QA administration caused depression-like behavior (forced swim test and tail suspension tests), anxiety-like behavior (open field test and elevated plus maze), and elevated anhedonia behavior (sucrose preference test). Furthermore, oxidative–nitrosative stress (increased nitrite content and lipid peroxidation with reduction of GSH), inflammation (increased IL-1β), cholinergic dysfunction, and mitochondrial complex (I, II, and IV) dysfunction were observed in the hippocampus region of QA-treated rats as compared to normal controls. Plumbagin (10 and 20 mg/kg; p.o.) treatment for 21 days significantly ameliorated behavioral and memory deficits in QA-administered rats. Moreover, plumbagin treatment restored the GSH level and reduced the MDA and nitrite level in the hippocampus. Furthermore, QA-induced cholinergic dysfunction and mitochondrial impairment were found to be ameliorated by plumbagin treatment. In conclusion, our results suggested that plumbagin offers a neuroprotective potential that could serve as a promising pharmacological approach to mitigate neurobehavioral changes associated with neurodegeneration.
Collapse
|
33
|
Pardo-Peña K, Yañez-Hernández A, Medina-Ceja L, Morales-Villagrán A. Ellagic acid and allopurinol decrease H 2O 2 concentrations, epileptiform activity and astrogliosis after status epilepticus in the hippocampus of adult rats. Exp Brain Res 2022; 240:1191-1203. [PMID: 35171306 DOI: 10.1007/s00221-022-06323-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 02/04/2022] [Indexed: 11/04/2022]
Abstract
Status epilepticus (SE) can result in an overproduction of hydrogen peroxide (H2O2), which contributes to oxidative stress and brain injury during different phases of epileptogenesis and seizures. The purpose of this study was to evaluate the effects of ellagic acid and allopurinol administered after SE on H2O2 concentrations, electrical activity and GFAP immunoreactivity in the hippocampus of rats evaluated on Day 18 after SE. H2O2 levels were measured using an online technique with high temporal resolution and simultaneous electrical activity recording. For this purpose, the lateral ventricles of male Wistar rats (200-250 g) were injected with pilocarpine (2.4 mg/2 µl) to induce SE. After SE, rats were injected with ellagic acid (50 mg/kg i.p., and two additional doses at 24 and 48 h) or allopurinol (50 mg/kg i.p., single dose). Administration of ellagic acid or allopurinol after SE significantly reduced the H2O2 concentrations and decreased the presence of epileptiform activity and GFAP immunoreactivity in the hippocampus 18 days after SE. In conclusion, the administration of antioxidants potentially reduces oxidative stress, which indicates the possible attenuation of the neurobiological consequences after SE.
Collapse
Affiliation(s)
- Kenia Pardo-Peña
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico.
| | - Aldo Yañez-Hernández
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | - Laura Medina-Ceja
- Laboratory of Neurophysiology, Department of Cellular and Molecular Biology, CUCBA, University of Guadalajara, Camino Ing. Ramón Padilla Sánchez 2100, Las Agujas, Nextipac, Zapopan, 45200, Jalisco, Mexico
| | | |
Collapse
|
34
|
Arora N, Litofsky NS, Golzy M, Aneja R, Staudenmyer D, Qualls K, Patil S. Phase I single center trial of ketogenic diet for adults with traumatic brain injury. Clin Nutr ESPEN 2022; 47:339-345. [DOI: 10.1016/j.clnesp.2021.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/19/2021] [Accepted: 11/07/2021] [Indexed: 01/09/2023]
|
35
|
Phenylalanine-Based AMPA Receptor Antagonist as the Anticonvulsant Agent with Neuroprotective Activity-In Vitro and In Vivo Studies. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030875. [PMID: 35164136 PMCID: PMC8840081 DOI: 10.3390/molecules27030875] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/15/2022] [Accepted: 01/25/2022] [Indexed: 11/28/2022]
Abstract
Trying to meet the multitarget-directed ligands strategy, a series of previously described aryl-substituted phenylalanine derivatives, reported as competitive antagonists of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, were screened in vitro for their free-radical scavenging and antioxidant capacity in two different assays: ferric reducing antioxidant power (FRAP) and oxygen radical absorbance capacity fluorescent (ORAC-FL) assays. The most active antioxidants 1 and 8 were further examined to evaluate their neuroprotective properties in vitro. In this study, compound 1 showed a significant neuroprotective effect against the neurotoxin 6-hydroxydopamine in neuroblastoma SH-SY5Y and IMR-32 cell lines. Both compounds also showed prevention from high levels of reactive oxygen species (ROS) in SH-SY5Y cells. Furthermore, the desired monoamine oxidase B (MAO-B) inhibition effect (IC50 = 278 ± 29 nM) for 1 was determined. No toxic effects up to 100 µM of 1 and 8 against neuroblastoma cells were observed. Furthermore, in vivo studies showed that compound 1 demonstrated significant anticonvulsant potential in 6-Hz test, but in neuropathic pain models its antiallodynic and antihyperalgesic properties were not observed. Concluding, the compound 1 seems to be of higher importance as a new phenylalanine-based lead candidate due to its confirmed promise in in vitro and in vivo anticonvulsant activity.
Collapse
|
36
|
Alvi AM, Shah FA, Muhammad AJ, Feng J, Li S. 1,3,4, Oxadiazole Compound A3 Provides Robust Protection Against PTZ-Induced Neuroinflammation and Oxidative Stress by Regulating Nrf2-Pathway. J Inflamm Res 2022; 14:7393-7409. [PMID: 35002275 PMCID: PMC8721032 DOI: 10.2147/jir.s333451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Epilepsy is a common neurological disorder that is characterized by recurrent episodes of seizures. Various studies have demonstrated a direct association between oxidative stress and inflammation in several neurological disorders including epilepsy. This study aimed to investigate the neuroprotective effects of a synthetic 1,3,4, oxadiazole compound A3 against pentylenetetrazole (PTZ)-induced kindling and seizure model. Methodology PTZ was administered in a sub-convulsive dose of 40 mg/kg for 15 days, at 48-hour intervals to male Swiss-Albino mice until animals were fully kindled. Two different doses of A3 (10 mg/kg and 30 mg/kg) were administered to find out the effective dose of A3 and to further demonstrate the relative role of nuclear factor E2-related factor (Nrf2) in the PTZ-induced kindled model. Results Our results demonstrated a compromised antioxidant capacity associated with a low level of catalase (CAT), superoxide dismutase (SOD), glutathione (GST), and glutathione S-transferase (GSH) in the kindled group. However, the PTZ-induced group demonstrated an elevated level of lipid peroxidation (LPO) level parallel to pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), mediators as cyclooxygenase (COX-2), and nuclear factor kappa B (NFκB). Furthermore, the A3 treatment reversed these changes and overexpressed the antioxidant Nrf2 gene and its downstream HO-1. To further investigate the involvement of Nrf2, we employed an Nrf2-inhibitor, ie, all-trans retinoic acid (ATRA), that further aggravated the PTZ toxicity. Moreover, vascular endothelial growth factor (VEGF) expression was evaluated to assess the extent of BBB disruption. Conclusion The findings of this study suggest that A3 could mediate neuroprotection possibly by activating Nrf2 dependent downregulation of inflammatory cascades.
Collapse
Affiliation(s)
- Arooj Mohsin Alvi
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China.,Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Fawad Ali Shah
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Asmaa Jan Muhammad
- Department of Pharmacology, Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad, Pakistan
| | - Jinxing Feng
- Department of Neonatology, Shenzhen Children's Hospital Shenzhen, Shenzhen, People's Republic of China
| | - Shupeng Li
- State Key Laboratory of Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, People's Republic of China
| |
Collapse
|
37
|
Abd Allah HN, Abdul-Hamid M, Mahmoud AM, Abdel-Reheim ES. Melissa officinalis L. ameliorates oxidative stress and inflammation and upregulates Nrf2/HO-1 signaling in the hippocampus of pilocarpine-induced rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2214-2226. [PMID: 34363578 DOI: 10.1007/s11356-021-15825-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Epilepsy is characterized by recurrent epileptic seizures, and its effective management continues to be a therapeutic challenge. Oxidative stress and local inflammatory response accompany the status epilepticus (SE). This study evaluated the effect of Melissa officinalis extract (MOE) on oxidative stress, inflammation, and neurotransmitters in the hippocampus of pilocarpine (PILO)-administered rats, pointing to the involvement of Nrf2/HO-1 signaling. Rats received PILO via intraperitoneal administration and were treated with MOE for 2 weeks. MOE prevented neuronal loss; decreased lipid peroxidation, Cox-2, PGE2, and BDNF; and downregulated glial fibrillary acidic protein in the hippocampus of PILO-treated rats. In addition, MOE enhanced GSH and antioxidant enzymes, upregulated Nrf2 and HO-1 mRNA abundance, and increased the nuclear translocation of Nrf2 in the hippocampus of epileptic rats. Na+/K+-ATPase activity and GABA were increased, and glutamate and acetylcholine were decreased in the hippocampus of epileptic rats treated with MOE. In conclusion, MOE attenuated neuronal loss, oxidative stress, and inflammation; activated Nrf2/HO-1 signaling; and modulated neurotransmitters, GFAP, and Na+/K+-ATPase in the hippocampus of epileptic rats. These findings suggest that M. officinalis can mitigate epileptogenesis, pending further studies to explore the exact underlying mechanisms.
Collapse
Affiliation(s)
- Hagar N Abd Allah
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Manal Abdul-Hamid
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Ayman M Mahmoud
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
- Biotechnology Department, Research Institute of Medicinal & Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt.
| | - Eman S Abdel-Reheim
- Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
38
|
Pottoo FH, Salahuddin M, Khan FA, AL Dhamen MA, Alsaeed WJ, Gomaa MS, Vatte C, Alomary MN. Combinatorial Regimen of Carbamazepine and Imipramine Exhibits Synergism against Grandmal Epilepsy in Rats: Inhibition of Pro-Inflammatory Cytokines and PI3K/Akt/mTOR Signaling Pathway. Pharmaceuticals (Basel) 2021; 14:1204. [PMID: 34832986 PMCID: PMC8624327 DOI: 10.3390/ph14111204] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a neurodegenerative disorder that causes recurring seizures. Thirty-five percent of patients remain refractory, with a higher prevalence of depression. We investigated the anticonvulsant efficacy of carbamazepine (CBZ; 20 and 50 mg/kg), imipramine (IMI; 10 and 20 mg/kg) alone, and as a low dose combination. This preclinical investigation included dosing of rats for 14 days followed by elicitation of electroshock on the last day of treatment. Along with behavioral monitoring, the rat hippocampus was processed for quantification of mTOR, IL-1β, IL-6 and TNF-α levels. The histopathological analysis of rat hippocampus was performed to ascertain neuroprotection. In vitro studies and in silico studies were also conducted. We found that the low dose combinatorial therapy of CBZ (20 mg/kg) + IMI (10 mg/kg) exhibits synergism (p < 0.001) in abrogation of maximal electroshock (MES) induced convulsions/tonic hind limb extension (THLE), by reducing levels of pro-inflammatory cytokines, and weakening of the PI3K/Akt/mTOR signal. The combination also exhibits cooperative binding at the Akt. As far as neuroprotection is concerned, the said combination increased cell viability by 166.37% compared to Pentylenetetrazol (PTZ) treated HEK-293 cells. Thus, the combination of CBZ (20 mg/kg) + IMI (10 mg/kg) is a fruitful combination therapy to elevate seizure threshold and provide neuroprotection.
Collapse
Affiliation(s)
- Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohammed Salahuddin
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem cell Research, Institute for Research and Medical Consultation, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Marwa Abdullah AL Dhamen
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Walaa Jafar Alsaeed
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (M.A.A.D.); (W.J.A.)
| | - Mohamed S. Gomaa
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdul Rahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| | - Mohammad N. Alomary
- National Centre for Biotechnology, Kind Abdulaziz City for Science and Technology (KACST), P.O. Box 1982, Riyadh 11442, Saudi Arabia
| |
Collapse
|
39
|
Sandouka S, Shekh-Ahmad T. Induction of the Nrf2 Pathway by Sulforaphane Is Neuroprotective in a Rat Temporal Lobe Epilepsy Model. Antioxidants (Basel) 2021; 10:antiox10111702. [PMID: 34829573 PMCID: PMC8615008 DOI: 10.3390/antiox10111702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
Epilepsy is a chronic disease of the brain that affects over 65 million people worldwide. Acquired epilepsy is initiated by neurological insults, such as status epilepticus, which can result in the generation of ROS and induction of oxidative stress. Suppressing oxidative stress by upregulation of the transcription factor, nuclear factor erythroid 2-related factor 2 (Nrf2) has been shown to be an effective strategy to increase endogenous antioxidant defences, including in brain diseases, and can ameliorate neuronal damage and seizure occurrence in epilepsy. Here, we aim to test the neuroprotective potential of a naturally occurring Nrf2 activator sulforaphane, in in vitro epileptiform activity model and a temporal lobe epilepsy rat model. Sulforaphane significantly decreased ROS generation during epileptiform activity, restored glutathione levels, and prevented seizure-like activity-induced neuronal cell death. When given to rats after 2 h of kainic acid-induced status epilepticus, sulforaphane significantly increased the expression of Nrf2 and related antioxidant genes, improved oxidative stress markers, and increased the total antioxidant capacity in both the plasma and hippocampus. In addition, sulforaphane significantly decreased status epilepticus-induced neuronal cell death. Our results demonstrate that Nrf2 activation following an insult to the brain exerts a neuroprotective effect by reducing neuronal death, increasing the antioxidant capacity, and thus may also modify epilepsy development.
Collapse
|
40
|
Cheng Y, Cui Y, Zhai Y, Xin W, Yu Y, Liang J, Li S, Sun H. Neuroprotective Effects of Exogenous Irisin in Kainic Acid-Induced Status Epilepticus. Front Cell Neurosci 2021; 15:738533. [PMID: 34658794 PMCID: PMC8517324 DOI: 10.3389/fncel.2021.738533] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
Elevated reactive oxygen species (ROS) level is considered a crucial causative factor for neuronal damage in epilepsy. Irisin has been reported to ameliorate mitochondrial dysfunction and to reduce ROS levels; therefore, in this study, the effect of exogenous irisin on neuronal injury was evaluated in rats with kainic acid (KA)-induced status epilepticus (SE). Our results showed that exogenous irisin treatment significantly increased the expression of brain-derived neurotrophic factor (BDNF) and uncoupling protein 2 (UCP2), and reduced the levels of neuronal injury and mitochondrial oxidative stress. Additionally, an inhibitor of UCP2 (genipin) was administered to investigate the underlying mechanism of irisin-induced neuroprotection; in rats treated with genipin, the neuroprotective effects of irisin on KA-induced SE were found to be partially reversed. Our findings confirmed the neuroprotective effects of exogenous irisin and provide evidence that these effects may be mediated via the BDNF/UCP2 pathway, thus providing valuable insights that may aid the development of exogenous irisin treatment as a potential therapeutic strategy against neuronal injury in epilepsy.
Collapse
Affiliation(s)
- Yao Cheng
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yaru Cui
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yujie Zhai
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Wenyu Xin
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Yan Yu
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Jia Liang
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Shucui Li
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| | - Hongliu Sun
- School of Pharmaceutical Sciences, Binzhou Medical University, Yantai, China
| |
Collapse
|
41
|
Singh S, Singh TG. Emerging perspectives on mitochondrial dysfunctioning and inflammation in epileptogenesis. Inflamm Res 2021; 70:1027-1042. [PMID: 34652489 DOI: 10.1007/s00011-021-01511-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 01/15/2023] Open
Abstract
INTRODUCTION Mitochondrial dysfunction is a common denominator of neuroinflammation recognized by neuronal oxidative stress-mediated apoptosis that is well recognized by common intracellular molecular pathway-interlinked neuroinflammation and mitochondrial oxidative stress, a feature of epileptogenesis. In addition, the neuronal damage in the epileptic brain corroborated the concept of brain injury-mediated neuroinflammation, further providing an interlink between inflammation, mitochondrial dysfunction, and oxidative stress in epilepsy. MATERIALS AND METHODS A systematic literature review of Bentham, Scopus, PubMed, Medline, and EMBASE (Elsevier) databases was carried out to provide evidence of preclinical and clinically used drugs targeting such nuclear, cytosolic, and mitochondrial proteins suggesting that the correlation of mechanisms linked to neuroinflammation has been elucidated in the current review. Despite that, the evidence of elevated levels of inflammatory mediators and pro-apoptotic protein levels can provide the correlation of inflammatory responses often concerned with hyperexcitability attributing to the fact that mitochondrial redox mechanisms and higher susceptibilities to neuroinflammation result from repetitive recurring epileptic seizures. Therefore, providing an understanding of seizure-induced pathological changes read by activating neuroinflammatory cascades like NF-kB, RIPK, MAPK, ERK, JNK, and JAK-STAT signaling further related to mitochondrial damage promoting hyperexcitability. CONCLUSION The current review highlights the further opportunity for establishing therapeutic interventions underlying the apparent correlation of neuroinflammation mediated mitochondrial oxidative stress might contribute to common intracellular mechanisms underlying a future prospective of drug treatment targeting mitochondrial dysfunction linked to the neuroinflammation in epilepsy.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
42
|
Osuntokun OS, Olayiwola G, Adekomi DA, Oyeyipo IP, Ayoka AO. Proanthocyanidin from Vitis vinifera attenuates memory impairment due to convulsive status epilepticus. Epilepsy Behav 2021; 124:108333. [PMID: 34619539 DOI: 10.1016/j.yebeh.2021.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 12/26/2022]
Abstract
This study investigated the effects of proanthocyanidin-rich fraction (PRF) of Vitis vinifera seed extract on the markers of hippocampal-dependent memory in convulsive status epilepticus (CSE) rat model. One hundred juvenile Wistar rats were randomized into 6 groups. Group 1 (n = 10) received propylene glycol (PG 0.1 ml/100 g) intraperitoneally (i.p), while convulsion was induced in groups 2-6 (n = 18 each) using lithium (127 mg/kg i.p) and pilocarpine hydrochloride (40 mg/kg i.p). The established CSE rats in groups 2-6 received a daily treatment of PG (0.1 ml i.p), PRF (30 mg/kg i.p), PRF (20 mg/kg BW i.p), PRF (10 mg/kg BW i.p) or diazepam (5 mg/kg BW i.p) for seven days. Thereafter, they were kept untreated but with access to feed and water for 21 days. The control and CSE-treated rats were subjected to behavioral tests, while the biochemical and histomorphological evaluations of the hippocampus were done after the sacrifice. The results were presented as mean ± SEM in graphs or tables. The level of significance was considered when p < 0.05. There was significant decrease in the hippocampal-dependent memory, hippocampal weight and an increased malondialdehyde concentration following CSE. The activities of acetylcholinesterase decreased significantly in the PRF-treated CSE rats. The hippocampal glial cells and granule count increased significantly following CSE, with various neurodegenerative features in the CA1 of the hippocampus. These derangements were attenuated significantly following PRF treatment. Memory impairment following CSE may be attenuated with the administration of PRF from V. vinifera seed in rats.
Collapse
Affiliation(s)
- Opeyemi Samson Osuntokun
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria; Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria.
| | - Gbola Olayiwola
- Department of Clinical Pharmacy and Pharmacy Administration, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| | | | - Ibukun Peter Oyeyipo
- Department of Physiology, Faculty of Basic Medical Sciences, Osun State University Osogbo, Nigeria
| | - Abiodun Oladele Ayoka
- Department of Physiological Sciences, Faculty of Basic Medical Sciences, Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria
| |
Collapse
|
43
|
Upaganlawar AB, Wankhede NL, Kale MB, Umare MD, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Najda A, Nurzyńska-Wierdak R, Bungau S, Behl T. Interweaving epilepsy and neurodegeneration: Vitamin E as a treatment approach. Biomed Pharmacother 2021; 143:112146. [PMID: 34507113 DOI: 10.1016/j.biopha.2021.112146] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Epilepsy is the most common neurological disorder, affecting nearly 50 million people worldwide. The condition can be manifested either due to genetic predisposition or acquired from acute insult which leads to alteration of cellular and molecular mechanisms. Evaluating the latest and the current knowledge in regard to the mechanisms underlying molecular and cellular alteration, hyperexcitability is a consequence of an imbalanced state wherein enhance excitatory glutamatergic and reduced inhibitory GABAergic signaling is considered to be accountable for seizures associated damage. However, neurodegeneration contributing to epileptogenesis has become increasingly appreciated. The components at the helm of neurodegenerative alterations during epileptogenesis include GABAergic neuronal and receptor changes, neuroinflammation, alteration in axonal transport, oxidative stress, excitotoxicity, and other cellular as well as functional changes. Targeting neurodegeneration with vitamin E as an antioxidant, anti-inflammatory and neuroprotective may prove to be one of the therapeutic approaches useful in managing epilepsy. In this review, we discuss and converse about the seizure-induced episodes as a link for the development of neurodegenerative and pathological consequences of epilepsy. We also put forth a summary of the potential intervention with vitamin E therapy in the management of epilepsy.
Collapse
Affiliation(s)
- Aman B Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad, Nashik, Maharashtra, India
| | - Nitu L Wankhede
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Mohit D Umare
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra, India
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Nizwa, Oman
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences, Lublin, Poland.
| | | | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Romania
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
44
|
Carveol Attenuates Seizure Severity and Neuroinflammation in Pentylenetetrazole-Kindled Epileptic Rats by Regulating the Nrf2 Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9966663. [PMID: 34422216 PMCID: PMC8376446 DOI: 10.1155/2021/9966663] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022]
Abstract
Epilepsy is a neurodegenerative brain disorder characterized by recurrent seizure attacks. Numerous studies have suggested a strong correlation between oxidative stress and neuroinflammation in several neurodegenerative disorders including epilepsy. This study is aimed at investigating the neuroprotective effects of the natural compound carveol against pentylenetetrazole- (PTZ-) induced kindling and seizure model. Two different doses of carveol (10 mg/kg and 20 mg/kg) were administered to male rats to determine the effects and the effective dose of carveol and to further demonstrate the mechanism of action of nuclear factor E2-related factor (Nrf2) in PTZ-induced kindling model. Our results demonstrated reduced levels of innate antioxidants such as superoxide dismutase (SOD), catalase, glutathione-S-transferase (GST), and glutathione (GSH), associated with elevated lipid peroxidation (LPO) and inflammatory cytokines level such as tumor necrosis factor-alpha (TNF-α), and mediators like cyclooxygenase (COX-2) and nuclear factor kappa B (NFκB). These detrimental effects exacerbated oxidative stress and provoked a marked neuronal alteration in the cortex and hippocampus of PTZ-intoxicated animals that were associated with upregulated Nrf2 gene expression. Furthermore, carveol treatment positively modulated the antioxidant gene Nrf2 and its downstream target HO-1. To further investigate the role of Nrf2, an inhibitor of Nrf2 called all-trans retinoic acid (ATRA) was used, which further exacerbated PTZ toxicity. Moreover, carveol treatment induced cholinergic system activation by mitigating acetylcholinesterase level which is further linked to attenuated neuroinflammatory cascade. The extent of blood-brain barrier disruption was evaluated based on vascular endothelial growth factor (VEGF) expression. Taken together, our findings suggest that carveol acts as an Nrf2 activator and therefore induces downstream antioxidants and mitigates inflammatory insults through multiple pathways. This eventually alleviates PTZ-induced neuroinflammation and neurodegeneration.
Collapse
|
45
|
Miljanovic N, van Dijk RM, Buchecker V, Potschka H. Metabolomic signature of the Dravet syndrome: A genetic mouse model study. Epilepsia 2021; 62:2000-2014. [PMID: 34223647 DOI: 10.1111/epi.16976] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Alterations in metabolic homeostasis can contribute to neuronal hyperexcitability and seizure susceptibility. Although the pivotal role of impaired bioenergetics is obvious in metabolic epilepsies, there is a gap of knowledge regarding secondary changes in metabolite patterns as a result of genetic Scn1a deficiency and ketogenic diet in the Dravet syndrome. METHODS A comprehensive untargeted metabolomics analysis, along with assessment of epileptiform activity and behavioral tests, was completed in a Dravet mouse model. Data sets were compared between animals on a control and a ketogenic diet, and metabolic alterations associated with Dravet mice phenotype and ketogenic diet were identified. RESULTS Hippocampal metabolomic data revealed complex alterations in energy metabolism with an effect of the genotype on concentrations of glucose and several glycolysis and tricarboxylic acid (TCA) cycle intermediates. Although low glucose, lactate, malate, and citrate concentrations became evident, the increase of several intermediates suggested a genotype-associated activation of catabolic processes with enhanced glycogenolysis and glycolysis. Moreover, we observed an impact on the glutamate/γ-aminobutyric acid (GABA)-glutamine cycle with reduced levels of all components along with a shift toward an increased GABA-to-glutamate ratio. Further alterations comprised a reduction in hippocampal levels of noradrenaline, corticosterone, and of two bile acids. SIGNIFICANCE Considering that energy depletion can predominantly compromise the function of GABAergic interneurons, the changes in energy metabolism may contribute to seizure susceptibility and ictogenesis. They may also explain the therapeutic potential of the ketogenic diet, which aims to shift energy metabolism toward a more fat-based energy supply. Conversely, the increased GABA-to-glutamate ratio might serve as an endogenous compensatory mechanism, which can be further supported by GABAergic drugs, representing the mainstay of therapeutic management of Dravet syndrome. In view of a possible neuroprotective function of bile acids, it might be of interest to explore a possible therapeutic potential of bile acid-mediated therapies, already in discussion for neurodegenerative disorders.
Collapse
Affiliation(s)
- Nina Miljanovic
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.,Graduate School of Systemic Neurosciences (GSN), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| |
Collapse
|
46
|
Blanco-Gandía MDC, Ródenas-González F, Pascual M, Reguilón MD, Guerri C, Miñarro J, Rodríguez-Arias M. Ketogenic Diet Decreases Alcohol Intake in Adult Male Mice. Nutrients 2021; 13:nu13072167. [PMID: 34202492 PMCID: PMC8308435 DOI: 10.3390/nu13072167] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 01/26/2023] Open
Abstract
The classic ketogenic diet is a diet high in fat, low in carbohydrates, and well-adjusted proteins. The reduction in glucose levels induces changes in the body’s metabolism, since the main energy source happens to be ketone bodies. Recent studies have suggested that nutritional interventions may modulate drug addiction. The present work aimed to study the potential effects of a classic ketogenic diet in modulating alcohol consumption and its rewarding effects. Two groups of adult male mice were employed in this study, one exposed to a standard diet (SD, n = 15) and the other to a ketogenic diet (KD, n = 16). When a ketotic state was stable for 7 days, animals were exposed to the oral self-administration paradigm to evaluate the reinforcing and motivating effects of ethanol. Rt-PCR analyses were performed evaluating dopamine, adenosine, CB1, and Oprm gene expression. Our results showed that animals in a ketotic state displayed an overall decrease in ethanol consumption without changes in their motivation to drink. Gene expression analyses point to several alterations in the dopamine, adenosine, and cannabinoid systems. Our results suggest that nutritional interventions may be a useful complementary tool in treating alcohol-use disorders.
Collapse
Affiliation(s)
| | - Francisco Ródenas-González
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - María Pascual
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
- Department of Physiology, School of Medicine, Universitat de Valencia, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain
| | - Marina Daiana Reguilón
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Consuelo Guerri
- Department of Molecular and Cellular Pathology of Alcohol, Principe Felipe Research Center, C/Eduardo Primo Yúfera 3, 46012 Valencia, Spain;
| | - José Miñarro
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
| | - Marta Rodríguez-Arias
- Unit of Research Psychobiology of Drug Dependence, Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010 Valencia, Spain; (F.R.-G.); (M.P.); (M.D.R.); (J.M.)
- Correspondence: ; Tel.: +34-963864637
| |
Collapse
|
47
|
Pinar N. Effects of Tempol on Epileptic Activity in Picrotoxin-Induced Epilepsy in Rats. Neurol India 2021; 69:426-429. [PMID: 33904467 DOI: 10.4103/0028-3886.314542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Introduction Epilepsy is a common neurological disease, although its etiology and pathophysiology are not yet fully understood. Oxidative stress plays a key role in the pathogenesis of many neurological diseases, including epilepsy, and there have been many studies reporting that antiepileptic medicines with neuroprotective and antioxidant activity inhibit free oxygen radicals. This study evaluates the effects of tempol on epileptic activity through behavioral parameters in acute picrotoxin (Ptx) models. Materials and Methods This experimental study was conducted on 42 adult male Wistar Albino rats weighing 450-500 g. Ptx (2.5 mg/kg) was injected i.p. as a single dose and observed for one hour to establish the acute Ptx model. Following injection, the animals were observed for 30 min in glass observation cages measuring 35 cm x 35 cm x 35 cm. Results In picrotoxin-induced epilepsy, the total number of seizures and the total duration of seizures were decreased significantly with Ptx + tempol 100 mg/kg and Ptx + Tempol 150 mg/kg. The seizure phases were reduced significantly by Ptx + tempol 150 mg/kg (P < 0.05). Conclusion Tempol 100 mg/kg and tempol 150 mg/kg are found to be effective in epilepsy models caused by Ptx, with tempol 150 mg/kg found especially to be more effective.
Collapse
Affiliation(s)
- Neslihan Pinar
- Department of Pharmacology, Faculty of Medicine, Mustafa Kemal University, Hatay, Turkey
| |
Collapse
|
48
|
Pan JW, Antony A, Tal A, Yushmanov V, Fong J, Richardson M, Schirda C, Bagic A, Gonen O, Hetherington HP. MR spectroscopic imaging at 3 T and outcomes in surgical epilepsy. NMR IN BIOMEDICINE 2021; 34:e4492. [PMID: 33751687 PMCID: PMC8122073 DOI: 10.1002/nbm.4492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/23/2021] [Indexed: 05/09/2023]
Abstract
For the spectroscopic assessment of brain disorders that require large-volume coverage, the requirements of RF performance and field homogeneity are high. For epilepsy, this is also challenging given the inter-patient variation in location, severity and subtlety of anatomical identification and its tendency to involve the temporal region. We apply a targeted method to examine the utility of large-volume MR spectroscopic imaging (MRSI) in surgical epilepsy patients, implementing a two-step acquisition, comprised of a 3D acquisition to cover the fronto-parietal regions, and a contiguous parallel two-slice Hadamard-encoded acquisition to cover the temporal-occipital region, both with TR /TE = 2000/40 ms and matched acquisition times. With restricted (static, first/second-order) B0 shimming in their respective regions, the Cramér-Rao lower bounds for creatine from the temporal lobe two-slice Hadamard and frontal-parietal 3D acquisition are 8.1 ± 2.2% and 6.3 ± 1.9% respectively. The datasets are combined to provide a total 60 mm axial coverage over the frontal, parietal and superior temporal to middle temporal-occipital regions. We applied these acquisitions at a nominal 400 mm3 voxel resolution in n = 27 pre-surgical epilepsy patients and n = 20 controls. In controls, 86.6 ± 3.2% voxels with at least 50% tissue (white + gray matter, excluding CSF) survived spectral quality inclusion criteria. Since all patients were clinically followed for at least 1 year after surgery, seizure frequency outcome was available for all. The MRSI measurements of the total fractional metabolic dysfunction (characterized by the Cr/NAA metric) in FreeSurfer MRI gray matter segmented regions, in the patients compared with the controls, exhibited a significant Spearman correlation with post-surgical outcome. This finding suggests that a larger burden of metabolic dysfunction is seen in patients with poorer post-surgical seizure control.
Collapse
Affiliation(s)
- Jullie W Pan
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Arun Antony
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute, Rehovot, Israel
| | - Victor Yushmanov
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joanna Fong
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Mark Richardson
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Claud Schirda
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anto Bagic
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oded Gonen
- Department of Radiology, New York University, New York, New York
| | | |
Collapse
|
49
|
Meyer C, Kettner A, Hochenegg U, Rubi L, Hilber K, Koenig X, Boehm S, Hotka M, Kubista H. On the Origin of Paroxysmal Depolarization Shifts: The Contribution of Ca v1.x Channels as the Common Denominator of a Polymorphous Neuronal Discharge Pattern. Neuroscience 2021; 468:265-281. [PMID: 34015369 DOI: 10.1016/j.neuroscience.2021.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/15/2022]
Abstract
Since their discovery in the 1960s, the term paroxysmal depolarization shift (PDS) has been applied to a wide variety of reinforced neuronal discharge patterns. Occurrence of PDS as cellular correlates of electrographic spikes during latent phases of insult-induced rodent epilepsy models and their resemblance to giant depolarizing potentials (GDPs) nourished the idea that PDS may be involved in epileptogenesis. Both GDPs and - in analogy - PDS may lead to progressive changes of neuronal properties by generation of pulsatile intracellular Ca2+ elevations. Herein, a key element is the gating of L-type voltage gated Ca2+ channels (LTCCs, Cav1.x family), which may convey Ca2+ signals to the nucleus. Accordingly, the present study investigates various insult-associated neuronal challenges for their propensities to trigger PDS in a LTCC-dependent manner. Our data demonstrate that diverse disturbances of neuronal function are variably suited to induce PDS-like events, and the contribution of LTCCs is essential to evoke PDS in rat hippocampal neurons that closely resemble GDPs. These PDS appear to be initiated in the dendritic sub-compartment. Their morphology critically depends on the position of recording electrodes and on their rate of occurrence. These results provide novel insight into induction mechanisms, origin, variability, and co-existence of PDS with other discharge patterns and thereby pave the way for future investigations regarding the role of PDS in epileptogenesis.
Collapse
Affiliation(s)
- Christiane Meyer
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Annika Kettner
- University of Applied Sciences (FH Campus Wien), Favoritenstrasse 226, 1100 Vienna, Austria.
| | - Ulla Hochenegg
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria
| | - Lena Rubi
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Karlheinz Hilber
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Xaver Koenig
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Stefan Boehm
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Matej Hotka
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and -pharmacology, Medical University of Vienna, Waehringerstrasse 13a, 1090 Vienna, Austria.
| |
Collapse
|
50
|
Brain Energy Deficit as a Source of Oxidative Stress in Migraine: A Molecular Basis for Migraine Susceptibility. Neurochem Res 2021; 46:1913-1932. [PMID: 33939061 DOI: 10.1007/s11064-021-03335-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/06/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
People with migraine are prone to a brain energy deficit between attacks, through increased energy demand (hyperexcitable brain) or decreased supply (mitochondrial impairment). However, it is uncertain how this precipitates an acute attack. Here, the central role of oxidative stress is adduced. Specifically, neurons' antioxidant defenses rest ultimately on internally generated NADPH (reduced nicotinamide adenine dinucleotide phosphate), whose levels are tightly coupled to energy production. Mitochondrial NADPH is produced primarily by enzymes involved in energy generation, including isocitrate dehydrogenase of the Krebs (tricarboxylic acid) cycle; and an enzyme, nicotinamide nucleotide transhydrogenase (NNT), that depends on the Krebs cycle and oxidative phosphorylation to function, and that works in reverse, consuming antioxidants, when energy generation fails. In migraine aura, cortical spreading depression (CSD) causes an initial severe drop in level of NADH (reduced nicotinamide adenine dinucleotide), causing NNT to impair antioxidant defense. This is followed by functional hypoxia and a rebound in NADH, in which the electron transport chain overproduces oxidants. In migraine without aura, a similar biphasic fluctuation in NADH very likely generates oxidants in cortical regions farthest from capillaries and penetrating arterioles. Thus, the perturbations in brain energy demand and/or production seen in migraine are likely sufficient to cause oxidative stress, triggering an attack through oxidant-sensing nociceptive ion channels. Implications are discussed for the development of new classes of migraine preventives, for the current use of C57BL/6J mice (which lack NNT) in preclinical studies of migraine, for how a microembolism initiates CSD, and for how CSD can trigger a migraine.
Collapse
|