1
|
Kim TS, Ikeuchi T, Theofilou VI, Williams DW, Greenwell-Wild T, June A, Adade EE, Li L, Abusleme L, Dutzan N, Yuan Y, Brenchley L, Bouladoux N, Sakamachi Y, Palmer RJ, Iglesias-Bartolome R, Trinchieri G, Garantziotis S, Belkaid Y, Valm AM, Diaz PI, Holland SM, Moutsopoulos NM. Epithelial-derived interleukin-23 promotes oral mucosal immunopathology. Immunity 2024; 57:859-875.e11. [PMID: 38513665 PMCID: PMC11058479 DOI: 10.1016/j.immuni.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/05/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
At mucosal surfaces, epithelial cells provide a structural barrier and an immune defense system. However, dysregulated epithelial responses can contribute to disease states. Here, we demonstrated that epithelial cell-intrinsic production of interleukin-23 (IL-23) triggers an inflammatory loop in the prevalent oral disease periodontitis. Epithelial IL-23 expression localized to areas proximal to the disease-associated microbiome and was evident in experimental models and patients with common and genetic forms of disease. Mechanistically, flagellated microbial species of the periodontitis microbiome triggered epithelial IL-23 induction in a TLR5 receptor-dependent manner. Therefore, unlike other Th17-driven diseases, non-hematopoietic-cell-derived IL-23 served as an initiator of pathogenic inflammation in periodontitis. Beyond periodontitis, analysis of publicly available datasets revealed the expression of epithelial IL-23 in settings of infection, malignancy, and autoimmunity, suggesting a broader role for epithelial-intrinsic IL-23 in human disease. Collectively, this work highlights an important role for the barrier epithelium in the induction of IL-23-mediated inflammation.
Collapse
Affiliation(s)
- Tae Sung Kim
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomoko Ikeuchi
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vasileios Ionas Theofilou
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA; Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Drake Winslow Williams
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Teresa Greenwell-Wild
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Armond June
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Emmanuel E Adade
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Lu Li
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Loreto Abusleme
- Department of Pathology and Oral Medicine, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Yao Yuan
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Laurie Brenchley
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yosuke Sakamachi
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert J Palmer
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Giorgio Trinchieri
- Cancer Immunobiology Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stavros Garantziotis
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Yasmine Belkaid
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alex M Valm
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12210, USA
| | - Patricia I Diaz
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, University at Buffalo, Buffalo, NY 14214, USA
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Niki M Moutsopoulos
- Oral Immunity and Infection Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Watanabe N, Bando H, Murakoshi F, Sakurai R, Kabir MHB, Fukuda Y, Kato K. The role of atypical MAP kinase 4 in the host interaction with Cryptosporidium parvum. Sci Rep 2023; 13:1096. [PMID: 36658270 PMCID: PMC9852575 DOI: 10.1038/s41598-023-28269-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Cryptosporidium parvum is an apicomplexan parasite that causes severe zoonotic diarrhea in humans and calves. Since there are no effective treatments or vaccines for infants or immunocompromised patients, it is important to understand the molecular mechanisms of the parasite-host interaction for novel drug discovery. Mitogen-activated protein kinase (MAP kinase) is a key host factor in interactions between host and various pathogens, including parasites. Although the function of conventional MAP kinases against parasite infection has been investigated, that of atypical MAP kinases remains largely unknown. Therefore, we focused on one of the atypical MAP kinases, MAPK4, and its effect on C. parvum infection in human intestinal cells. Here, we report that MAPK4-deficient intestinal cells showed a significant reduction in C. parvum infection. We also show that host MAPK4 has a role in host cell survival from C. parvum infection. In addition, we show that C. parvum requires host MAPK4 for its successful invasion and asexual reproduction. Taken together, our data suggest that MAPK4 is an important host factor contributing to C. parvum infection in human intestinal cells.
Collapse
Affiliation(s)
- Nina Watanabe
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Hironori Bando
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.,Department of Parasitology, Asahikawa Medical University, 2-1-1-1, Midorigaoka-Higashi, Asahikawa, Hokkaido, 078-8510, Japan
| | - Fumi Murakoshi
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.,Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Riku Sakurai
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Mohammad Hazzaz Bin Kabir
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Yasuhiro Fukuda
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan.
| |
Collapse
|
3
|
Ferrell KC, Johansen MD, Triccas JA, Counoupas C. Virulence Mechanisms of Mycobacterium abscessus: Current Knowledge and Implications for Vaccine Design. Front Microbiol 2022; 13:842017. [PMID: 35308378 PMCID: PMC8928063 DOI: 10.3389/fmicb.2022.842017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a member of the non-tuberculous mycobacteria (NTM) group, responsible for chronic infections in individuals with cystic fibrosis (CF) or those otherwise immunocompromised. While viewed traditionally as an opportunistic pathogen, increasing research into M. abscessus in recent years has highlighted its continued evolution into a true pathogen. This is demonstrated through an extensive collection of virulence factors (VFs) possessed by this organism which facilitate survival within the host, particularly in the harsh environment of the CF lung. These include VFs resembling those of other Mycobacteria, and non-mycobacterial VFs, both of which make a notable contribution in shaping M. abscessus interaction with the host. Mycobacterium abscessus continued acquisition of VFs is cause for concern and highlights the need for novel vaccination strategies to combat this pathogen. An effective M. abscessus vaccine must be suitably designed for target populations (i.e., individuals with CF) and incorporate current knowledge on immune correlates of protection against M. abscessus infection. Vaccination strategies must also build upon lessons learned from ongoing efforts to develop novel vaccines for other pathogens, particularly Mycobacterium tuberculosis (M. tb); decades of research into M. tb has provided insight into unconventional and innovative vaccine approaches that may be applied to M. abscessus. Continued research into M. abscessus pathogenesis will be critical for the future development of safe and effective vaccines and therapeutics to reduce global incidence of this emerging pathogen.
Collapse
Affiliation(s)
- Kia C. Ferrell
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- *Correspondence: Kia C. Ferrell,
| | - Matt D. Johansen
- Centre for Inflammation, Centenary Institute, University of Technology, Sydney, NSW, Australia
- Faculty of Science, School of Life Sciences, University of Technology, Sydney, NSW, Australia
| | - James A. Triccas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
| | - Claudio Counoupas
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases and the Charles Perkins Centre, The University of Sydney, Camperdown, NSW, Australia
- Claudio Counoupas,
| |
Collapse
|
4
|
Park EJ, Silwal P, Jo EK. Host-Pathogen Interactions Operative during Mycobacteroides abscessus Infection. Immune Netw 2022; 21:e40. [PMID: 35036027 PMCID: PMC8733189 DOI: 10.4110/in.2021.21.e40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022] Open
Abstract
Mycobacteroides abscessus (previously Mycobacterium abscessus; Mabc), one of rapidly growing nontuberculous mycobacteria (NTM), is an important pathogen of NTM pulmonary diseases (NTM-PDs) in both immunocompetent and immunocompromised individuals. Mabc infection is chronic and often challenging to treat due to drug resistance, motivating the development of new therapeutics. Despite this, there is a lack of understanding of the relationship between Mabc and the immune system. This review highlights recent progress in the molecular architecture of Mabc and host interactions. We discuss several microbial components that take advantage of host immune defenses, host defense pathways that can overcome Mabc pathogenesis, and how host-pathogen interactions determine the outcomes of Mabc infection. Understanding the molecular mechanisms underlying host-pathogen interactions during Mabc infection will enable the identification of biomarkers and/or drugs to control immune pathogenesis and protect against NTM infection.
Collapse
Affiliation(s)
- Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon 35015, Korea.,Infection Control Convergence Research Center, Chungnam National University College of Medicine, Daejeon 35015, Korea
| |
Collapse
|
5
|
Park CR, Paik S, Kim YJ, Kim JK, Jeon SM, Lee SH, Whang J, Cheng J, Suh JW, Cao J, Shetye G, Chen SN, McAlpine J, Pauli GF, Franzblau S, Cho S, Jo EK. Rufomycin Exhibits Dual Effects Against Mycobacterium abscessus Infection by Inducing Host Defense and Antimicrobial Activities. Front Microbiol 2021; 12:695024. [PMID: 34447358 PMCID: PMC8383285 DOI: 10.3389/fmicb.2021.695024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Nontuberculous mycobacterial pulmonary infection is often aggravated due to antibiotic resistance issues. There is a need for development of new drugs inducing both host immune responses and antimicrobial activities. This study shows that the rufomycins 4/5/6/7 (Rufomycin 4–7), which targets ClpC1 as a subunit of caseinolytic protein complex ClpC1/ClpP1/ClpP2 of mycobacteria, exhibits a dual effect in host innate defense and in vivo antimicrobial activities against a rough morphotype of Mycobacterium abscessus (Mabs-R), a clinically severe morphotype that causes hyperinflammation. Rufomycin 4–7 treatment showed antimicrobial effects against Mabs pulmonary infection in vivo and in macrophages. In addition, Rufomycin 4–7 significantly decreased inflammation, but enhanced the autophagy/lysosomal genes through upregulation of the nuclear translocation of transcription factor EB (TFEB). Furthermore, Rufomycin 4–7 treatment effectively inhibited mitochondrial damage and oxidative stresses in macrophages during Mabs-R infection. Collectively, Rufomycin 4–7-mediated dual effects inducing both antimicrobial activities and host immune defense might confer an advantage to treatment against Mabs-R infection.
Collapse
Affiliation(s)
- Cho Rong Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Young Jae Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sang Min Jeon
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Sang-Hee Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, South Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center & Basic Research Section, The Korean Institute of Tuberculosis, Cheongju, South Korea
| | - Jinhua Cheng
- Myongji Bioefficacy Research Center, Myongji University, Yongin, South Korea
| | - Joo-Won Suh
- Myongji Bioefficacy Research Center, Myongji University, Yongin, South Korea
| | - Jin Cao
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Shao-Nong Chen
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - James McAlpine
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Guido F Pauli
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Scott Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Sanghyun Cho
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL, United States
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
6
|
Yang H, Chen J, Chen Y, Jiang Y, Ge B, Hong L. Sirt1 activation negatively regulates overt apoptosis in Mtb-infected macrophage through Bax. Int Immunopharmacol 2021; 91:107283. [PMID: 33373810 DOI: 10.1016/j.intimp.2020.107283] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023]
Abstract
Apoptotic pathways play an important role in Mycobacterium tuberculosis-infected macrophages. Sirt1 is a member of the deacetylase family that is known to promote apoptosis resistance in many mammalian cells. However, the apoptotic role of Sirt1 in the process of M. tuberculosis infection remains unclear. With the help of mouse macrophage samples, 129/Sv background mice, and PBMCs-derived macrophages from healthy controls and patients with tuberculosis, we have shown that M. tuberculosis infection reduced Sirt1 mRNA and protein expression, however, increased Bax mRNA and protein expression. Further, we found that resveratrol, a Sirt1 activator, inhibited M. tuberculosis-induced Bax expression. Thus, it seems that Sirt1 acts as a novel regulator of apoptosis signaling in M. tuberculosis infection via its effects on Bax. Sirt1 activation may therefore be a new candidate for the prevention and treatment of tuberculosis.
Collapse
Affiliation(s)
- Hong Yang
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China.
| | - Jianxia Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Yanghaoyu Chen
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Yan Jiang
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Baoxue Ge
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai 200092, China; Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China; Shanghai TB Key Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, China
| | - Ling Hong
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China.
| |
Collapse
|
7
|
Schuurbiers MMF, Bruno M, Zweijpfenning SMH, Magis-Escurra C, Boeree M, Netea MG, van Ingen J, van de Veerdonk F, Hoefsloot W. Immune defects in patients with pulmonary Mycobacterium abscessus disease without cystic fibrosis. ERJ Open Res 2020; 6:00590-2020. [PMID: 33263065 PMCID: PMC7682720 DOI: 10.1183/23120541.00590-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of Mycobacterium abscessus infections in non-cystic fibrosis (CF) patients has increased in recent years. In this study, we investigate whether immune defects explain the apparent susceptibility to this opportunistic infection in non-CF patients. We performed stimulations of peripheral blood mononuclear cells and whole blood from 13 patients with M. abscessus pulmonary disease and 13 healthy controls to investigate their cytokine production after 24 h and 7 days. Patients were predominantly women (54%) with a mean age of 59 years; 62% had nodular bronchiectatic disease. Many patients had predisposing pulmonary diseases, such as COPD (46%), and asthma (23%). Patients with COPD showed an impaired interleukin (IL)-6 response to M. abscessus and a reduced IL-17 response to Candida, together with a M. abscessus-specific enhanced IL-22 production. Patients without COPD showed higher levels of interleukin-1 receptor antagonist (IL-1Ra), an anti-inflammatory molecule. Within the non-COPD patients, those with bronchiectasis showed defective interferon (IFN)-γ production in response to Candida albicans. In conclusion, susceptibility to M. abscessus is likely determined by a combination of immunological defects and predisposing pulmonary disease. The main defect in the innate immune response was a shift of the ratio of IL-1β to IL-1Ra, which decreased the bioactivity of this pathway in the adaptive immune response. In the adaptive immune response there was defective IL-17 and IFN-γ production. Patients with COPD and bronchiectasis showed different cytokine defects. It is therefore crucial to interpret the immunological results within the clinical background of the patients tested. Measurement of defects in both the innate and adaptive immune responses in patients with M. abscessus pulmonary disease show that susceptibility to M. abscessus is determined by a combination of immunological defects and predisposing pulmonary diseasehttps://bit.ly/2DtbycY
Collapse
Affiliation(s)
- Milou M F Schuurbiers
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands.,These authors contributed equally
| | - Mariolina Bruno
- Dept of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,These authors contributed equally
| | - Sanne M H Zweijpfenning
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands.,These authors contributed equally
| | - Cecile Magis-Escurra
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Martin Boeree
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands
| | - Mihai G Netea
- Dept of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Dept for Genomics and Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Jakko van Ingen
- Radboud University Medical Centre, Dept of Medical Microbiology, Nijmegen, The Netherlands
| | - Frank van de Veerdonk
- Dept of Internal Medicine, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wouter Hoefsloot
- Radboud University Medical Centre, University Centre of Chronic Diseases Dekkerswald, Dept of Pulmonary Diseases, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Wang X, Chen S, Ren H, Chen J, Li J, Wang Y, Hua Y, Wang X, Huang N. HMGN2 regulates non-tuberculous mycobacteria survival via modulation of M1 macrophage polarization. J Cell Mol Med 2019; 23:7985-7998. [PMID: 31596045 PMCID: PMC6850944 DOI: 10.1111/jcmm.14599] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/18/2019] [Accepted: 07/29/2019] [Indexed: 01/02/2023] Open
Abstract
Non‐tuberculous mycobacteria (NTM), also known as an environmental and atypical mycobacteria, can cause the chronic pulmonary infectious diseases. Macrophages have been suggested as the main host cell to initiate the innate immune responses to NTM infection. However, the molecular mechanism to regulate the antimicrobial immune responses to NTM is still largely unknown. Current study showed that the NTM clinical groups, Mycobacterium abscessus and Mycobacterium smegmatis, significantly induced the M1 macrophage polarization with the characteristic production of nitric oxide (NO) and marker gene expression of iNOS, IFNγ, TNF‐α, IL1‐β and IL‐6. Interestingly, a non‐histone nuclear protein, HMGN2 (high‐mobility group N2), was found to be spontaneously induced during NTM‐activated M1 macrophage polarization. Functional studies revealed that HMGN2 deficiency in NTM‐infected macrophage promotes the expression of M1 markers and the production of NO via the enhanced activation of NF‐κB and MAPK signalling. Further studies exhibited that HMGN2 knock‐down also enhanced IFNγ‐induced M1 macrophage polarization. Finally, we observed that silencing HMGN2 affected the survival of NTM in macrophage, which might largely relevant to enhanced macrophage polarization into M1 phenotype under the NTM infection. Collectively, current studies thus suggested a novel function of HMGN2 in regulating the anti‐non‐tuberculous mycobacteria innate immunity of macrophage.
Collapse
Affiliation(s)
- Xinyuan Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China.,Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Shanze Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Hongyu Ren
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Junli Chen
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Jingyu Li
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Yuanqi Hua
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Xiaoying Wang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| | - Ning Huang
- Department of Pathophysiology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
CD157 Confers Host Resistance to Mycobacterium tuberculosis via TLR2-CD157-PKCzeta-Induced Reactive Oxygen Species Production. mBio 2019; 10:mBio.01949-19. [PMID: 31455656 PMCID: PMC6712401 DOI: 10.1128/mbio.01949-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis, a chronic bacterial disease caused by Mycobacterium tuberculosis, remains a major global health problem. CD157, a dual-function receptor and β-NAD+-metabolizing ectoenzyme, promotes cell polarization, regulates chemotaxis induced through the high-affinity fMLP receptor, and controls transendothelial migration. The role of CD157 in TB pathogenesis remains unknown. In this study, we find that both mRNA and protein levels of CD157 are significantly increased in TB. Deficiency of CD157 impaired host defense against M. tuberculosis infection both in vivo and in vitro, which is mediated by an interaction among CD157, TLR2, and PKCzeta. This interaction facilitates M. tuberculosis-induced macrophagic ROS production, which enhances macrophage bactericidal activity. Interestingly, the sCD157 level in plasma is reversibly associated with MDM M. tuberculosis killing activity. By uncovering the role of CD157 in pathogenesis of TB for the first time, our work demonstrated that application of soluble CD157 might be an effective strategy for host-directed therapy against TB. Recruitment of monocytes to the infection site is critical for host resistance against Mycobacterium tuberculosis. CD157 has a crucial role in neutrophil and monocyte transendothelial migration and adhesion, but its role in tuberculosis (TB) is unclear. Here, we show that both mRNA and protein levels of Cd157 are significantly increased during M. tuberculosis infection. Deficiency of Cd157 impaired host response to M. tuberculosis infection by increasing bacterial burden and inflammation in the lung in the murine TB model. In vitro experiments show that the bactericidal ability was compromised in Cd157 knockout (KO) macrophages, which was due to impaired M. tuberculosis-induced reactive oxygen species (ROS) production. We further reveal that CD157 interacts with TLR2 and PKCzeta and facilitates M. tuberculosis-induced ROS production in Cd157 KO macrophages, which resulted in enhanced M. tuberculosis killing. For the clinic aspect, we observe that the expression of CD157 decreases after effective anti-TB chemotherapy. CD157 is specifically increased in pleural fluid in tuberculous pleurisy patients compared to pneumonia and lung cancer patients. Interestingly, the levels of soluble CD157 (sCD157) correlate with human peripheral monocyte-derived macrophage bactericidal activity. Exogenous application of sCD157 could compensate for macrophage bactericidal ability and restore ROS production. In conclusion, we have identified a novel protective immune function of CD157 during M. tuberculosis infection via TLR2-dependent ROS production. Application of sCD157 might be an effective strategy for host-directed therapy against TB in those with insufficient CD157 production.
Collapse
|
10
|
Non-classical circulating monocytes in severe obesity and obesity with uncontrolled diabetes: A comparison with tuberculosis and healthy individuals. Tuberculosis (Edinb) 2019; 114:30-41. [DOI: 10.1016/j.tube.2018.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 11/01/2018] [Accepted: 11/02/2018] [Indexed: 12/30/2022]
|
11
|
Protective effects of a traditional herbal extract from Stellaria dichotoma var. lanceolata against Mycobacterium abscessus infections. PLoS One 2018; 13:e0207696. [PMID: 30452471 PMCID: PMC6242687 DOI: 10.1371/journal.pone.0207696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022] Open
Abstract
Stellaria dichotoma var. lanceolata (SdLv), a member of the Caryophyllaceae, is a traditional herbal medicine that has been used to treat fever, night sweats, and malaria in East Asia. Inflammation plays an essential role in both host defense and pathogenesis during infection by diverse intracellular pathogens. Herein, we showed that an herbal extract from SdLv effectively attenuated inflammatory responses from infection of Mycobacterium abscessus (Mab), but not Toxoplasma gondii (T. gondii). In primary murine macrophages, Mab infection resulted in the rapid activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK), as well as in the generation of proinflammatory cytokines, such as tumor necrosis factor α and interleukin-6, which were all significantly inhibited by pretreatment with SdLv. However, herbal extracts from Bupleurum chinense DC. (Buch) or Bupleurum falcatum L. (Bufa) did not affect M. abs-induced activation of proinflammatory responses. Importantly, we demonstrated that generation of intracellular reactive oxygen species, which are important signaling intermediaries in the activation of NF-κB and the MAPK signaling pathway, was rapidly increased in Mab-infected macrophages, and this was effectively suppressed by pretreatment with SdLv, but not Buch and Bufa. We further found that the treatment of Buch and Bufa, but not SdLv, led to the activation of NF-κB and the MAPK signaling pathway and the generation of intracellular reactive oxygen species. Moreover, oral administration of SdLv significantly reduced lethality in Mab-infected mice. Collectively, these results suggest the possible use of SdLv as an effective treatment for Mab infection.
Collapse
|
12
|
Lin Y, Jiao Y, Yuan Y, Zhou Z, Zheng Y, Xiao J, Li C, Chen Z, Cao P. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway. Emerg Microbes Infect 2018; 7:1. [PMID: 29323102 PMCID: PMC5837142 DOI: 10.1038/s41426-017-0002-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 09/22/2017] [Accepted: 10/31/2017] [Indexed: 01/07/2023]
Abstract
Evidence suggests that intervertebral disc degeneration (IVDD) can be induced by Propionibacterium acnes (P. acnes), although the underlying mechanisms are unclear. In this study, we analyzed the pathological changes in degenerated human intervertebral discs (IVDs) infected with P. acnes. Compared with P. acnes-negative samples, P. acnes-positive IVDs showed increased apoptosis of nucleus pulposus cells (NPCs) concomitant with severe IVDD. Then, a P. acnes-inoculated IVD animal model was established, and severe IVDD was induced by P. acnes infection by promoting NPC apoptosis. The results suggested that P.acnes-induced apoptosis of NPCs via the Toll-like receptor 2 (TLR2)/c-Jun N-terminal kinase (JNK) pathway and mitochondrial-mediated cell death. In addition, P. acnes was found to activate autophagy, which likely plays a role in apoptosis of NPCs. Overall, these findings further validated the involvement of P. acnes in the pathology of IVDD and provided evidence that P. acnes-induced apoptosis of NPCs via the TLR2/JNK pathway is likely responsible for the pathology of IVDD.
Collapse
Affiliation(s)
- Yazhou Lin
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Yucheng Jiao
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Ye Yuan
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Zezhu Zhou
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Yuehuan Zheng
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Jiaqi Xiao
- 0000 0004 0368 8293grid.16821.3cDepartment of Medical Microbiology and Parasitology, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Changwei Li
- 0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Zhe Chen
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| | - Peng Cao
- 0000 0004 0368 8293grid.16821.3cDepartment of Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China ,0000 0004 0368 8293grid.16821.3cShanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Shanghai Institute of Traumatology and Orthopedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200000 China
| |
Collapse
|
13
|
Kim TS, Shin YH, Lee HM, Kim JK, Choe JH, Jang JC, Um S, Jin HS, Komatsu M, Cha GH, Chae HJ, Oh DC, Jo EK. Ohmyungsamycins promote antimicrobial responses through autophagy activation via AMP-activated protein kinase pathway. Sci Rep 2017; 7:3431. [PMID: 28611371 PMCID: PMC5469788 DOI: 10.1038/s41598-017-03477-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
The induction of host cell autophagy by various autophagy inducers contributes to the antimicrobial host defense against Mycobacterium tuberculosis (Mtb), a major pathogenic strain that causes human tuberculosis. In this study, we present a role for the newly identified cyclic peptides ohmyungsamycins (OMS) A and B in the antimicrobial responses against Mtb infections by activating autophagy in murine bone marrow-derived macrophages (BMDMs). OMS robustly activated autophagy, which was essentially required for the colocalization of LC3 autophagosomes with bacterial phagosomes and antimicrobial responses against Mtb in BMDMs. Using a Drosophila melanogaster–Mycobacterium marinum infection model, we showed that OMS-A-induced autophagy contributed to the increased survival of infected flies and the limitation of bacterial load. We further showed that OMS triggered AMP-activated protein kinase (AMPK) activation, which was required for OMS-mediated phagosome maturation and antimicrobial responses against Mtb. Moreover, treating BMDMs with OMS led to dose-dependent inhibition of macrophage inflammatory responses, which was also dependent on AMPK activation. Collectively, these data show that OMS is a promising candidate for new anti-mycobacterial therapeutics by activating antibacterial autophagy via AMPK-dependent signaling and suppressing excessive inflammation during Mtb infections.
Collapse
Affiliation(s)
- Tae Sung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Yern-Hyerk Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Jin Ho Choe
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Ji-Chan Jang
- Molecular Mechanism of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju, 52828, South Korea
| | - Soohyun Um
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea
| | - Hyo Sun Jin
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 9518510, Japan
| | - Guang-Ho Cha
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea
| | - Han-Jung Chae
- Department of Pharmacology, Chonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, 08826, South Korea.
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, South Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, South Korea.
| |
Collapse
|
14
|
Kim YS, Yang CS, Nguyen LT, Kim JK, Jin HS, Choe JH, Kim SY, Lee HM, Jung M, Kim JM, Kim MH, Jo EK, Jang JC. Mycobacterium abscessus ESX-3 plays an important role in host inflammatory and pathological responses during infection. Microbes Infect 2016; 19:5-17. [PMID: 27637463 DOI: 10.1016/j.micinf.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/02/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022]
Abstract
Mycobacterial ESX systems are often related to pathogenesis during infection. However, little is known about the function of ESX systems of Mycobacterium abscessus (Mab). This study focuses on the Mab ESX-3 cluster, which contains major genes such as esxH (Rv0288, low molecular weight protein antigen 7; CFP-7) and esxG (Rv0287, ESAT-6 like protein). An esx-3 (MAB 2224c-2234c)-deletional mutant of Mab (Δesx) was constructed and used to infect murine and human macrophages. We then investigated whether Mab Δesx modulated innate host immune responses in macrophages. Mab Δesx infection resulted in less pathological and inflammatory responses. Additionally, Δesx resulted in significantly decreased activation of inflammatory signaling and cytokine production in macrophages compared to WT. Moreover, recombinant EsxG·EsxH (rEsxGH) proteins encoded by the ESX-3 region showed synergistic enhancement of inflammatory cytokine generation in macrophages infected with Δesx. Taken together, our data suggest that Mab ESX-3 plays an important role in inflammatory and pathological responses during Mab infection.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Chul-Su Yang
- Department of Molecular and Life Science, Hanyang University, Ansan 426-791, South Korea
| | - Loi T Nguyen
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hyo Sun Jin
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin Ho Choe
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Soo Yeon Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Mingyu Jung
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Myung Hee Kim
- Infection and Immunity Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Ji-Chan Jang
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea; Molecular Mechanism of Antibiotics, Division of Life Science, Research Institute of Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
15
|
Je S, Quan H, Na Y, Cho SN, Kim BJ, Seok SH. An in vitro model of granuloma-like cell aggregates substantiates early host immune responses against Mycobacterium massiliense infection. Biol Open 2016; 5:1118-27. [PMID: 27489303 PMCID: PMC5004613 DOI: 10.1242/bio.019315] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium massiliense (M. mass), belonging to the M. abscessus complex, is a rapidly growing mycobacterium that is known to cause tuberculous-like lesions in humans. To better understand the interaction between host cells and M. mass, we used a recently developed in vitro model of early granuloma-like cell aggregates composed of human peripheral blood mononuclear cells (PBMCs). PBMCs formed granuloma-like, small and rounded cell aggregates when infected by live M. mass. Microscopic examination showed monocytes and macrophages surrounded by lymphocytes, which resembled cell aggregation induced by M. tuberculosis (M. tb). M. mass-infected PBMCs exhibited higher expression levels of HLA-DR, CD86 and CD80 on macrophages, and a significant decrease in the populations of CD4+ and CD8+ T cells. Interestingly, low doses of M. mass were sufficient to infect PBMCs, while active host cell death was gradually induced with highly increased bacterial loads, reflecting host destruction and dissemination of virulent rapid-growing mycobacteria (RGM). Collectively, this in vitro model of M. mass infection improves our understanding of the interplay of host immune cells with mycobacteria, and may be useful for developing therapeutics to control bacterial pathogenesis. Summary: An in vitro model of granuloma-like cell aggregates infected with Mycobacterium massiliense improves our understanding of the interplay of host immune cells with mycobacteria.
Collapse
Affiliation(s)
- Sungmo Je
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Hailian Quan
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Yirang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Sang-Nae Cho
- Department of Microbiology, and Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University College of Medicine, Seoul 110-799, Republic of Korea
| |
Collapse
|
16
|
Lee GJ, Lee HM, Kim TS, Kim JK, Sohn KM, Jo EK. Mycobacterium fortuitum induces A20 expression that impairs macrophage inflammatory responses. Pathog Dis 2016; 74:ftw015. [PMID: 26940588 DOI: 10.1093/femspd/ftw015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium fortuitum is a rapidly growing mycobacterium that has been regarded as an etiological agent of a variety of human infections. However, little is known about the host inflammatory responses and the molecular mechanisms by which MF-induced inflammation is regulated in macrophages. In this study, we report that MF infection leads to the induction of an anti-inflammatory molecule, A20 (also known as TNFAIP3), which is essential for the regulation of MF-induced inflammatory responses in murine bone marrow-derived macrophages (BMDMs). MF triggered the expression of tumor necrosis factor-α and interleukin-6 in BMDMs through signaling of the Toll-like receptor 2 (TLR2)-myeloid differentiation primary response gene 88. Additionally, MF rapidly induced the expression of A20, which inhibited proinflammatory cytokine expression and nuclear factor (NF)-κB reporter gene activities in BMDMs. Notably, MF-induced activation of NF-κB signaling was required for A20 expression and proinflammatory responses in BMDMs. Furthermore, the rough morphotype of the MF clinical strain induced a higher level of proinflammatory signaling activation, but less A20 induction in BMDMs, compared to the smooth morphotype. Taken together, these results suggest that MF-induced activation of host proinflammatory responses is negatively regulated through TLR2-dependent A20 expression.
Collapse
Affiliation(s)
- Gippeum Joy Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Tae Sung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Kyung Mok Sohn
- Division of Infectious Diseases, Chungnam National University Hospital, Daejeon 35015, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| |
Collapse
|
17
|
Kim YS, Kim JH, Woo M, Kim TS, Sohn KM, Lee YH, Jo EK, Yuk JM. Innate signaling mechanisms controlling Mycobacterium chelonae-mediated CCL2 and CCL5 expression in macrophages. J Microbiol 2015; 53:864-74. [PMID: 26626357 DOI: 10.1007/s12275-015-5348-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 10/27/2015] [Accepted: 11/19/2015] [Indexed: 12/16/2022]
Abstract
Mycobacterium chelonae (Mch) is an atypical rapidly growing mycobacterium (RGM) that belongs to the M. chelonae complex, which can cause a variety of human infections. During this type of mycobacterial infection, macrophage-derived chemokines play an important role in the mediation of intracellular communication and immune surveillance by which they orchestrate cellular immunity. However, the intracellular signaling pathways involved in the macrophage-induced chemokine production during Mch infections remain unknown. Thus, the present study aimed to determine the molecular mechanisms by which Mch activates the gene expressions of chemokine (C-C motif) ligand 2 (CCL2) and CCL5 in murine bone marrow-derived macrophages (BMDMs) and in vivo mouse model. Toll-like receptor 2 (TLR2)-deficient mice showed increased bacterial burden in spleen and lung and decreased protein expression of CCL2 and CCL5 in serum. Additionally, Mch infection triggered the mRNA and protein expression of CCL2 and CCL5 in BMDMs via TLR2 and myeloid differentiation primary response gene 88 (MyD88) signaling and that it rapidly activated nuclear factor (NF)-κB signaling, which is required for the Mch-induced expressions of CCL2 and CCL5 in BMDMs. Moreover, while the innate receptor Dectin-1 was only partly involved in the Mch-induced expression of the CCL2 and CCL5 chemokines in BMDMs, the generation of intracellular reactive oxygen species (ROS) was an important contributor to these processes. Taken together, the present data indicate that the TLR2, MyD88, and NF-κB pathways, Dectin-1 signaling, and intracellular ROS generation contribute to the Mch-mediated expression of chemokine genes in BMDMs.
Collapse
Affiliation(s)
- Yi Sak Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ji Hye Kim
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Minjeong Woo
- Institute Pasteur Korea, Seongnam, 13488, Republic of Korea
| | - Tae-sung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyung Mok Sohn
- Division of Infectious Diseases, Chungnam National University Hospital, Daejeon, 34134, Republic of Korea
| | - Young-Ha Lee
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Min Yuk
- Infection Biology, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea. .,Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
18
|
Kim KH, Kim TS, Lee JG, Park JK, Yang M, Kim JM, Jo EK, Yuk JM. Characterization of Proinflammatory Responses and Innate Signaling Activation in Macrophages Infected with Mycobacterium scrofulaceum. Immune Netw 2014; 14:307-20. [PMID: 25550697 PMCID: PMC4275388 DOI: 10.4110/in.2014.14.6.307] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 11/12/2014] [Accepted: 11/20/2014] [Indexed: 01/01/2023] Open
Abstract
Mycobacterium scrofulaceum is an environmental and slow-growing atypical mycobacterium. Emerging evidence suggests that M. scrofulaceum infection is associated with cervical lymphadenitis in children and pulmonary or systemic infections in immunocompromised adults. However, the nature of host innate immune responses to M. scrofulaceum remains unclear. In this study, we examined the innate immune responses in murine bone marrow-derived macrophages (BMDMs) infected with different M. scrofulaceum strains including ATCC type strains and two clinically isolated strains (rough and smooth types). All three strains resulted in the production of proinflammatory cytokines in BMDMs mediated through toll-like receptor-2 and the adaptor MyD88. Activation of MAPKs (extracellular signal-regulated kinase 1/2, and p38, and c-Jun N-terminal kinase) and nuclear receptor (NF)-κB together with intracellular reactive oxygen species generation were required for the expression of proinflammatory cytokines in BMDMs. In addition, the rough morphotypes of M. scrofulaceum clinical strains induced higher levels of proinflammatory cytokines, MAPK and NF-κB activation, and ROS production than other strains. When mice were infected with different M. scrofulaceum strains, those infected with the rough strain showed the greatest hepatosplenomegaly, granulomatous lesions, and immune cell infiltration in the lungs. Notably, the bacterial load was higher in mice infected with rough colonies than in mice infected with ATCC or smooth strains. Collectively, these data indicate that rough M. scrofulaceum induces higher inflammatory responses and virulence than ATCC or smooth strains.
Collapse
Affiliation(s)
- Ki-Hye Kim
- Center of Inflammation, Infection & Immunity, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Tae-Sung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Joy G Lee
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Jeong-Kyu Park
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Miso Yang
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Jin-Man Kim
- Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Department of Pathology, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| | - Jae-Min Yuk
- Department of Infection Biology, Chungnam National University School of Medicine, Daejeon 301-747, Korea. ; Infection Signaling Network Research Center, Chungnam National University School of Medicine, Daejeon 301-747, Korea
| |
Collapse
|
19
|
Kim SY, Koh WJ, Kim YH, Jeong BH, Park HY, Jeon K, Kim JS, Cho SN, Shin SJ. Importance of reciprocal balance of T cell immunity in Mycobacterium abscessus complex lung disease. PLoS One 2014; 9:e109941. [PMID: 25295870 PMCID: PMC4190320 DOI: 10.1371/journal.pone.0109941] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/05/2014] [Indexed: 11/18/2022] Open
Abstract
Background Little is known about the nature of the host immune response to Mycobacterium abscessus complex (MABC) infection. The aim of the present study was to investigate whether alterations in serum immunomolecule levels after treating MABC lung disease patients with antibiotics can reflect the disease-associated characteristics. Methods A total of 22 immunomolecules in 24 MABC lung disease patients before and after antibiotic therapy were quantitatively analyzed using a multiplex bead-based system. Results In general, the pre-treatment levels of T helper type 1 (Th1)-related cytokines, i.e., interferon (IFN)-γ and interleukin (IL)-12, and Th2-related cytokines, i.e., IL-4 and IL-13, were significantly decreased in patients compared with control subjects. In contrast, the pre-treatment levels of Th17-related cytokines, i.e., IL-17 and IL-23, were significantly increased in MABC patients. Interestingly, significantly higher levels of IFN-γ-induced protein (IP)-10 and monokine induced by IFN-γprotein (MIG) were detected in patients with failure of sputum conversion at post-treatment compared to patients with successful sputum conversion. Conclusion Reduced Th1 and Th2 responses and enhanced Th17 responses in patients may perpetuate MABC lung disease, and the immunomolecules IP-10 and MIG, induced through IFN-γ, may serve as key markers for indicating the treatment outcome.
Collapse
Affiliation(s)
- Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Won-Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yee Hyung Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Byeong-Ho Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hye Yun Park
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyeongman Jeon
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute of Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|