1
|
Birks S, Howard S, Wright CS, O’Rourke C, Day EA, Lamb AJ, Walsdorf JR, Lau A, Thompson WR, Uzer G. Prrx1-driven LINC complex disruption in vivo reduces osteoid deposition but not bone quality after voluntary wheel running. PLoS One 2024; 19:e0307816. [PMID: 39565744 PMCID: PMC11578491 DOI: 10.1371/journal.pone.0307816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/11/2024] [Indexed: 11/22/2024] Open
Abstract
The Linker of Nucleoskeleton and Cytoskeleton (LINC) complex serves to connect the nuclear envelope and the cytoskeleton, influencing cellular processes such as nuclear arrangement, architecture, and mechanotransduction. The role LINC plays in mechanotransduction pathways in bone progenitor cells has been well studied; however, the mechanisms by which LINC complexes govern in vivo bone formation remain less clear. To bridge this knowledge gap, we established a murine model disrupting LINC using transgenic Prx-Cre mice and floxed Tg(CAG-LacZ/EGFP-KASH2) mice. Prx-Cre mice express the Cre recombinase enzyme controlled by the paired-related homeobox gene-1 promoter (Prrx1), a pivotal regulator of skeletal development. Prx-Cre animals have been widely used in the bone field to target bone progenitor cells. Tg(CAG-LacZ/EGFP-KASH2) mice carry a lox-stop-lox flanked LacZ gene allowing for the overexpression of an EGFP-KASH2 fusion protein via cre recombinase mediated deletion of the LacZ cassette. This disrupts endogenous Nesprin-Sun binding in a dominant negative manner disconnecting nesprin from the nuclear envelope. By combining these lines, we generated a Prrx1(+) cell-specific LINC disruption model to study its impact on the developing skeleton and subsequently exercise-induced bone accrual. The findings presented here indicate Prx-driven LINC disruption (PDLD) cells exhibit no change in osteogenic and adipogenic potential compared to controls in vitro nor are there bone quality changes when compared to in sedentary animals at 8 weeks. While PDLD animals displayed increased voluntary running activity andPrrx1(+) cell-specific LINC disruption abolished the exercise-induced increases in osteoid volume and surface after a 6-week exercise intervention, no other changes in bone microarchitecture or mechanical properties were found.
Collapse
Affiliation(s)
- Scott Birks
- Micron School of Materials Science and Engineering, Boise State University, Boise, Idaho, United States of America
| | - Sean Howard
- Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| | - Christian S. Wright
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Caroline O’Rourke
- Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, United States of America
| | - Elicza A. Day
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Alexander J. Lamb
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - James R. Walsdorf
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Anthony Lau
- Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, United States of America
| | - William R. Thompson
- Department of Physical Therapy, Indiana University, Bloomington, Indiana, United States of America
| | - Gunes Uzer
- Mechanical and Biomedical Engineering, Boise State University, Boise, Idaho, United States of America
| |
Collapse
|
2
|
Liu C, Cyphert EL, Stephen SJ, Wang B, Morales AL, Nixon JC, Natsoulas NR, Garcia M, Carmona PB, Vill AC, Donnelly E, Brito IL, Vashishth D, Hernandez CJ. Microbiome-induced increases and decreases in bone matrix strength can be initiated after skeletal maturity. J Bone Miner Res 2024; 39:1621-1632. [PMID: 39348436 PMCID: PMC11523134 DOI: 10.1093/jbmr/zjae157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/25/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Recent studies in mice have indicated that the gut microbiome can regulate bone tissue strength. However, prior work involved modifications to the gut microbiome in growing animals and it is unclear if the same changes in the microbiome, applied later in life, would change matrix strength. Here we changed the composition of the gut microbiome before and/or after skeletal maturity (16 weeks of age) using oral antibiotics (ampicillin + neomycin). Male and female mice (n = 143 total, n = 12-17/group/sex) were allocated into five study groups: (1) Unaltered, (2) Continuous (dosing 4-24 weeks of age), (3) Delayed (dosing only 16-24 weeks of age), (4) Initial (dosing 4-16 weeks of age, suspended at 16 weeks), and (5) Reconstituted (dosing from 4-16 weeks following by fecal microbiota transplant from Unaltered donors). Animals were euthanized at 24 weeks of age. In males, bone matrix strength in the femur was 25%-35% less than expected by geometry in mice from the Continuous (p = 0.001), Delayed (p = 0.005), and Initial (p = 0.040) groups as compared to Unaltered. Reconstitution of the gut microbiota led to a bone matrix strength similar to Unaltered animals (p = 0.929). In females, microbiome-induced changes in bone matrix strength followed the same trend as males but were not significantly different, demonstrating a sex-dependent response of bone matrix to the gut microbiota. Minor differences in chemical composition of bone matrix were observed with Raman spectroscopy. Our findings indicate that microbiome-induced impairment of bone matrix in males can be initiated and/or reversed after skeletal maturity. The portion of the femoral cortical bone formed after skeletal maturity (16 weeks) was small; suggesting that microbiome-induced changes in bone matrix occurred without osteoblast/osteoclast turnover through a yet unidentified mechanism. These findings provide evidence that the mechanical properties of bone matrix can be altered in the adult skeleton.
Collapse
Affiliation(s)
- Chongshan Liu
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Erika L Cyphert
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Samuel J Stephen
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Bowen Wang
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Angie L Morales
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Jacob C Nixon
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Nicholas R Natsoulas
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | - Matthew Garcia
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States
| | | | - Albert C Vill
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Eve Donnelly
- Department of Material Science and Engineering, Cornell University, Ithaca, NY, United States
- Reseach Division, Hospital for Special Surgery, New York, NY, United States
| | - Ilana L Brito
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, United States
| | - Deepak Vashishth
- Shirley Ann Jackson, PhD Center for Biotechnology and Interdisciplinary Studies, Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Rensselaer - Icahn School of Medicine at Mount Sinai Center for Engineering and Precision Medicine, New York, NY, United States
| | - Christopher J Hernandez
- Departments of Orthopaedic Surgery and Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
3
|
Hu F, Liang H, Xie J, Yuan M, Huang W, Lei Y, Li H, Lv L, Liu Q, Zhang J, Su W, Chen R, Wang Z, Chang YN, Li J, Wei C, Xing G, Xing G, Chen K. A novel shockwave-driven nanomotor composite microneedle transdermal delivery system for the localized treatment of osteoporosis: a basic science study. Int J Surg 2024; 110:6243-6256. [PMID: 39259829 PMCID: PMC11486941 DOI: 10.1097/js9.0000000000001280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 02/22/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND Clinical protocols in osteoporosis treatment could not meet the requirement of increasing local bone mineral density. A local delivery system was brought in to fix this dilemma. The high-energy extracorporeal shock wave (ESW) can travel into the deep tissues with little heat loss. Hence, ESW-driven nanoparticles could be used for local treatment of osteoporosis. MATERIALS AND METHODS An ESW-actuated nanomotor (NM) sealed into microneedles (MNs) (ESW-NM-MN) was constructed for localized osteoporosis protection. The NM was made of calcium phosphate nanoparticles with a high Young's modulus, which allows it to absorb ESW energy efficiently and convert it into kinetic energy for solid tissue penetration. Zoledronic (ZOL), as an alternative phosphorus source, forms the backbone of the NM (ZOL-NM), leading to bone targeting and ESW-mediated drug release. RESULTS After the ZOL-NM is sealed into hyaluronic acid (HA)-made microneedles, the soluble MN tips could break through the stratum corneum, injecting the ZOL-NM into the skin. As soon as the ESW was applied, the ZOL-NM would absorb the ESW energy to move from the outer layer of skin into the deep tissue and be fragmented to release ZOL and Ca 2+ for anti-osteoclastogenesis and pro-osteogenesis. In vivo , the ZOL-NM increases localized bone parameters and reduces fracture risk, indicating its potential value in osteoporotic healing and other biomedical fields. CONCLUSION The ESW-mediated transdermal delivery platform (ESW-NM-MN) could be used as a new strategy to improve local bone mineral density and protect local prone-fracture areas.
Collapse
Affiliation(s)
- Fan Hu
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Haojun Liang
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Jing Xie
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing
| | - Meng Yuan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Wanxia Huang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Yinze Lei
- State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing
| | - Hao Li
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Linwen Lv
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Qiuyang Liu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Junhui Zhang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Wenxi Su
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Ranran Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Zhe Wang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Ya-nan Chang
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Juan Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Cunfeng Wei
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Gengyan Xing
- The Third Medical Center of Chinese People’s Liberation Army General Hospital
- The Fifth School of Clinical Medicine, Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
| | - Gengmei Xing
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| | - Kui Chen
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanosciences and Technology, Chinese Academy of Sciences
| |
Collapse
|
4
|
Roberts BC, Cheong VS, Oliviero S, Arredondo Carrera HM, Wang N, Gartland A, Dall'Ara E. Combining PTH(1-34) and mechanical loading has increased benefit to tibia bone mechanics in ovariectomised mice. J Orthop Res 2024; 42:1254-1266. [PMID: 38151816 DOI: 10.1002/jor.25777] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/29/2023] [Accepted: 12/24/2023] [Indexed: 12/29/2023]
Abstract
Combined treatment with PTH(1-34) and mechanical loading confers increased structural benefits to bone than monotherapies. However, it remains unclear how this longitudinal adaptation affects the bone mechanics. This study quantified the individual and combined longitudinal effects of PTH(1-34) and mechanical loading on the bone stiffness and strength evaluated in vivo with validated micro-finite element (microFE) models. C57BL/6 mice were ovariectomised at 14-week-old and treated either with injections of PTH(1-34), compressive tibia loading or both interventions concurrently. Right tibiae were in vivo microCT-scanned every 2 weeks from 14 until 24-week-old. MicroCT images were rigidly registered to reference tibia and the cortical organ level (whole bone) and tissue level (midshaft) morphometric properties and bone mineral content were quantified. MicroCT images were converted into voxel-based homogeneous, linear elastic microFE models to estimate the bone stiffness and strength. This approach allowed us for the first time to quantify the longitudinal changes in mechanical properties induced by combined treatments in a model of accelerated bone resorption. Both changes of stiffness and strength were higher with co-treatment than with individual therapies, consistent with increased benefits with the tibia bone mineral content and cortical area, properties strongly associated with the tibia mechanics. The longitudinal data shows that the two bone anabolics, both individually and combined, had persistent benefit on estimated mechanical properties, and that benefits (increased stiffness and strength) remained after treatment was withdrawn.
Collapse
Affiliation(s)
- Bryant C Roberts
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Adelaide Microscopy, Division of Research and Innovation, The University of Adelaide, Adelaide, South Australia, Australia
| | - Vee San Cheong
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
- Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
| | - Sara Oliviero
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | | | - Ning Wang
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Alison Gartland
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Division of Clinical Medicine, University of Sheffield, Sheffield, UK
- Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| |
Collapse
|
5
|
Wei F, Hughes M, Omer M, Ngo C, Pugazhendhi AS, Kolanthai E, Aceto M, Ghattas Y, Razavi M, Kean TJ, Seal S, Coathup M. A Multifunctional Therapeutic Strategy Using P7C3 as A Countermeasure Against Bone Loss and Fragility in An Ovariectomized Rat Model of Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308698. [PMID: 38477537 PMCID: PMC11151083 DOI: 10.1002/advs.202308698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 03/14/2024]
Abstract
By 2060, an estimated one in four Americans will be elderly. Consequently, the prevalence of osteoporosis and fragility fractures will also increase. Presently, no available intervention definitively prevents or manages osteoporosis. This study explores whether Pool 7 Compound 3 (P7C3) reduces progressive bone loss and fragility following the onset of ovariectomy (OVX)-induced osteoporosis. Results confirm OVX-induced weakened, osteoporotic bone together with a significant gain in adipogenic body weight. Treatment with P7C3 significantly reduced osteoclastic activity, bone marrow adiposity, whole-body weight gain, and preserved bone area, architecture, and mechanical strength. Analyses reveal significantly upregulated platelet derived growth factor-BB and leukemia inhibitory factor, with downregulation of interleukin-1 R6, and receptor activator of nuclear factor kappa-B (RANK). Together, proteomic data suggest the targeting of several key regulators of inflammation, bone, and adipose turnover, via transforming growth factor-beta/SMAD, and Wingless-related integration site/be-catenin signaling pathways. To the best of the knowledge, this is first evidence of an intervention that drives against bone loss via RANK. Metatranscriptomic analyses of the gut microbiota show P7C3 increased Porphyromonadaceae bacterium, Candidatus Melainabacteria, and Ruminococcaceae bacterium abundance, potentially contributing to the favorable inflammatory, and adipo-osteogenic metabolic regulation observed. The results reveal an undiscovered, and multifunctional therapeutic strategy to prevent the pathological progression of OVX-induced bone loss.
Collapse
Affiliation(s)
- Fei Wei
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Megan Hughes
- School of BiosciencesCardiff UniversityWalesCF10 3ATUK
| | - Mahmoud Omer
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
| | - Christopher Ngo
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | | | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Matthew Aceto
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Yasmine Ghattas
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Mehdi Razavi
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Thomas J Kean
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| | - Sudipta Seal
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center (NSTC)University of Central FloridaOrlandoFL32826USA
| | - Melanie Coathup
- Biionix ClusterUniversity of Central FloridaOrlandoFL82816USA
- College of MedicineUniversity of Central FloridaOrlandoFL32827USA
| |
Collapse
|
6
|
Guzman V BM, De La Torre I MH, Frausto-Reyes C. Impact of the preservation media on ex vivo bone samples for full field mechanical testing. APPLIED OPTICS 2024; 63:3745-3752. [PMID: 38856336 DOI: 10.1364/ao.512047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/13/2024] [Indexed: 06/11/2024]
Abstract
The preservation method to store bone tissue for posterior analysis is a widespread practice. However, the method's potential influence on the material's mechanical properties is often overlooked during single-point experimentation. Saline and formaldehyde solutions are the most common among the employed preservation media. A full field analysis of the mice femoral bone deformation using non-destructive optical techniques is conducted to assess the influence of the storage media on the viscoelastic properties of the tissue. Three different groups are subjected to a standard three-point bending test. The first group is the control, with fresh post-mortem samples. The second and third groups used saline and formaldehyde solutions, respectively. During the mechanical test, the bone's surface and internal deformation are monitored simultaneously using digital holographic interferometry and Fourier-domain optical coherence tomography. A mechanical comparison among the three groups is presented. The results show that after 48 h of immersion in saline solution, the mice bones keep their viscoelastic behavior similar to fresh bones. Meanwhile, 48 h in formaldehyde modifies the response and affects the marrow structure. The high sensitivity of the optical phase also makes it possible to observe changes in the anisotropy of the samples. As a comparison, Raman spectroscopy analyzes the three bone groups to prove that the preservation media does not affect a single-point inspection.
Collapse
|
7
|
Venkatesh VS, Nie T, Zajac JD, Grossmann M, Davey RA. The Utility of Preclinical Models in Understanding the Bone Health of Transgender Individuals Undergoing Gender-Affirming Hormone Therapy. Curr Osteoporos Rep 2023; 21:825-841. [PMID: 37707757 PMCID: PMC10724092 DOI: 10.1007/s11914-023-00818-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE OF REVIEW To summarise the evidence regarding the effects of gender-affirming hormone therapy (GAHT) on bone health in transgender people, to identify key knowledge gaps and how these gaps can be addressed using preclinical rodent models. RECENT FINDINGS Sex hormones play a critical role in bone physiology, yet there is a paucity of research regarding the effects of GAHT on bone microstructure and fracture risk in transgender individuals. The controlled clinical studies required to yield fracture data are unethical to conduct making clinically translatable preclinical research of the utmost importance. Novel genetic and surgical preclinical models have yielded significant mechanistic insight into the roles of sex steroids on skeletal integrity. Preclinical models of GAHT have the potential inform clinical approaches to preserve skeletal integrity and prevent fractures in transgender people undergoing GAHT. This review highlights the key considerations required to ensure the information gained from preclinical models of GAHT are informative.
Collapse
Affiliation(s)
- Varun S Venkatesh
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Tian Nie
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Mathis Grossmann
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, 3084, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Heidelberg, Victoria, 3084, Australia.
| |
Collapse
|
8
|
Gao H, Zhao Y, Zhao L, Wang Z, Yan K, Gao B, Zhang L. The Role of Oxidative Stress in Multiple Exercise-Regulated Bone Homeostasis. Aging Dis 2023; 14:1555-1582. [PMID: 37196112 PMCID: PMC10529750 DOI: 10.14336/ad.2023.0223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
Bone is a tissue that is active throughout the lifespan, and its physiological activities, such as growth, development, absorption, and formation, are always ongoing. All types of stimulation that occur in sports play an important role in regulating the physiological activities of bone. Here, we track the latest research progress locally and abroad, summarize the recent, relevant research results, and systematically summarize the effects of different types of exercise on bone mass, bone strength and bone metabolism. We found that different types of exercise have different effects on bone health due to their unique technical characteristics. Oxidative stress is an important mechanism mediating the exercise regulation of bone homeostasis. Excessive high-intensity exercise does not benefit bone health but induces a high level of oxidative stress in the body, which has a negative impact on bone tissue. Regular moderate exercise can improve the body's antioxidant defense ability, inhibit an excessive oxidative stress response, promote the positive balance of bone metabolism, delay age-related bone loss and deterioration of bone microstructures and have a prevention and treatment effect on osteoporosis caused by many factors. Based on the above findings, we provide evidence for the role of exercise in the prevention and treatment of bone diseases. This study provides a systematic basis for clinicians and professionals to reasonably formulate exercise prescriptions and provides exercise guidance for patients and the general public. This study also provides a reference for follow-up research.
Collapse
Affiliation(s)
- Haoyang Gao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yilong Zhao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Wei F, Tuong ZK, Omer M, Ngo C, Asiatico J, Kinzel M, Pugazhendhi AS, Khaled AR, Ghosh R, Coathup M. A novel multifunctional radioprotective strategy using P7C3 as a countermeasure against ionizing radiation-induced bone loss. Bone Res 2023; 11:34. [PMID: 37385982 DOI: 10.1038/s41413-023-00273-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/01/2023] Open
Abstract
Radiotherapy is a critical component of cancer care but can cause osteoporosis and pathological insufficiency fractures in surrounding and otherwise healthy bone. Presently, no effective countermeasure exists, and ionizing radiation-induced bone damage continues to be a substantial source of pain and morbidity. The purpose of this study was to investigate a small molecule aminopropyl carbazole named P7C3 as a novel radioprotective strategy. Our studies revealed that P7C3 repressed ionizing radiation (IR)-induced osteoclastic activity, inhibited adipogenesis, and promoted osteoblastogenesis and mineral deposition in vitro. We also demonstrated that rodents exposed to clinically equivalent hypofractionated levels of IR in vivo develop weakened, osteoporotic bone. However, the administration of P7C3 significantly inhibited osteoclastic activity, lipid formation and bone marrow adiposity and mitigated tissue loss such that bone maintained its area, architecture, and mechanical strength. Our findings revealed significant enhancement of cellular macromolecule metabolic processes, myeloid cell differentiation, and the proteins LRP-4, TAGLN, ILK, and Tollip, with downregulation of GDF-3, SH2B1, and CD200. These proteins are key in favoring osteoblast over adipogenic progenitor differentiation, cell matrix interactions, and shape and motility, facilitating inflammatory resolution, and suppressing osteoclastogenesis, potentially via Wnt/β-catenin signaling. A concern was whether P7C3 afforded similar protection to cancer cells. Preliminarily, and remarkably, at the same protective P7C3 dose, a significant reduction in triple-negative breast cancer and osteosarcoma cell metabolic activity was found in vitro. Together, these results indicate that P7C3 is a previously undiscovered key regulator of adipo-osteogenic progenitor lineage commitment and may serve as a novel multifunctional therapeutic strategy, leaving IR an effective clinical tool while diminishing the risk of adverse post-IR complications. Our data uncover a new approach for the prevention of radiation-induced bone damage, and further work is needed to investigate its ability to selectively drive cancer cell death.
Collapse
Affiliation(s)
- Fei Wei
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zewen Kelvin Tuong
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, UK
- Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Mahmoud Omer
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Christopher Ngo
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Annette R Khaled
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, USA
| | - Melanie Coathup
- Biionix Cluster, and Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
10
|
Omer M, Ngo C, Ali H, Orlovskaya N, Cheong VS, Ballesteros A, Garner MT, Wynn A, Martyniak K, Wei F, Collins BE, Yarmolenko SN, Asiatico J, Kinzel M, Ghosh R, Meckmongkol T, Calder A, Dahir N, Gilbertson TA, Sankar J, Coathup M. The Effect of Omega-9 on Bone Viscoelasticity and Strength in an Ovariectomized Diet-Fed Murine Model. Nutrients 2023; 15:1209. [PMID: 36904208 PMCID: PMC10005705 DOI: 10.3390/nu15051209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 03/08/2023] Open
Abstract
Few studies have investigated the effect of a monosaturated diet high in ω-9 on osteoporosis. We hypothesized that omega-9 (ω-9) protects ovariectomized (OVX) mice from a decline in bone microarchitecture, tissue loss, and mechanical strength, thereby serving as a modifiable dietary intervention against osteoporotic deterioration. Female C57BL/6J mice were assigned to sham-ovariectomy, ovariectomy, or ovariectomy + estradiol treatment prior to switching their feed to a diet high in ω-9 for 12 weeks. Tibiae were evaluated using DMA, 3-point-bending, histomorphometry, and microCT. A significant decrease in lean mass (p = 0.05), tibial area (p = 0.009), and cross-sectional moment of inertia (p = 0.028) was measured in OVX mice compared to the control. A trend was seen where OVX bone displayed increased elastic modulus, ductility, storage modulus, and loss modulus, suggesting the ω-9 diet paradoxically increased both stiffness and viscosity. This implies beneficial alterations on the macro-structural, and micro-tissue level in OVX bone, potentially decreasing the fracture risk. Supporting this, no significant differences in ultimate, fracture, and yield stresses were measured. A diet high in ω-9 did not prevent microarchitectural deterioration, nevertheless, healthy tibial strength and resistance to fracture was maintained via mechanisms independent of bone structure/shape. Further investigation of ω-9 as a therapeutic in osteoporosis is warranted.
Collapse
Affiliation(s)
- Mahmoud Omer
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Vee San Cheong
- Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK
| | | | | | - Austin Wynn
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| | - Boyce E. Collins
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
- Department of General Surgery, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Ashley Calder
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Naima Dahir
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | | | - Jagannathan Sankar
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA
| |
Collapse
|
11
|
The nanoformula of zoledronic acid and calcium carbonate targets osteoclasts and reverses osteoporosis. Biomaterials 2023; 296:122059. [PMID: 36848779 DOI: 10.1016/j.biomaterials.2023.122059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Osteoporosis is known as an imbalance in bone catabolism and anabolism. Overactive bone resorption causes bone mass loss and increased incidence of fragility fractures. Antiresorptive drugs are widely used for osteoporosis treatment, and their inhibitory effects on osteoclasts (OCs) have been well established. However, due to the lack of selectivity, their off-target and side effects often bring suffering to patients. Herein, an OCs' microenvironment-responsive nanoplatform HA-MC/CaCO3/ZOL@PBAE-SA (HMCZP) is developed, consisting of succinic anhydride (SA)-modified poly(β-amino ester) (PBAE) micelle, calcium carbonate shell, minocycline-modified hyaluronic acid (HA-MC) and zoledronic acid (ZOL). Results indicate that HMCZP, as compared with the first-line therapy, could more effectively inhibit the activity of mature OCs and significantly reverse the systemic bone mass loss in ovariectomized mice. In addition, the OCs-targeted capacity of HMCZP makes it therapeutically efficient at sites of severe bone mass loss and allows it to reduce the adverse effects of ZOL, such as acute phase reaction. High-throughput RNA sequencing (RNA-seq) reveals that HMCZP could down-regulate a critical osteoporotic target, tartrate-resistant acid phosphatase (TRAP), as well as other potential therapeutical targets for osteoporosis. These results suggest that an intelligent nanoplatform targeting OCs is a promising strategy for osteoporosis therapy.
Collapse
|
12
|
Nandi S, Chennappan S, Andrasch Y, Fidan M, Engler M, Ahmad M, Tuckermann JP, Zenker M, Cirstea IC. Increased osteoclastogenesis contributes to bone loss in the Costello syndrome Hras G12V mouse model. Front Cell Dev Biol 2022; 10:1000575. [PMID: 36330334 PMCID: PMC9624175 DOI: 10.3389/fcell.2022.1000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
RAS GTPases are ubiquitous GDP/GTP-binding proteins that function as molecular switches in cellular signalling and control numerous signalling pathways and biological processes. Pathogenic mutations in RAS genes severely affect cellular homeostasis, leading to cancer when occurring in somatic cells and developmental disorders when the germline is affected. These disorders are generally termed as RASopathies and among them Costello syndrome (CS) is a distinctive entity that is caused by specific HRAS germline mutations. The majority of these mutations affect residues 12 and 13, the same sites as somatic oncogenic HRAS mutations. The hallmarks of the disease include congenital cardiac anomalies, impaired thriving and growth, neurocognitive impairments, distinctive craniofacial anomalies, and susceptibility to cancer. Adult patients often present signs of premature aging including reduced bone mineral density and osteoporosis. Using a CS mouse model harbouring a Hras G12V germline mutation, we aimed at determining whether this model recapitulates the patients’ bone phenotype and which bone cells are driving the phenotype when mutated. Our data revealed that Hras G12V mutation induces bone loss in mice at certain ages. In addition, we identified that bone loss correlated with an increased number of osteoclasts in vivo and Hras G12V mutations increased osteoclastogenesis in vitro. Last, but not least, mutant osteoclast differentiation was reduced by treatment in vitro with MEK and PI3K inhibitors, respectively. These results indicate that Hras is a novel regulator of bone homeostasis and an increased osteoclastogenesis due to Hras G12V mutation contributes to bone loss in the Costello syndrome.
Collapse
Affiliation(s)
- Sayantan Nandi
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | | | - Yannik Andrasch
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Miray Fidan
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Melanie Engler
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mubashir Ahmad
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Jan P. Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Martin Zenker
- Institute of Human Genetics, University Hospital Magdeburg, Magdeburg, Germany
| | - Ion Cristian Cirstea
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
- *Correspondence: Ion Cristian Cirstea,
| |
Collapse
|
13
|
Cai L, Gao Z, Gu Z. Lin28A
alleviates ovariectomy‐induced osteoporosis through activation of the AMP‐activated protein kinase pathway in rats. Int J Rheum Dis 2022; 25:1416-1423. [DOI: 10.1111/1756-185x.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/02/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Liang Cai
- Third Department of Orthopedics Jiu Jiang No. 1 People's Hospital Jiujiang Jiangxi China
| | - Zhanwang Gao
- Third Department of Orthopedics Jiu Jiang No. 1 People's Hospital Jiujiang Jiangxi China
| | - Zhiping Gu
- Third Department of Orthopedics Jiu Jiang No. 1 People's Hospital Jiujiang Jiangxi China
| |
Collapse
|
14
|
Omer M, Ali H, Orlovskaya N, Ballesteros A, Cheong VS, Martyniak K, Wei F, Collins BE, Yarmolenko SN, Asiatico J, Kinzel M, Ngo C, Sankar J, Calder A, Gilbertson T, Meckmongkol T, Ghosh R, Coathup M. Omega-9 Modifies Viscoelasticity and Augments Bone Strength and Architecture in a High-Fat Diet-Fed Murine Model. Nutrients 2022; 14:nu14153165. [PMID: 35956341 PMCID: PMC9370223 DOI: 10.3390/nu14153165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
The influence of diet on the development of osteoporosis is significant and not fully understood. This study investigated the effect of diets of varying lipid profiles and ω-3, ω-6 and ω-9 composition on the structural and mechanical properties of bone. The hypothesis studied was that a diet high in saturated fat would induce osteoporosis and produce an overall increased detrimental bony response when compared with a diet high in unsaturated ω-6, or ω-9. Male C57BL/6J mice were fed either a control diet, 50:50 mix (saturated:unsaturated) high in ω-9 (HFD50:50), a diet high in saturated fat (HSF) or a polyunsaturated fat diet high in ω-6 (PUFA) over an 8-week duration. Tibiae were retrieved and evaluated using DMA, 3-point-bending, histomorphometry, and microCT. Mice fed a HSF diet displayed key features characteristic of osteoporosis. The loss tangent was significantly increased in the HFD50:50 diet group compared with control (p = 0.016) and PUFA-fed animals (p = 0.049). HFD50:50-fed mice presented with an increased viscous component, longer tibiae, increased loss modulus (p = 0.009), and ultimate stress, smaller microcracks (p < 0.001), and increased trabecular width (p = 0.002) compared with control animals. A diet high in ω-9 resulted in an overall superior bone response and further analysis of its role in bone health is warranted.
Collapse
Affiliation(s)
- Mahmoud Omer
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (N.O.); (J.A.); (M.K.); (R.G.)
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
- Correspondence:
| | - Hessein Ali
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (N.O.); (J.A.); (M.K.); (R.G.)
| | - Nina Orlovskaya
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (N.O.); (J.A.); (M.K.); (R.G.)
| | - Amelia Ballesteros
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.C.); (T.G.)
| | - Vee San Cheong
- Department of Automatic Control and Systems Engineering, Insigneo Institute for In Silico Medicine, University of Sheffield, Sheffield S1 3JD, UK;
| | - Kari Martyniak
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
| | - Fei Wei
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
| | - Boyce E. Collins
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA; (B.E.C.); (S.N.Y.); (J.S.)
| | - Sergey N. Yarmolenko
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA; (B.E.C.); (S.N.Y.); (J.S.)
| | - Jackson Asiatico
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (N.O.); (J.A.); (M.K.); (R.G.)
| | - Michael Kinzel
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (N.O.); (J.A.); (M.K.); (R.G.)
| | - Christopher Ngo
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.C.); (T.G.)
| | - Jagannathan Sankar
- Engineering Research Center for Revolutionizing Biomaterials, North Carolina A&T State University, Greensboro, NC 27411, USA; (B.E.C.); (S.N.Y.); (J.S.)
| | - Ashley Calder
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.C.); (T.G.)
| | - Timothy Gilbertson
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.C.); (T.G.)
| | - Teerin Meckmongkol
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
- Department of General Surgery, Nemours Children’s Hospital, Orlando, FL 32827, USA
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL 32816, USA; (H.A.); (N.O.); (J.A.); (M.K.); (R.G.)
| | - Melanie Coathup
- Biionix Cluster, University of Central Florida, Orlando, FL 32827, USA; (A.B.); (K.M.); (F.W.); (C.N.); (T.M.); (M.C.)
- College of Medicine, University of Central Florida, Orlando, FL 32827, USA; (A.C.); (T.G.)
| |
Collapse
|
15
|
Tolonen J, Salo AM, Finnilä M, Aro E, Karjalainen E, Ronkainen V, Drushinin K, Merceron C, Izzi V, Schipani E, Myllyharju J. Reduced Bone Mass in Collagen Prolyl 4-Hydroxylase P4ha1 +/-; P4ha2 -/- Compound Mutant Mice. JBMR Plus 2022; 6:e10630. [PMID: 35720665 PMCID: PMC9189910 DOI: 10.1002/jbm4.10630] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/07/2022] Open
Abstract
Proper deposition of the extracellular matrix and its major components, the collagens, is essential for endochondral ossification and bone mass accrual. Collagen prolyl 4-hydroxylases (C-P4Hs) hydroxylate proline residues in the -X-Pro-Gly- repeats of all known collagen types. Their product, 4-hydroxyproline, is essential for correct folding and thermal stability of the triple-helical collagen molecules in physiological body temperatures. We have previously shown that inactivation of the mouse P4ha1 gene, which codes for the catalytic α subunit of the major C-P4H isoform, is embryonic lethal, whereas inactivation of the P4ha2 gene produced only a minor phenotype. Instead, mice with a haploinsufficiency of the P4ha1 gene combined with a homozygous deletion of the P4ha2 gene present with a moderate chondrodysplasia due to transient cell death of the growth plate chondrocytes. Here, to further characterize the bone phenotype of the P4ha1 +/-; P4ha2 -/- mice, we have carried out gene expression analyses at whole-tissue and single-cell levels, biochemical analyses, microcomputed tomography, histomorphometric analyses, and second harmonic generation microscopy to show that C-P4H α subunit expression peaks early and that the C-P4H deficiency leads to reduced collagen amount, a reduced rate of bone formation, and a loss of trabecular and cortical bone volume in the long bones. The total osteoblast number in the proximal P4ha1 +/-; P4ha2 -/- tibia and the C-P4H activity in primary P4ha1 +/-; P4ha2 -/- osteoblasts were reduced, whereas the population of osteoprogenitor colony-forming unit fibroblasts was increased in the P4ha1 +/-; P4ha2 -/- marrow. Thus, the P4ha1 +/-; P4ha2 -/- mouse model recapitulates key aspects of a recently recognized congenital connective tissue disorder with short stature and bone dysplasia caused by biallelic variants of the human P4HA1 gene. Altogether, the data demonstrate the allele dose-dependent importance of the C-P4Hs to the developing organism and a threshold effect of C-P4H activity in the proper production of bone matrix. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jussi‐Pekka Tolonen
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Antti M Salo
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Mikko Finnilä
- Research Unit of Medical Imaging, Physics and Technology, Faculty of MedicineUniversity of OuluOuluFinland
| | - Ellinoora Aro
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Emma Karjalainen
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | | | - Kati Drushinin
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| | - Christophe Merceron
- Departments of Orthopaedic Surgery, Medicine, and Cell and Developmental BiologyUniversity of Michigan School of MedicineAnn ArborMIUSA
| | - Valerio Izzi
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
- Research Unit of Biomedicine, Faculty of MedicineUniversity of OuluOuluFinland
- Finnish Cancer InstituteHelsinkiFinland
| | - Ernestina Schipani
- Departments of Orthopaedic Surgery, Medicine, and Cell and Developmental BiologyUniversity of Michigan School of MedicineAnn ArborMIUSA
- Present address:
McKay Laboratory, Department of Orthopedic SurgeryUniversity of Pennsylvania‐Perelman Medical SchoolPhiladelphiaPAUSA
| | - Johanna Myllyharju
- Oulu Center for Cell‐Matrix ResearchUniversity of OuluOuluFinland
- Biocenter OuluUniversity of OuluOuluFinland
- Faculty of Biochemistry and Molecular MedicineUniversity of OuluOuluFinland
| |
Collapse
|
16
|
Togo S, Imanishi H, Hayashi M, Koyama M, Kira Y, Sugawara K, Tsuruta D. Exploring the impact of ovariectomy on hair growth: can ovariectomized mouse serve as a model for investigating female pattern hair loss in humans? Med Mol Morphol 2022; 55:210-226. [PMID: 35486188 DOI: 10.1007/s00795-022-00320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/06/2022] [Indexed: 11/29/2022]
Abstract
Female pattern hair loss (FPHL), a type of hair disease common in pre- and postmenopausal women, is characterized by thinning of hair to O-type, mainly at the crown. Although a mouse model of this disease has recently been established, its details are still unknown, and thus, warrants further analysis. In this study, 3 week-old and 7- to 8 week-old C57BL/6 female mice were divided into two groups: one group underwent ovariectomy (OVX), while the other underwent sham surgery. In the 3 week-old mice, the dorsal skin was collected at seven weeks of age, while in the 7- to 8 week-old mice, it was collected at 12 and 24 weeks of age. In the former group, both the pore size of the hair follicles (HFs) and diameter of the hair shaft of telogen HFs decreased upon OVX; while in the latter group, these factors increased significantly. Notably, the thickness of the dermis and subcutis increased significantly in the OVX group. It needs to be further elucidated whether OVX mouse could serve as an ideal mouse model for FPHL, but our results upon evaluation of skin thickness indicate that it could be used to establish a novel treatment for non-hair-related diseases, such as post-menopause-related skin condition.
Collapse
Affiliation(s)
- Sayaka Togo
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Hisayoshi Imanishi
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan.
| | - Masami Hayashi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Masayasu Koyama
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Yukimi Kira
- Department of Research Support Platform, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Koji Sugawara
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Daisuke Tsuruta
- Department of Dermatology, Osaka City University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| |
Collapse
|
17
|
Guo J, Yuan Y, Zhang L, Wang M, Tong X, Liu L, Zhang M, Li H, Chen X, Zou J. Effects of exercise on the expression of long non-coding RNAs in the bone of mice with osteoporosis. Exp Ther Med 2021; 23:70. [PMID: 34934441 PMCID: PMC8649853 DOI: 10.3892/etm.2021.10993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/22/2021] [Indexed: 12/13/2022] Open
Abstract
Physical activity or exercise are known to promote bone formation and decrease bone resorption to maintain skeletal and bone health both in animal models and in humans with osteoporosis. Previous studies have indicated that long non-coding RNAs (lncRNAs) are able to regulate bone metabolism. Therefore, the present study aimed to evaluate whether lncRNAs responded to exercise by regulating the balance of bone metabolism in order to prevent osteoporosis. To meet this end, ovariectomized mice were used in the present study to establish an osteoporosis model. The exercise treatment groups were subjected to 9 weeks of treadmill running exercise in 4 weeks of the operation was performed Femurs were collected to measure bone mineral density, bone mass, bone formation and resorption. The expression levels of lncRNAs were subsequently measured using microarray and gene function analyses. The pairwise comparison results [ovariectomy (OVX) vs. OVX + exercise (EX); OVX vs. SHAM; SHAM vs. SHAM + EX; OVX + EX vs. SHAM + EX] of the gene microarray analysis revealed that the expression of 2,424 lncRNAs (1718 upregulated and 706 downregulated) were significantly altered in the mouse femurs following treadmill running. Gene Ontology (GO) analysis, incorporating the GO annotations ‘biological processes’, ‘molecular function’ and ‘cellular components’, of osteoporosis revealed that the VEGF, mTOR and NF-κB signaling pathways were potential targets of the lncRNAs. Moreover, it was possible to predict the target microRNAs (miRNAs) of six lncRNAs (LOC105246953, LOC102637959, NONMMUT014677, NONMMUT027251, ri|D130079K21|PX00187K16|1491 and NONMMUT006626), which suggested that the underlying mechanism by which lncRNAs respond to exercise involved bone regulation via lncRNA-miRNA sponge adsorption. Overall, these results suggested that the treadmill running exercise did regulate lncRNA expression in the bone, and that this was involved in the prevention of osteoporosis.
Collapse
Affiliation(s)
- Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Yu Yuan
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Lingli Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Physical Education and Sports Science, South China Normal University, Guangzhou, Guangdong 510631, P.R. China
| | - Miao Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaoyang Tong
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Lifei Liu
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Miao Zhang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Hui Li
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xi Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China.,School of Sports Science, Wenzhou Medical University, Wenzhou, Zhejiang 325003, P.R. China
| | - Jun Zou
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
18
|
Monzem S, Gohin S, Yagüe Ballester R, Lopes de Souza R, Meeson R, Pitsillides AA. An examination of two different approaches for the study of femoral neck fracture: Towards a more relevant rodent model. Proc Inst Mech Eng H 2021; 236:199-207. [PMID: 34694183 DOI: 10.1177/09544119211053057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Femoral neck fractures are a massive personal and health programme burden. Methods to study femoral neck strength, across its combined trabecular and cortical components are therefore essential. Rodent ovariectomy-induced osteoporosis models are commonly coupled with ex vivo 3-/4-point bending methods to measure changes in femoral cortical diaphysis. The loading direction used to assess these properties are often non-physiologic and, moreover, these ovariectomy models are linked to marked weight gain that can influence the biomechanical properties. Herein, we explore whether more physiological axial ex vivo loading protocols applied to femoral neck samples of ovariectomised (OVX) rodents provide anatomically-relevant models for the assessment of strength. We examine the use of mouse and rat femurs, loaded in constrained and unconstrained configuration, respectively, and explore whether weight-correction increases their utility. Accordingly, the mid-shaft of the proximal half of femurs from OVX and sham-operated (Sham) mice was methacrylate-anchored and the head loaded parallel to the diaphysis (constrained). Alternatively, femurs from OVX and Sham rats were isolated intact and axially-loaded through hip and knee joint articular surfaces (unconstrained). Yield displacement, stiffness, maximum load and resilience were measured and fracture pattern classified; effects of body weight-correction via a linear regression method or simple division were assessed. Our data reveal significant deficiencies in biomechanical properties in OVX mouse femurs loaded in constrained configuration, only after weight-correction by linear regression. In addition, evaluation of rat femur biomechanics in unconstrained loading demonstrated greater variation and that weight-correction by simple division improved scope to reveal significant OVX impact. We conclude that greater femoral neck fracture susceptibility can indeed be measured in OVX rodents as long as multiple biomechanical parameters are reported, care is taken in choosing the method for assessing load-bearing strength and weight-correction applied. These studies advance the establishment of more relevant rodent models for the study of femoral neck fracture.
Collapse
Affiliation(s)
- Samuel Monzem
- The Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Veterinary College, Federal University of Mato Grosso, Cuiabá, Brazil
| | - Stephanie Gohin
- The Skeletal Biology Group, Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Rafael Yagüe Ballester
- Biomaterials and Oral Biology Department, Faculty of Dentistry, São Paulo University, São Paulo, Brazil
| | | | - Richard Meeson
- Clinical Science and Services, Queen Mother Hospital for Animals, Royal Veterinary College, London, UK
| | | |
Collapse
|
19
|
Pang KL, Ekeuku SO, Chin KY. Particulate Air Pollution and Osteoporosis: A Systematic Review. Risk Manag Healthc Policy 2021; 14:2715-2732. [PMID: 34194253 PMCID: PMC8238075 DOI: 10.2147/rmhp.s316429] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/03/2021] [Indexed: 11/23/2022] Open
Abstract
Air pollution is associated with inflammation and oxidative stress, which predispose to several chronic diseases in human. Emerging evidence suggests that the severity and progression of osteoporosis are directly associated with inflammation induced by air pollutants like particulate matter (PM). This systematic review examined the relationship between PM and bone health or fractures. A comprehensive literature search was conducted from January until February 2021 using the PubMed, Scopus, Web of Science, Google Scholar and Cochrane Library databases. Human cross-sectional, cohort and case-control studies were considered. Of the 1500 papers identified, 14 articles were included based on the inclusion and exclusion criteria. The air pollution index investigated by most studies were PM2.5 and PM10. Current studies demonstrated inconsistent associations between PM and osteoporosis risk or fractures, which may partly due to the heterogeneity in subjects' characteristics, study design and analysis. In conclusion, there is an inconclusive relationship between osteoporosis risk and fracture and PM exposures which require further validation.
Collapse
Affiliation(s)
- Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
20
|
Zhou Y, Chen X, Zhu Z, Bi D, Ma S. MiR-133a delivery to osteoblasts ameliorates mechanical unloading-triggered osteopenia progression in vitro and in vivo. Int Immunopharmacol 2021; 97:107613. [PMID: 33962226 DOI: 10.1016/j.intimp.2021.107613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/08/2021] [Accepted: 03/22/2021] [Indexed: 01/19/2023]
Abstract
Mechanical unloading-induced bone loss is a clinical challenge, and deep understanding for this disease is necessary for developing novel and effective therapies. MicroRNAs (miRNAs) are small non-coding RNAs, and involved in bone remodeling. In the study, we attempted to explore the potential of miR-133a in regulating osteoblast activation and its anti-osteopenia function both in vitro and in vivo. Our in vitro studies at first showed that miR-133a could significantly promote the expression of osteocalcin (OCN), Collagen I, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and osterix (Osx), promoting the activation and mineralization of osteoblasts. Then, hindlimb unloading (HU)-challenged mice were established with or without intravenous injection of agomir-miR-133a using an osteoblast-targeting delivery system. We found that miR-133a in osteoblasts significantly alleviated the bone loss, microstructural, and biomechanical property in mice with mechanical unloading, contributing to osteopenia alleviation. Furthermore, both in vitro and in vivo experiments showed that miR-133a could restrain osteoclastogenesis via tartrate-resistant acid phosphatase (TRAP) staining. In conclusion, our results suggested that miR-133a may be a promising factor in mediating the occurrence and progression of osteopenia caused by mechanical unloading, and thus targeting miR-133a could be considered as an effective therapeutic strategy for the suppression of pathological osteopenia.
Collapse
Affiliation(s)
- Youlong Zhou
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China.
| | - Xing Chen
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Zemin Zhu
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Daochi Bi
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| | - Shuyun Ma
- Department of Orthopaedics, Changxing People's Hospital, Huzhou, Zhejiang 313100, China
| |
Collapse
|
21
|
Abstract
PURPOSE OF THE REVIEW The purpose of this review is to describe the in vitro and in vivo methods that researchers use to model and investigate bone marrow adipocytes (BMAds). RECENT FINDINGS The bone marrow (BM) niche is one of the most interesting and dynamic tissues of the human body. Relatively little is understood about BMAds, perhaps in part because these cells do not easily survive flow cytometry and histology processing and hence have been overlooked. Recently, researchers have developed in vitro and in vivo models to study normal function and dysfunction in the BM niche. Using these models, scientists and clinicians have noticed that BMAds, which form bone marrow adipose tissue (BMAT), are able to respond to numerous signals and stimuli, and communicate with local cells and distant tissues in the body. This review provides an overview of how BMAds are modeled and studied in vitro and in vivo.
Collapse
Affiliation(s)
- Michaela R Reagan
- Center for Molecular Medicine and Center for Translational Research, Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME, 04074, USA.
- University of Maine Graduate School of Biomedical Science and Engineering, Orono, ME, USA.
- School of Medicine and Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA.
| |
Collapse
|
22
|
Roberts BC, Giorgi M, Oliviero S, Wang N, Boudiffa M, Dall'Ara E. The longitudinal effects of ovariectomy on the morphometric, densitometric and mechanical properties in the murine tibia: A comparison between two mouse strains. Bone 2019; 127:260-270. [PMID: 31254730 DOI: 10.1016/j.bone.2019.06.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022]
Abstract
Oestrogen deficiency-related bone loss in the ovariectomized (OVX) mouse is a common model for osteoporosis. However, a comprehensive in vivo assessment of intervention-related changes in multiple bone properties, and in multiple mouse strains, is required in order to identify an appropriate model for future evaluation of novel anti-osteoporotic therapies. The aim of this study was to evaluate the effect of OVX on the morphometric and densitometric properties measured in the microCT images and the mechanical properties estimated with finite element models of the tibia in two mouse strains, C57BL/6 and BALB/c. 14-weeks-old female C57BL/6 and BALB/c mice were divided into two groups per strain: (1) ovariectomized, (2) non-operated control. The right tibia was scanned at baseline (14 weeks) and then every two weeks thereafter, until 24-weeks-old, using in vivo microCT. Changes in trabecular and cortical bone morphometry, spatiotemporal changes in densitometric properties and in mechanical properties (from micro-finite element (μFE) analysis) were computed. Differences between OVX and non-operated controls were evaluated by ANCOVA, adjusted for 14-weeks baseline. In morphometry, trabecular bone mass was significantly reduced in both C57BL/6 and BALB/c from four weeks following surgery. Though the OVX-effect was transient in BALB/c as bone mass reached skeletal homeostasis. OVX inhibited the age-related thickening of cortical bone only in C57BL/6. In both strains, increments in bone mineral content were significantly lower with OVX only in the proximal tibia, with intervention-related differences increasing with time. OVX had no effect on μFE estimates of stiffness nor failure load in either strain. The results of this study show strain-, time- and region-(trabecular or cortical) dependent changes in morphometric and densitometric properties. These findings highlight the importance of choosing an appropriate mouse model and time points for research of treatments against accelerated bone resorption.
Collapse
Affiliation(s)
- Bryant C Roberts
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Mario Giorgi
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Certara QSP, Certara UK Ltd., Simcyp Division, Sheffield, UK
| | - Sara Oliviero
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK
| | - Ning Wang
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, UK
| | - Maya Boudiffa
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, UK
| | - Enrico Dall'Ara
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK; Insigneo Institute for in silico Medicine, University of Sheffield, Sheffield, UK; MRC Arthritis Research UK Centre for Integrated research into Musculoskeletal Ageing (CIMA), University of Sheffield, Sheffield, UK.
| |
Collapse
|