1
|
Diokmetzidou A, Scorrano L. Sweetening mitochondria: Hexokinase shields mitochondria from fission when glucose is low. Mol Cell 2024; 84:2593-2595. [PMID: 39059367 DOI: 10.1016/j.molcel.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
In this issue of Molecular Cell, Pilic et al.1 show that hexokinase, the first enzyme of glycolysis, forms perimitochondrial rings that prevent mitochondrial fragmentation when ATP levels drop.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Padova, Italy.
| |
Collapse
|
2
|
Zhang Y, Yan H, Wei Y, Wei X. Decoding mitochondria's role in immunity and cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189107. [PMID: 38734035 DOI: 10.1016/j.bbcan.2024.189107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/22/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.
Collapse
Affiliation(s)
- Yu Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Hong Yan
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041 Chengdu, Sichuan, PR China.
| |
Collapse
|
3
|
Boengler K, Eickelmann C, Kleinbongard P. Mitochondrial Kinase Signaling for Cardioprotection. Int J Mol Sci 2024; 25:4491. [PMID: 38674076 PMCID: PMC11049936 DOI: 10.3390/ijms25084491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Myocardial ischemia/reperfusion injury is reduced by cardioprotective adaptations such as local or remote ischemic conditioning. The cardioprotective stimuli activate signaling cascades, which converge on mitochondria and maintain the function of the organelles, which is critical for cell survival. The signaling cascades include not only extracellular molecules that activate sarcolemmal receptor-dependent or -independent protein kinases that signal at the plasma membrane or in the cytosol, but also involve kinases, which are located to or within mitochondria, phosphorylate mitochondrial target proteins, and thereby modify, e.g., respiration, the generation of reactive oxygen species, calcium handling, mitochondrial dynamics, mitophagy, or apoptosis. In the present review, we give a personal and opinionated overview of selected protein kinases, localized to/within myocardial mitochondria, and summarize the available data on their role in myocardial ischemia/reperfusion injury and protection from it. We highlight the regulation of mitochondrial function by these mitochondrial protein kinases.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig University, 35392 Giessen, Germany
| | - Chantal Eickelmann
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| | - Petra Kleinbongard
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Essen Medical School, 45147 Essen, Germany; (C.E.); (P.K.)
| |
Collapse
|
4
|
Liu Z, Han X, You Y, Xin G, Li L, Gao J, Meng H, Cao C, Liu J, Zhang Y, Li L, Fu J. Shuangshen ningxin formula attenuates cardiac microvascular ischemia/reperfusion injury through improving mitochondrial function. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117690. [PMID: 38195019 DOI: 10.1016/j.jep.2023.117690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shuangshen Ningxin Formula (SSNX) is a traditional Chinese medicine formula used to treat myocardial ischemia-reperfusion injury (MIRI). A randomized controlled trial previously showed that SSNX reduced cardiovascular events, and experiments have also verified that SSNX attenuated ischemia-reperfusion (I/R) injury. However, the mechanism of SSNX in the treatment of microvascular I/R injury is still unclear. AIM OF THE STUDY To determine whether SSNX protects the microvasculature by regulating I/R induction in rats and whether this effect depends on the regulation of NR4A1/Mff/Drp1 pathway. METHODS The anterior descending coronary artery was ligated to establish a rat MIRI model with 45 min of ischemia and 24 h of reperfusion. The rats were subjected to a 7-day pretreatment with SSNX and nicorandil, after which their cardiac function and microvascular functional morphology were evaluated through diverse methods, including hematoxylin and eosin (HE) staining, wheat germ agglutinin (WGA) staining, and transmission electron microscopy. Cell apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. Additionally, serum levels of ET-1 and eNOS were determined through an enzyme-linked immunosorbent assay (ELISA). The expression levels of NR4A1, Mff, and proteins related to mitochondrial fission were examined by Western blot (WB). Cardiac microcirculation endothelial cells (CMECs) were cultured and the oxygen-glucose deprivation/reoxygenation (OGD/R) model was duplicated. Following treatment with SSNX and DIM-C-pPhOH, an NR4A1 inhibitor, cell viability was assessed. Fluorescence was used to evaluate mitochondrial membrane potential (MMP) and mitochondrial permeability transition pore (MPTP) opening. Moreover, vascular endothelial function was evaluated through transendothelial electrical resistance (TEER), Transwell assays and tube formation assays. RESULTS The results showed that SSNX reduced the infarction area and no-flow area, improved cardiac function, mitigated pathological alterations, increased endothelial nitric oxide synthase expression, protected endothelial function, and attenuated microvascular damage after I/R injury. I/R triggered mitochondrial fission and apoptotic signaling in CMECs, while SSNX restored mitochondrial fission to normal levels and inhibited mitochondrial apoptosis. A study using CMECs revealed that SSNX protected endothelial function after OGD/R, attenuating the increase in NR4A1/Mff/Drp1 protein and inactivating VDAC1, HK2, cytochrome c (cyt-c) and caspase-9. Research also shows that SSNX can affect CMEC cell migration and angiogenesis, reduce mitochondrial membrane potential damage, and inhibit membrane opening. Moreover, DIM-C-pPhOH, an NR4A1 inhibitor, partially imitated the effect of SSNX. CONCLUSION SSNX has a protective effect on the cardiac microvasculature by inhibiting the NR4A1/Mff/Drp1 pathway both in vivo and in vitro.
Collapse
Affiliation(s)
- ZiXin Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - Xiao Han
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - Yue You
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - GaoJie Xin
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - LingMei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - JiaMing Gao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - HongXu Meng
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - JianXun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - YeHao Zhang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| | - JianHua Fu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, National Clinical Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Beijing 100091, PR China.
| |
Collapse
|
5
|
Susanto AC, Hartajanie L, Wu CC. α‑Phellandrene enhances the apoptosis of HT‑29 cells induced by 5‑fluorouracil by modulating the mitochondria‑dependent pathway. Oncol Rep 2024; 51:61. [PMID: 38456489 PMCID: PMC10940876 DOI: 10.3892/or.2024.8720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024] Open
Abstract
α‑Phellandrene (α‑PA), a natural constituent of herbs, inhibits cancer cell viability and proliferation. 5‑Fluorouracil (5‑FU) is a frequently utilized chemotherapeutic medicine for the treatment of colon cancer, which works by triggering cancer cell apoptosis. The present study examined how the combination of α‑PA and 5‑FU affects the suppression of human colon cancer cells by promoting apoptosis. The impact of this treatment on cell viability, apoptosis, and the expression levels of Bcl‑2 family members, caspase family members and mitochondria‑related molecules in HT‑29 cells was assessed by the MTT assay, immunocytochemistry, western blotting and quantitative PCR. The combination of 5‑FU and α‑PA had a synergistic inhibitory effect on cell viability, as determined by assessing the combination index value. Bax protein expression levels were higher in the 50, 100 or 250 µM α‑PA combined with 5‑FU groups compared with those in the 5‑FU alone group (P<0.05). By contrast, Bcl‑2 protein expression levels and mitochondrial membrane potential (MMP, ΔΨm) were lower in the 100 or 250 µM α‑PA combined with 5‑FU groups than those in the 5‑FU alone group (P<0.05). In addition, hexokinase‑2 (HK‑2) protein expression levels were lower in the 50, 100 or 250 µM α‑PA combined with 5‑FU groups than those in the 5‑FU alone group (P<0.05). Compared with 5‑FU alone, after HT‑29 cells were treated with 50, 100 or 250 µM α‑PA combined with 5‑FU, the mRNA expression levels of extrinsic‑induced apoptotic molecules, including caspase‑8 and Bid, were higher (P<0.05). Treatment with 50, 100 or 250 µM α‑PA combined with 5‑FU also increased the mRNA expression levels of cytochrome c, caspase‑9 and caspase‑3, regulating intrinsic apoptosis (P<0.05). These results showed that α‑PA and 5‑FU had a synergistic effect on reducing the viability of human colon cancer HT‑29 cells by inducing extrinsic and intrinsic apoptosis pathways. The mechanism by which apoptosis is induced may involve the intrinsic apoptosis pathway that activates the mitochondria‑dependent pathway, including regulating the expression levels of Bcl‑2 family members, including Bax, Bcl‑2 and Bid, regulating MMP and HK‑2 expression levels, and increasing the expression of caspase cascade molecules, including caspase‑9 and caspase‑3. In addition, it may involve the extrinsic apoptosis pathway that activates caspase‑8 and caspase‑3 leading to apoptosis.
Collapse
Affiliation(s)
- Anita Caroline Susanto
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan, R.O.C
- Faculty of Food Technology, Soegijapranata Catholic University, Semarang 50234, Indonesia
| | - Laksmi Hartajanie
- Faculty of Food Technology, Soegijapranata Catholic University, Semarang 50234, Indonesia
| | - Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan, R.O.C
| |
Collapse
|
6
|
Tramutola A, Bakels HS, Perrone F, Di Nottia M, Mazza T, Abruzzese MP, Zoccola M, Pagnotta S, Carrozzo R, de Bot ST, Perluigi M, van Roon-Mom WMC, Squitieri F. GLUT-1 changes in paediatric Huntington disease brain cortex and fibroblasts: an observational case-control study. EBioMedicine 2023; 97:104849. [PMID: 37898095 PMCID: PMC10630613 DOI: 10.1016/j.ebiom.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Hannah S Bakels
- Department of Neurology, Leiden University Medical Centre, ZA Leiden 2311, the Netherlands
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Michela Di Nottia
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Maria Pia Abruzzese
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Martina Zoccola
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Rosalba Carrozzo
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Centre, ZA Leiden 2311, the Netherlands
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | | | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy; Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Viale di Villa Massimo 4, Rome 00161, Italy.
| |
Collapse
|
7
|
Mellacheruvu M, Lawrence GMEP, Emming S, Schroder K. Reversing the mitochondrial hex that bewitches NLRP3. Sci Immunol 2023; 8:eadh2967. [PMID: 37327323 DOI: 10.1126/sciimmunol.adh2967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexokinase dissociation from mitochondria triggers calcium-induced oligomerization of VDAC within the outer mitochondrial membrane, leading to NLRP3 recruitment and inflammasome signaling (see related Research Article by Baik et al.).
Collapse
Affiliation(s)
- Manasa Mellacheruvu
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Grace M E P Lawrence
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Stefan Emming
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
8
|
Baik SH, Ramanujan VK, Becker C, Fett S, Underhill DM, Wolf AJ. Hexokinase dissociation from mitochondria promotes oligomerization of VDAC that facilitates NLRP3 inflammasome assembly and activation. Sci Immunol 2023; 8:eade7652. [PMID: 37327321 PMCID: PMC10360408 DOI: 10.1126/sciimmunol.ade7652] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 05/25/2023] [Indexed: 06/18/2023]
Abstract
NLRP3 inflammasome activation is a highly regulated process for controlling secretion of the potent inflammatory cytokines IL-1β and IL-18 that are essential during bacterial infection, sterile inflammation, and disease, including colitis, diabetes, Alzheimer's disease, and atherosclerosis. Diverse stimuli activate the NLRP3 inflammasome, and unifying upstream signals has been challenging to identify. Here, we report that a common upstream step in NLRP3 inflammasome activation is the dissociation of the glycolytic enzyme hexokinase 2 from the voltage-dependent anion channel (VDAC) in the outer membrane of mitochondria. Hexokinase 2 dissociation from VDAC triggers activation of inositol triphosphate receptors, leading to release of calcium from the ER, which is taken up by mitochondria. This influx of calcium into mitochondria leads to oligomerization of VDAC, which is known to form a macromolecule-sized pore in the outer membranes of mitochondria that allows proteins and mitochondrial DNA (mtDNA), often associated with apoptosis and inflammation, respectively, to exit the mitochondria. We observe that VDAC oligomers aggregate with NLRP3 during initial assembly of the multiprotein oligomeric NLRP3 inflammasome complex. We also find that mtDNA is necessary for NLRP3 association with VDAC oligomers. These data, together with other recent work, help to paint a more complete picture of the pathway leading to NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Sung Hoon Baik
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
| | | | - Courtney Becker
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
| | - Sarah Fett
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
| | - David M. Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
| | - Andrea J. Wolf
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, and the Karsh Division of Gastroenterology and Hepatology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
- Department of Biomedical Sciences, Research Division of Immunology, Cedars-Sinai Medical Center; Los Angeles, CA, 90048, USA
| |
Collapse
|
9
|
Rebane-Klemm E, Reinsalu L, Puurand M, Shevchuk I, Bogovskaja J, Suurmaa K, Valvere V, Moreno-Sanchez R, Kaambre T. Colorectal polyps increase the glycolytic activity. Front Oncol 2023; 13:1171887. [PMID: 37342183 PMCID: PMC10277630 DOI: 10.3389/fonc.2023.1171887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
In colorectal cancer (CRC) energy metabolism research, the precancerous stage of polyp has remained rather unexplored. By now, it has been shown that CRC has not fully obtained the glycolytic phenotype proposed by O. Warburg and rather depends on mitochondrial respiration. However, the pattern of metabolic adaptations during tumorigenesis is still unknown. Understanding the interplay between genetic and metabolic changes that initiate tumor development could provide biomarkers for diagnosing cancer early and targets for new cancer therapeutics. We used human CRC and polyp tissue material and performed high-resolution respirometry and qRT-PCR to detect changes on molecular and functional level with the goal of generally describing metabolic reprogramming during CRC development. Colon polyps were found to have a more glycolytic bioenergetic phenotype than tumors and normal tissues. This was supported by a greater GLUT1, HK, LDHA, and MCT expression. Despite the increased glycolytic activity, cells in polyps were still able to maintain a highly functional OXPHOS system. The mechanisms of OXPHOS regulation and the preferred substrates are currently unclear and would require further investigation. During polyp formation, intracellular energy transfer pathways become rearranged mainly by increasing the expression of mitochondrial adenylate kinase (AK) and creatine kinase (CK) isoforms. Decreased glycolysis and maintenance of OXPHOS activity, together with the downregulation of the CK system and the most common AK isoforms (AK1 and AK2), seem to play a relevant role in CRC development.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Jelena Bogovskaja
- Clinic of Diagnostics, North Estonia Medical Centre, Tallinn, Estonia
| | - Kulliki Suurmaa
- Department of Gastroenterology, West Tallinn Central Hospital, Tallinn, Estonia
| | - Vahur Valvere
- Oncology and Hematology Clinic, North Estonia Medical Centre, Tallinn, Estonia
| | - Rafael Moreno-Sanchez
- Laboratorio de Control Metabólico, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Los Reyes Iztacala, Barrio de los Árboles/Barrio de los Héroes, Tlalnepantla, Mexico
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
10
|
Khan A, Kuriachan G, Mahalakshmi R. Cellular Interactome of Mitochondrial Voltage-Dependent Anion Channels: Oligomerization and Channel (Mis)Regulation. ACS Chem Neurosci 2021; 12:3497-3515. [PMID: 34503333 DOI: 10.1021/acschemneuro.1c00429] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Voltage-dependent anion channels (VDACs) of the outer mitochondrial membrane are known conventionally as metabolite flux proteins. However, research findings in the past decade have revealed the multifaceted regulatory roles of VDACs, from governing cellular physiology and mitochondria-mediated apoptosis to directly regulating debilitating cancers and neurodegenerative diseases. VDACs achieve these diverse functions by establishing isoform-dependent stereospecific interactomes in the cell with the cytosolic constituents and endoplasmic reticulum complexes, and the machinery of the mitochondrial compartments. VDACs are now increasingly recognized as regulatory hubs of the cell. Not surprisingly, even the transient misregulation of VDACs results directly in mitochondrial dysfunction. Additionally, human VDACs are now implicated in interaction with aggregation-prone cytosolic proteins, including Aβ, tau, and α-synuclein, contributing directly to the onset of Alzheimer's and Parkinson's diseases. Deducing the interaction dynamics and mechanisms can lead to VDAC-targeted peptide-based therapeutics that can alleviate neurodegenerative states. This review succinctly presents the latest findings of the VDAC interactome, and the mode(s) of VDAC-dependent regulation of biochemical physiology. We also discuss the relevance of VDACs in pathophysiological states and aggregation-associated diseases and address how VDACs will facilitate the development of next-generation precision medicines.
Collapse
Affiliation(s)
- Altmash Khan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Gifty Kuriachan
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - Radhakrishnan Mahalakshmi
- Molecular Biophysics Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal 462066, India
| |
Collapse
|
11
|
Reinsalu L, Puurand M, Chekulayev V, Miller S, Shevchuk I, Tepp K, Rebane-Klemm E, Timohhina N, Terasmaa A, Kaambre T. Energy Metabolic Plasticity of Colorectal Cancer Cells as a Determinant of Tumor Growth and Metastasis. Front Oncol 2021; 11:698951. [PMID: 34381722 PMCID: PMC8351413 DOI: 10.3389/fonc.2021.698951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/08/2021] [Indexed: 12/27/2022] Open
Abstract
Metabolic plasticity is the ability of the cell to adjust its metabolism to changes in environmental conditions. Increased metabolic plasticity is a defining characteristic of cancer cells, which gives them the advantage of survival and a higher proliferative capacity. Here we review some functional features of metabolic plasticity of colorectal cancer cells (CRC). Metabolic plasticity is characterized by changes in adenine nucleotide transport across the outer mitochondrial membrane. Voltage-dependent anion channel (VDAC) is the main protein involved in the transport of adenine nucleotides, and its regulation is impaired in CRC cells. Apparent affinity for ADP is a functional parameter that characterizes VDAC permeability and provides an integrated assessment of cell metabolic state. VDAC permeability can be adjusted via its interactions with other proteins, such as hexokinase and tubulin. Also, the redox conditions inside a cancer cell may alter VDAC function, resulting in enhanced metabolic plasticity. In addition, a cancer cell shows reprogrammed energy transfer circuits such as adenylate kinase (AK) and creatine kinase (CK) pathway. Knowledge of the mechanism of metabolic plasticity will improve our understanding of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Sten Miller
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.,Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| |
Collapse
|
12
|
Bonilla DA, Kreider RB, Stout JR, Forero DA, Kerksick CM, Roberts MD, Rawson ES. Metabolic Basis of Creatine in Health and Disease: A Bioinformatics-Assisted Review. Nutrients 2021; 13:nu13041238. [PMID: 33918657 PMCID: PMC8070484 DOI: 10.3390/nu13041238] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
Creatine (Cr) is a ubiquitous molecule that is synthesized mainly in the liver, kidneys, and pancreas. Most of the Cr pool is found in tissues with high-energy demands. Cr enters target cells through a specific symporter called Na+/Cl−-dependent Cr transporter (CRT). Once within cells, creatine kinase (CK) catalyzes the reversible transphosphorylation reaction between [Mg2+:ATP4−]2− and Cr to produce phosphocreatine (PCr) and [Mg2+:ADP3−]−. We aimed to perform a comprehensive and bioinformatics-assisted review of the most recent research findings regarding Cr metabolism. Specifically, several public databases, repositories, and bioinformatics tools were utilized for this endeavor. Topics of biological complexity ranging from structural biology to cellular dynamics were addressed herein. In this sense, we sought to address certain pre-specified questions including: (i) What happens when creatine is transported into cells? (ii) How is the CK/PCr system involved in cellular bioenergetics? (iii) How is the CK/PCr system compartmentalized throughout the cell? (iv) What is the role of creatine amongst different tissues? and (v) What is the basis of creatine transport? Under the cellular allostasis paradigm, the CK/PCr system is physiologically essential for life (cell survival, growth, proliferation, differentiation, and migration/motility) by providing an evolutionary advantage for rapid, local, and temporal support of energy- and mechanical-dependent processes. Thus, we suggest the CK/PCr system acts as a dynamic biosensor based on chemo-mechanical energy transduction, which might explain why dysregulation in Cr metabolism contributes to a wide range of diseases besides the mitigating effect that Cr supplementation may have in some of these disease states.
Collapse
Affiliation(s)
- Diego A. Bonilla
- Research Division, Dynamical Business & Science Society–DBSS International SAS, Bogotá 110861, Colombia
- Research Group in Biochemistry and Molecular Biology, Universidad Distrital Francisco José de Caldas, Bogotá 110311, Colombia
- Research Group in Physical Activity, Sports and Health Sciences (GICAFS), Universidad de Córdoba, Montería 230002, Colombia
- kDNA Genomics, Joxe Mari Korta Research Center, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +57-320-335-2050
| | - Richard B. Kreider
- Exercise & Sport Nutrition Laboratory, Human Clinical Research Facility, Texas A&M University, College Station, TX 77843, USA;
| | - Jeffrey R. Stout
- Physiology of Work and Exercise Response (POWER) Laboratory, Institute of Exercise Physiology and Rehabilitation Science, University of Central Florida, Orlando, FL 32816, USA;
| | - Diego A. Forero
- Professional Program in Sport Training, School of Health and Sport Sciences, Fundación Universitaria del Área Andina, Bogotá 111221, Colombia;
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, Saint Charles, MO 63301, USA;
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL 36849, USA;
- Edward via College of Osteopathic Medicine, Auburn, AL 36849, USA
| | - Eric S. Rawson
- Department of Health, Nutrition and Exercise Science, Messiah University, Mechanicsburg, PA 17055, USA;
| |
Collapse
|
13
|
Pascale RM, Calvisi DF, Simile MM, Feo CF, Feo F. The Warburg Effect 97 Years after Its Discovery. Cancers (Basel) 2020; 12:E2819. [PMID: 33008042 PMCID: PMC7599761 DOI: 10.3390/cancers12102819] [Citation(s) in RCA: 170] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
The deregulation of the oxidative metabolism in cancer, as shown by the increased aerobic glycolysis and impaired oxidative phosphorylation (Warburg effect), is coordinated by genetic changes leading to the activation of oncogenes and the loss of oncosuppressor genes. The understanding of the metabolic deregulation of cancer cells is necessary to prevent and cure cancer. In this review, we illustrate and comment the principal metabolic and molecular variations of cancer cells, involved in their anomalous behavior, that include modifications of oxidative metabolism, the activation of oncogenes that promote glycolysis and a decrease of oxygen consumption in cancer cells, the genetic susceptibility to cancer, the molecular correlations involved in the metabolic deregulation in cancer, the defective cancer mitochondria, the relationships between the Warburg effect and tumor therapy, and recent studies that reevaluate the Warburg effect. Taken together, these observations indicate that the Warburg effect is an epiphenomenon of the transformation process essential for the development of malignancy.
Collapse
Affiliation(s)
- Rosa Maria Pascale
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Diego Francesco Calvisi
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Maria Maddalena Simile
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| | - Claudio Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (D.F.C.); (M.M.S.); (F.F.)
| |
Collapse
|
14
|
Klepinin A, Zhang S, Klepinina L, Rebane-Klemm E, Terzic A, Kaambre T, Dzeja P. Adenylate Kinase and Metabolic Signaling in Cancer Cells. Front Oncol 2020; 10:660. [PMID: 32509571 PMCID: PMC7248387 DOI: 10.3389/fonc.2020.00660] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 12/23/2022] Open
Abstract
A hallmark of cancer cells is the ability to rewire their bioenergetics and metabolic signaling circuits to fuel their uncontrolled proliferation and metastasis. Adenylate kinase (AK) is the critical enzyme in the metabolic monitoring of cellular adenine nucleotide homeostasis. It also directs AK→ AMP→ AMPK signaling controlling cell cycle and proliferation, and ATP energy transfer from mitochondria to distribute energy among cellular processes. The significance of AK isoform network in the regulation of a variety of cellular processes, which include cell differentiation and motility, is rapidly growing. Adenylate kinase 2 (AK2) isoform, localized in intermembrane and intra-cristae space, is vital for mitochondria nucleotide exchange and ATP export. AK2 deficiency disrupts cell energetics, causes severe human diseases, and is embryonically lethal in mice, signifying the importance of catalyzed phosphotransfer in cellular energetics. Suppression of AK phosphotransfer and AMP generation in cancer cells and consequently signaling through AMPK could be an important factor in the initiation of cancerous transformation, unleashing uncontrolled cell cycle and growth. Evidence also builds up that shift in AK isoforms is used later by cancer cells for rewiring energy metabolism to support their high proliferation activity and tumor progression. As cell motility is an energy-consuming process, positioning of AK isoforms to increased energy consumption sites could be an essential factor to incline cancer cells to metastases. In this review, we summarize recent advances in studies of the significance of AK isoforms involved in cancer cell metabolism, metabolic signaling, metastatic potential, and a therapeutic target.
Collapse
Affiliation(s)
- Aleksandr Klepinin
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Song Zhang
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ljudmila Klepinina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Petras Dzeja
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
15
|
Rebane-Klemm E, Truu L, Reinsalu L, Puurand M, Shevchuk I, Chekulayev V, Timohhina N, Tepp K, Bogovskaja J, Afanasjev V, Suurmaa K, Valvere V, Kaambre T. Mitochondrial Respiration in KRAS and BRAF Mutated Colorectal Tumors and Polyps. Cancers (Basel) 2020; 12:cancers12040815. [PMID: 32231083 PMCID: PMC7226330 DOI: 10.3390/cancers12040815] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
This study aimed to characterize the ATP-synthesis by oxidative phosphorylation in colorectal cancer (CRC) and premalignant colon polyps in relation to molecular biomarkers KRAS and BRAF. This prospective study included 48 patients. Resected colorectal polyps and postoperative CRC tissue with adjacent normal tissue (control) were collected. Patients with polyps and CRC were divided into three molecular groups: KRAS mutated, BRAF mutated and KRAS/BRAF wild-type. Mitochondrial respiration in permeabilized tissue samples was observed using high resolution respirometry. ADP-activated respiration rate (Vmax) and an apparent affinity of mitochondria to ADP, which is related to mitochondrial outer membrane (MOM) permeability, were determined. Clear differences were present between molecular groups. KRAS mutated CRC group had lower Vmax values compared to wild-type; however, the Vmax value was higher than in the control group, while MOM permeability did not change. This suggests that KRAS mutation status might be involved in acquiring oxidative phenotype. KRAS mutated polyps had higher Vmax values and elevated MOM permeability as compared to the control. BRAF mutated CRC and polyps had reduced respiration and altered MOM permeability, indicating a glycolytic phenotype. To conclude, prognostic biomarkers KRAS and BRAF are likely related to the metabolic phenotype in CRC and polyps. Assessment of the tumor mitochondrial ATP synthesis could be a potential component of patient risk stratification.
Collapse
Affiliation(s)
- Egle Rebane-Klemm
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
- Correspondence:
| | - Laura Truu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
| | - Leenu Reinsalu
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Ehitajate tee 5, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| | - Jelena Bogovskaja
- Clinic of Diagnostics at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Vladimir Afanasjev
- Clinic of Surgery at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Külliki Suurmaa
- Department of Gastroenterology, the West Tallinn Central Hospital, Paldiski mnt 68, 10617 Tallinn, Estonia;
| | - Vahur Valvere
- Oncology and Haematology Clinic at the North Estonia Medical Centre, J. Sütiste tee 19, 13419 Tallinn, Estonia;
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (L.T.); (L.R.); (M.P.); (I.S.); (V.C.); (N.T.); (K.T.); (T.K.)
| |
Collapse
|
16
|
Tepp K, Puurand M, Timohhina N, Aid-Vanakova J, Reile I, Shevchuk I, Chekulayev V, Eimre M, Peet N, Kadaja L, Paju K, Käämbre T. Adaptation of striated muscles to Wolframin deficiency in mice: Alterations in cellular bioenergetics. Biochim Biophys Acta Gen Subj 2020; 1864:129523. [PMID: 31935437 DOI: 10.1016/j.bbagen.2020.129523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Wolfram syndrome (WS), caused by mutations in WFS1 gene, is a multi-targeting disease affecting multiple organ systems. Wolframin is localized in the membrane of the endoplasmic reticulum (ER), influencing Ca2+ metabolism and ER interaction with mitochondria, but the exact role of the protein remains unclear. In this study we aimed to characterize alterations in energy metabolism in the cardiac and in the oxidative and glycolytic skeletal muscles in Wfs1-deficiency. METHODS Alterations in the bioenergetic profiles in the cardiac and skeletal muscles of Wfs1-knock-out (KO) male mice and their wild type male littermates were determined using high resolution respirometry, quantitative RT-PCR, NMR spectroscopy, and immunofluorescence confocal microscopy. RESULTS Oxygen consumption without ATP synthase activation (leak) was significantly higher in the glycolytic muscles of Wfs1 KO mice compared to wild types. ADP-stimulated respiration with glutamate and malate was reduced in the Wfs1-deficient cardiac as well as oxidative and glycolytic skeletal muscles. CONCLUSIONS Wfs1-deficiency in both cardiac and skeletal muscles results in functional alterations of energy transport from mitochondria to ATP-ases. There was a substrate-dependent decrease in the maximal Complex I -linked respiratory capacity of the electron transport system in muscles of Wfs1 KO mice. Moreover, in cardiac and gastrocnemius white muscles a decrease in the function of one pathway were balanced by the increase in the activity of the parallel pathway. GENERAL SIGNIFICANCE This work provides new insights to the muscle involvement at early stages of metabolic syndrome like WS as well as developing glucose intolerance.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Jekaterina Aid-Vanakova
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Indrek Reile
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Margus Eimre
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Nadežda Peet
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Lumme Kadaja
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Kalju Paju
- Department of Pathophysiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia
| | - Tuuli Käämbre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| |
Collapse
|
17
|
Puurand M, Tepp K, Timohhina N, Aid J, Shevchuk I, Chekulayev V, Kaambre T. Tubulin βII and βIII Isoforms as the Regulators of VDAC Channel Permeability in Health and Disease. Cells 2019; 8:cells8030239. [PMID: 30871176 PMCID: PMC6468622 DOI: 10.3390/cells8030239] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/07/2019] [Accepted: 03/09/2019] [Indexed: 12/14/2022] Open
Abstract
In recent decades, there have been several models describing the relationships between the cytoskeleton and the bioenergetic function of the cell. The main player in these models is the voltage-dependent anion channel (VDAC), located in the mitochondrial outer membrane. Most metabolites including respiratory substrates, ADP, and Pi enter mitochondria only through VDAC. At the same time, high-energy phosphates are channeled out and directed to cellular energy transfer networks. Regulation of these energy fluxes is controlled by β-tubulin, bound to VDAC. It is also thought that β-tubulin‒VDAC interaction modulates cellular energy metabolism in cancer, e.g., switching from oxidative phosphorylation to glycolysis. In this review we focus on the described roles of unpolymerized αβ-tubulin heterodimers in regulating VDAC permeability for adenine nucleotides and cellular bioenergetics. We introduce the Mitochondrial Interactosome model and the function of the βII-tubulin subunit in this model in muscle cells and brain synaptosomes, and also consider the role of βIII-tubulin in cancer cells.
Collapse
Affiliation(s)
- Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Jekaterina Aid
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| |
Collapse
|
18
|
Mado K, Chekulayev V, Shevchuk I, Puurand M, Tepp K, Kaambre T. On the role of tubulin, plectin, desmin, and vimentin in the regulation of mitochondrial energy fluxes in muscle cells. Am J Physiol Cell Physiol 2019; 316:C657-C667. [PMID: 30811221 DOI: 10.1152/ajpcell.00303.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mitochondria perform a central role in life and death of the eukaryotic cell. They are major players in the generation of macroergic compounds and function as integrated signaling pathways, including the regulation of Ca2+ signals and apoptosis. A growing amount of evidence is demonstrating that mitochondria of muscle cells use cytoskeletal proteins (both microtubules and intermediate filaments) not only for their movement and proper cellular positioning, but also to maintain their biogenesis, morphology, function, and regulation of energy fluxes through the outer mitochondrial membrane (MOM). Here we consider the known literature data concerning the role of tubulin, plectin, desmin and vimentin in bioenergetic function of mitochondria in striated muscle cells, as well as in controlling the permeability of MOM for adenine nucleotides (ADNs). This is of great interest since dysfunctionality of these cytoskeletal proteins has been shown to result in severe myopathy associated with pronounced mitochondrial dysfunction. Further efforts are needed to uncover the pathways by which the cytoskeleton supports the functional capacity of mitochondria and transport of ADN(s) across the MOM (through voltage-dependent anion channel).
Collapse
Affiliation(s)
- Kati Mado
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Vladimir Chekulayev
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Igor Shevchuk
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Marju Puurand
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Kersti Tepp
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| | - Tuuli Kaambre
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics , Tallinn , Estonia
| |
Collapse
|
19
|
Bonatelli M, Silva ECA, Cárcano FM, Zaia MG, Lopes LF, Scapulatempo-Neto C, Pinheiro C. The Warburg Effect Is Associated With Tumor Aggressiveness in Testicular Germ Cell Tumors. Front Endocrinol (Lausanne) 2019; 10:417. [PMID: 31316469 PMCID: PMC6610306 DOI: 10.3389/fendo.2019.00417] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 02/01/2023] Open
Abstract
Testicular Germ Cell Tumors (TGCTs) are a rare group of neoplasms and the most common solid malignancy arising in young male adults. Despite the good response of these tumors to platinum-based chemotherapy, some patients are refractory to treatment and present poor clinical outcomes. During carcinogenesis and tumor development, cancer cells reprogram energy metabolism toward a hyper-glycolytic phenotype, an emerging hallmark of cancer. This phenomenon, known as the Warburg effect or aerobic glycolysis, involves overexpression of metabolism-related proteins, like glucose and monocarboxylate transporters, pH regulators and intracellular glycolytic enzymes. The metabolic profile of TGCTs is very little explored and, recently, this metabolic rewiring of cancer cells has been associated with aggressive clinicopathological characteristics of these tumors. The overexpression of monocarboxylate transporter 4 (MCT4) in TGCTs has been pointed out as a poor prognostic factor, as well as a promising therapeutic target. As a result, the main aim of the present study was to evaluate the prognostic value of key metabolism-related proteins in TGCTs. The immunohistochemical expressions of CD44 (as a monocarboxylate transporter chaperone), glucose transporter 1 (GLUT1), carbonic anhydrase IX (CAIX), hexokinase II (HKII) and lactate dehydrogenase V (LDHV) were evaluated in a series of 148 adult male patients with TGCTs and associated with clinicopathological parameters. In addition, paired normal tissues were also evaluated. The sample included 75 seminoma and 73 non-seminoma tumors. GLUT1 and CD44 expression was significantly increased in malignant samples when compared to paired normal samples. Conversely, HKII and LDHV expressions were significantly decreased in malignant samples. Concerning the clinicopathological values, CAIX expression was significantly associated with disease recurrence, while HKII expression was significantly associated with aggressive characteristics of TGCTs, including higher staging and non-seminoma histology. In conclusion, this study brings new insights on the metabolic characteristics of TGCTs, showing alterations in the expression of proteins related with the Warburg effect, as well as associations of the hyper-glycolytic and acid-resistant phenotype with aggressive clinicopathological parameters.
Collapse
Affiliation(s)
- Murilo Bonatelli
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | | | - Flavio M. Cárcano
- Department of Medical Oncology, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
| | - Maurício G. Zaia
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
| | - Luiz F. Lopes
- Barretos Children's Cancer Hospital, São Paulo, Brazil
| | - Cristovam Scapulatempo-Neto
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Department of Pathology, Barretos Cancer Hospital, São Paulo, Brazil
| | - Céline Pinheiro
- Molecular Oncology Research Center, Barretos Cancer Hospital, São Paulo, Brazil
- Barretos School of Health Sciences Dr. Paulo Prata—FACISB, São Paulo, Brazil
- *Correspondence: Céline Pinheiro
| |
Collapse
|