1
|
Zhang D, Yang J, Huang Q, Zhao D, Wang T, Yu D, Qin L, Zhang K. Molecular functions of HAX1 during disease progress. Virus Genes 2024; 60:435-445. [PMID: 38992331 DOI: 10.1007/s11262-024-02081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/29/2024] [Indexed: 07/13/2024]
Abstract
HCLS1-associated protein X-1 (HAX1) is a newly discovered multifunctional cell regulatory protein that is widely expressed in cells and has a close relationship with multiple cellular proteins. HAX1 plays important roles in various processes, including the regulation of apoptosis, maintenance of mitochondrial membrane potential stability and calcium homeostasis, occurrence and development of diseases, post-transcriptional regulation of gene expression, and host immune response after viral infection. In this article, we have reviewed the research progress on the biological functions of HAX1, thereby laying a theoretical foundation for further exploration of its underlying mechanisms and targeted application.
Collapse
Affiliation(s)
- Dajun Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Jinke Yang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Qi Huang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Dengshuai Zhao
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Tianyu Wang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Dixi Yu
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China
| | - Limei Qin
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China.
| | - Keshan Zhang
- College of Life Sciences and Engineering, Foshan University, Foshan, 528225, Guangdong Province, People's Republic of China.
| |
Collapse
|
2
|
Pekpak Sahinoglu E, Oren AC, Sahinoglu B, Gumus U, Akbayram S. Coexistence of Bloom Syndrome and Kostmann Disease and a Novel Mutation. J Pediatr Hematol Oncol 2024; 46:e199-e201. [PMID: 38113221 DOI: 10.1097/mph.0000000000002798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Bloom syndrome (BS) is a rare autosomal recessive inherited disorder. Patients with BS have photosensitivity, telangiectatic facial erythema, and stunted growth. They usually have mild microcephaly, and distinctive facial features such as a narrow, slender face, micrognathism, and a prominent nose. Kostmann disease (KD) is a subgroup of severe congenital neutropenias. The diagnosis of severe congenital neutropenia is based on clinical symptoms, bone marrow findings, and genetic mutation. Here, we report a female patient with a triangular face, nasal prominence, and protruding ears presenting with recurrent infections and severe neutropenia. Molecular genetic testing revealed a compound heterozygous variant in the HCLS-1-associated protein X-1 gene [(c.130_131insA) p.(trp44*), c.430 dup(p.Val144fs)] and a new homozygous variant in Bloom Syndrome RecQ like helicase gene [c.2074+2T>C p.(?)]. She was diagnosed with both BS and KD. To the best of our knowledge, this is the first case of coexisting BS and KD in a patient ever reported.
Collapse
Affiliation(s)
| | | | - Bahtiyar Sahinoglu
- Medical Genetics, Dr. Ersin Arslan Research and Training Hospital, Gaziantep, Turkey
| | - Ugur Gumus
- Medical Genetics, Dr. Ersin Arslan Research and Training Hospital, Gaziantep, Turkey
| | | |
Collapse
|
3
|
Pisani C, Onori A, Gabanella F, Iezzi S, De Angelis R, Fanciulli M, Colizza A, de Vincentiis M, Di Certo MG, Passananti C, Corbi N. HAX1 is a novel binding partner of Che-1/AATF. Implications in oxidative stress cell response. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119587. [PMID: 37742722 DOI: 10.1016/j.bbamcr.2023.119587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
HAX1 is a multifunctional protein involved in the antagonism of apoptosis in cellular response to oxidative stress. In the present study we identified HAX1 as a novel binding partner for Che-1/AATF, a pro-survival factor which plays a crucial role in fundamental processes, including response to multiple stresses and apoptosis. HAX1 and Che-1 proteins show extensive colocalization in mitochondria and we demonstrated that their association is strengthened after oxidative stress stimuli. Interestingly, in MCF-7 cells, resembling luminal estrogen receptor (ER) positive breast cancer, we found that Che-1 depletion correlates with decreased HAX1 mRNA and protein levels, and this event is not significantly affected by oxidative stress induction. Furthermore, we observed an enhancement of the previously reported interaction between HAX1 and estrogen receptor alpha (ERα) upon H2O2 treatment. These results indicate the two anti-apoptotic proteins HAX1 and Che-1 as coordinated players in cellular response to oxidative stress with a potential role in estrogen sensitive breast cancer cells.
Collapse
Affiliation(s)
- Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy
| | - Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Simona Iezzi
- SAFU Unit, Department of Research and Advanced Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Roberta De Angelis
- ISPRA, Italian National Institute for Environmental Protection and Research, Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Maurizio Fanciulli
- SAFU Unit, Department of Research and Advanced Technologies, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi 53, 00144 Rome, Italy
| | - Andrea Colizza
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy.
| |
Collapse
|
4
|
Hezinger L, Bauer S, Ellwanger K, Piotrowsky A, Biber F, Venturelli S, Kufer TA. NOD1 cooperates with HAX-1 to promote cell migration in a RIPK2- and NF-ĸB-independent manner. FEBS J 2023; 290:5295-5312. [PMID: 37488967 DOI: 10.1111/febs.16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/13/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
The human Nod-like receptor protein NOD1 is a well-described pattern-recognition receptor (PRR) with diverse functions. NOD1 associates with F-actin and its protein levels are upregulated in metastatic cancer cells. A hallmark of cancer cells is their ability to migrate, which involves actin remodelling. Using chemotaxis and wound healing assays, we show that NOD1 expression correlated with the migration rate and chemotactic index in the cervical carcinoma cell line HeLa. The effect of NOD1 in cell migration was independent of the downstream kinase RIPK2 and NF-ĸB activity. Additionally, NOD1 negatively regulated the phosphorylation status of cofilin, which inhibits actin turnover. Co-immunoprecipitation assays identified HCLS1-associated protein X-1 (HAX-1) as a previously unknown interaction partner of NOD1. Silencing of HAX-1 expression reduced the migration behaviour to similar levels as NOD1 knockdown, and simultaneous knockdown of NOD1 and HAX-1 showed no additive effect, suggesting that both proteins act in the same pathway. In conclusion, our data revealed an important role of the PRR NOD1 in regulating cell migration as well as chemotaxis in human cervical cancer cells and identified HAX-1 as a protein that interacts with NOD1 and is involved in this signalling pathway.
Collapse
Affiliation(s)
- Lucy Hezinger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sarah Bauer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Kornelia Ellwanger
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Alban Piotrowsky
- Department of Biochemistry of Nutrition, University of Hohenheim, Stuttgart, Germany
| | - Felix Biber
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sascha Venturelli
- Department of Biochemistry of Nutrition, University of Hohenheim, Stuttgart, Germany
- Department of Vegetative and Clinical Physiology, Institute of Physiology, University Hospital Tuebingen, Germany
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
5
|
Schmitz I, Mühlen S. An innate immune sensor wandering around - NOD1 promotes cell migration via non-canonical signaling. FEBS J 2023; 290:5292-5294. [PMID: 37735823 DOI: 10.1111/febs.16952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
NOD1 is a cytosolic immune receptor well known for recognizing intracellular bacteria and inducing innate immune responses. Upon ligand binding, it usually forms a complex with the serine/threonine kinase RIPK2 to activate the transcription factor NF-κB. Next to its role in pathogen recognition, NOD1 has been associated with cancer progression. In this regard, Hezinger et al. investigated a non-canonical role of NOD1 in cell migration. They discovered that NOD1 is crucial for the migration and chemotaxis of HeLa cells and identified HAX-1 as a novel interaction partner.
Collapse
Affiliation(s)
- Ingo Schmitz
- Department of Molecular Immunology, Ruhr University Bochum, Germany
| | - Sabrina Mühlen
- Department of Molecular Immunology, Ruhr University Bochum, Germany
| |
Collapse
|
6
|
Yue P, Lv X, You J, Zou Y, Luo J, Lu Z, Cao H, Liu Z, Fan X, Ye Q. Hypothermic oxygenated perfusion attenuates DCD liver ischemia-reperfusion injury by activating the JAK2/STAT3/HAX1 pathway to regulate endoplasmic reticulum stress. Cell Mol Biol Lett 2023; 28:55. [PMID: 37438690 DOI: 10.1186/s11658-023-00466-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023] Open
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (IRI) in donation after cardiac death (DCD) donors is a major determinant of transplantation success. Endoplasmic reticulum (ER) stress plays a key role in hepatic IRI, with potential involvement of the Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) pathway and the antiapoptotic protein hematopoietic-lineage substrate-1-associated protein X-1 (HAX1). In this study, we aimed to investigate the effects of hypothermic oxygenated perfusion (HOPE), an organ preservation modality, on ER stress and apoptosis during hepatic IRI in a DCD rat model. METHODS To investigate whether HOPE could improve IRI in DCD livers, levels of different related proteins were examined by western blotting and quantitative real-time polymerase chain reaction. Further expression analyses, immunohistochemical analyses, immunofluorescence staining, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, and transmission electron microscopy were conducted to analyze the effects of HOPE on ER stress and apoptosis. To clarify the role of the JAK2/STAT3 pathway and HAX1 in this process, AG490 inhibitor, JAX1 plasmid transfection, co-immunoprecipitation (CO-IP), and flow cytometry analyses were conducted. RESULTS HOPE reduced liver injury and inflammation while alleviating ER stress and apoptosis in the DCD rat model. Mechanistically, HOPE inhibited unfolded protein responses by activating the JAK2/STAT3 pathway, thus reducing ER stress and apoptosis. Moreover, the activated JAK2/STAT3 pathway upregulated HAX1, promoting the interaction between HAX1 and SERCA2b to maintain ER calcium homeostasis. Upregulated HAX1 also modulated ER stress and apoptosis by inhibiting the inositol-requiring enzyme 1 (IRE1) pathway. CONCLUSIONS JAK2/STAT3-mediated upregulation of HAX1 during HOPE alleviates hepatic ER stress and apoptosis, indicating the JAK2/STAT3/HAX1 pathway as a potential target for IRI management during DCD liver transplantation.
Collapse
Affiliation(s)
- Pengpeng Yue
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoyan Lv
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jian You
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Yongkang Zou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Jun Luo
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongshan Lu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Hankun Cao
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Zhongzhong Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China
| | - Xiaoli Fan
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, 430071, Wuhan, China.
- The Third Xiangya Hospital of Central South University, Research Center of National Health Ministry On Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| |
Collapse
|
7
|
El Filaly H, Desterke C, Outlioua A, Badre W, Rabhi M, Karkouri M, Riyad M, Khalil A, Arnoult D, Akarid K. CXCL-8 as a signature of severe Helicobacter pylori infection and a stimulator of stomach region-dependent immune response. Clin Immunol 2023; 252:109648. [PMID: 37209806 DOI: 10.1016/j.clim.2023.109648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Helicobacter pylori infection is involved in development of diverse gastro-pathologies. Our aim is to investigate potential signature of cytokines-chemokine levels (IL-17A, IL-1β, and CXCL-8) in H. pylori-infected patients and their impact on immune response in both corpus and antrum. Multivariate level analysis with machine learning model were carried out using cytokines/chemokine levels of infected Moroccan patients. In addition, Geo dataset was used to run enrichment analysis following CXCL-8 upregulation. Our analysis showed that combination of cytokines-chemokine levels allowed prediction of positive H. pylori density score with <5% of miss-classification error, with fundus CXCL-8 being the most important variable for this discrimination. Furthermore, CXCL-8 dependent expression profile was mainly associated to IL6/JAK/STAT3 signaling in the antrum, interferons alpha and gamma responses in the corpus and commonly induced transcriptional /proliferative activities. To conclude, CXCL-8 level might be a signature of Moroccan H. pylori-infected patients and an inducer of regional-dependent immune response at the gastric level. Larger trials must be carried out to validate the relevance of these results for diverse populations.
Collapse
Affiliation(s)
- Hajar El Filaly
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Christophe Desterke
- INSERM UMRS-1311, Faculty of Medicine, University of Paris-Saclay, Villejuif, France; Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Ahmed Outlioua
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco
| | - Wafaa Badre
- Gastroenterology Department, CHU IbnRochd, Casablanca, Morocco
| | - Moncef Rabhi
- Diagnostic Center, Hôpital Militaire d'Instruction Mohammed V, Mohammed V University, Rabat, Morocco
| | - Mehdi Karkouri
- Laboratory of Pathological Anatomy, CHU Ibn Rochd/Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Myriam Riyad
- Research Team on Immunopathology of Infectious and Systemic Diseases, Laboratory of Cellular and Molecular Pathology, Faculty of Medicine and Pharmacy, UH2C, Casablanca, Morocco
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, Department of Medicine, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Damien Arnoult
- INSERM, UMR_S 1197, Hôpital Paul Brousse, Villejuif, France; Université Paris-Saclay, Paris, France
| | - Khadija Akarid
- Biochemistry, Biotechnology and Immunophysiopathology Research Team, Health and Environment Laboratory, Ain Chock Faculty of Sciences, Hassan II University of Casablanca, Casablanca, Morocco.
| |
Collapse
|
8
|
Pogozhykh D, Yilmaz Karapinar D, Klimiankou M, Gerschmann N, Ebetsberger-Dachs G, Palmblad J, Carlsson G, Masmas T, Kinsey S, Bartels M, Mellor-Heineke S, Welte K, Skokowa J, Zeidler C. HAX1-related congenital neutropenia: Long-term observation in paediatric and adult patients enrolled in the European branch of the Severe Chronic Neutropenia International Registry (SCNIR). Br J Haematol 2023. [PMID: 37193639 DOI: 10.1111/bjh.18840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
HAX1-related congenital neutropenia (HAX1-CN) is a rare autosomal recessive disorder caused by pathogenic variants in the HAX1 gene. HAX1-CN patients suffer from bone marrow failure as assessed by a maturation arrest of the myelopoiesis revealing persistent severe neutropenia from birth. The disorder is strongly associated with severe bacterial infections and a high risk of developing myelodysplastic syndrome or acute myeloid leukaemia. This study aimed to describe the long-term course of the disease, the treatment, outcome and quality of life in patients with homozygous HAX1 mutations reported to the European branch of the Severe Chronic Neutropenia International Registry. We have analysed a total of 72 patients with different types of homozygous (n = 68), compound heterozygous (n = 3), and digenic (n = 1) HAX1 mutations. The cohort includes 56 paediatric (<18 years) and 16 adult patients. All patients were initially treated with G-CSF with a sufficient increase in absolute neutrophil counts. Twelve patients required haematopoietic stem cell transplantation for leukaemia (n = 8) and non-leukaemic indications (n = 4). While previous genotype-phenotype reports documented a striking correlation between two main transcript variants and clinical neurological phenotypes, our current analysis reveals novel mutation subtypes and clinical overlaps between all genotypes including severe secondary manifestations, e.g., high incidence of secondary ovarian insufficiency.
Collapse
Affiliation(s)
- Denys Pogozhykh
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | | | - Maksim Klimiankou
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Natali Gerschmann
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| | - Georg Ebetsberger-Dachs
- Department of Paediatrics and Adolescent Medicine, Kepler University Hospital, Linz, Austria
| | - Jan Palmblad
- Departments of Medicine and Hematology, The Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Göran Carlsson
- Childhood Cancer Research Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Tania Masmas
- Pediatric Hematopoietic Stem Cell Transplantation and Immunodeficiency, The Child and Adolescent Clinic, Copenhagen University Hospital, Copenhagen, Denmark
| | - Sally Kinsey
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Marije Bartels
- Department of Paediatric Haematology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sabine Mellor-Heineke
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Karl Welte
- University Children's Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Department of Hematology, Oncology, Clinical Immunology, and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Cornelia Zeidler
- Clinic for Hematology, Hemostaseology, Oncology and Stem Cell Transplantation, Hannover Medical School, Hannover, Germany
| |
Collapse
|
9
|
Basheer F, Sertori R, Liongue C, Ward AC. Zebrafish: A Relevant Genetic Model for Human Primary Immunodeficiency (PID) Disorders? Int J Mol Sci 2023; 24:ijms24076468. [PMID: 37047441 PMCID: PMC10095346 DOI: 10.3390/ijms24076468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Primary immunodeficiency (PID) disorders, also commonly referred to as inborn errors of immunity, are a heterogenous group of human genetic diseases characterized by defects in immune cell development and/or function. Since these disorders are generally uncommon and occur on a variable background profile of potential genetic and environmental modifiers, animal models are critical to provide mechanistic insights as well as to create platforms to underpin therapeutic development. This review aims to review the relevance of zebrafish as an alternative genetic model for PIDs. It provides an overview of the conservation of the zebrafish immune system and details specific examples of zebrafish models for a multitude of specific human PIDs across a range of distinct categories, including severe combined immunodeficiency (SCID), combined immunodeficiency (CID), multi-system immunodeficiency, autoinflammatory disorders, neutropenia and defects in leucocyte mobility and respiratory burst. It also describes some of the diverse applications of these models, particularly in the fields of microbiology, immunology, regenerative biology and oncology.
Collapse
Affiliation(s)
- Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Robert Sertori
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, VIC 3216, Australia
| |
Collapse
|
10
|
Hazime R, Eddehbi FE, El Mojadili S, Lakhouaja N, Souli I, Salami A, M’Raouni B, Brahim I, Oujidi M, Guennouni M, Bousfiha AA, Admou B. Inborn errors of immunity and related microbiome. Front Immunol 2022; 13:982772. [PMID: 36177048 PMCID: PMC9513548 DOI: 10.3389/fimmu.2022.982772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
Inborn errors of immunity (IEI) are characterized by diverse clinical manifestations that are dominated by atypical, recurrent, chronic, or severe infectious or non-infectious features, including autoimmunity, lymphoproliferative disease, granulomas, and/or malignancy, which contribute substantially to morbidity and mortality. Some data suggest a correlation between clinical manifestations of IEI and altered gut microbiota. Many IEI display microbial dysbiosis resulting from the proliferation of pro-inflammatory bacteria or a decrease in anti-inflammatory bacteria with variations in the composition and function of numerous microbiota. Dysbiosis is considered more established, mainly within common variable immunodeficiency, selective immunoglobulin A deficiency, severe combined immunodeficiency diseases, Wiskott–Aldrich syndrome, Hyper-IgE syndrome, autoimmune polyendocrinopathy–candidiasis–ectodermal-dystrophy (APECED), immune dysregulation, polyendocrinopathy, enteropathy X-linked (IPEX) syndrome, IL-10 receptor deficiency, chronic granulomatous disease, and Kostmann disease. For certain IEIs, the specific predominance of gastrointestinal, respiratory, and cutaneous involvement, which is frequently associated with dysbiosis, justifies the interest for microbiome identification. With the better understanding of the relationship between gut microbiota, host immunity, and infectious diseases, the integration of microbiota modulation as a therapeutic approach or a preventive measure of infection becomes increasingly relevant. Thus, a promising strategy is to develop optimized prebiotics, probiotics, postbiotics, and fecal microbial transplantation to rebalance the intestinal microbiota and thereby attenuate the disease activity of many IEIs.
Collapse
Affiliation(s)
- Raja Hazime
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
| | - Fatima-Ezzohra Eddehbi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Saad El Mojadili
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Nadia Lakhouaja
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ikram Souli
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Abdelmouïne Salami
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Bouchra M’Raouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Imane Brahim
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Mohamed Oujidi
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Morad Guennouni
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
| | - Ahmed Aziz Bousfiha
- Pediatric infectious and Immunology Department, Ibn Rochd University Hospital, Casablanca, Morocco
- Laboratory of Clinical Immunology inflammation and Allergy, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Brahim Admou
- Laboratory of Immunology, Center of Clinical Research, Mohammed VI University Hospital, Marrakech, Morocco
- Biosciences Research Laboratory, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech, Morocco
- *Correspondence: Brahim Admou,
| |
Collapse
|
11
|
Fan Y, Murgia M, Linder MI, Mizoguchi Y, Wang C, Łyszkiewicz M, Ziȩtara N, Liu Y, Frenz S, Sciuccati G, Partida-Gaytan A, Alizadeh Z, Rezaei N, Rehling P, Dennerlein S, Mann M, Klein C. HAX1-dependent control of mitochondrial proteostasis governs neutrophil granulocyte differentiation. J Clin Invest 2022; 132:153153. [PMID: 35499078 PMCID: PMC9057593 DOI: 10.1172/jci153153] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/10/2022] [Indexed: 01/18/2023] Open
Abstract
The relevance of molecular mechanisms governing mitochondrial proteostasis to the differentiation and function of hematopoietic and immune cells is largely elusive. Through dissection of the network of proteins related to HCLS1-associated protein X-1, we defined a potentially novel functional CLPB/HAX1/(PRKD2)/HSP27 axis with critical importance for the differentiation of neutrophil granulocytes and, thus, elucidated molecular and metabolic mechanisms underlying congenital neutropenia in patients with HAX1 deficiency as well as bi- and monoallelic mutations in CLPB. As shown by stable isotope labeling by amino acids in cell culture (SILAC) proteomics, CLPB and HAX1 control the balance of mitochondrial protein synthesis and persistence crucial for proper mitochondrial function. Impaired mitochondrial protein dynamics are associated with decreased abundance of the serine-threonine kinase PRKD2 and HSP27 phosphorylated on serines 78 and 82. Cellular defects in HAX1–/– cells can be functionally reconstituted by HSP27. Thus, mitochondrial proteostasis emerges as a critical molecular and metabolic mechanism governing the differentiation and function of neutrophil granulocytes.
Collapse
Affiliation(s)
- Yanxin Fan
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Marta Murgia
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Monika I. Linder
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Yoko Mizoguchi
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Cong Wang
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Marcin Łyszkiewicz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Natalia Ziȩtara
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Yanshan Liu
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Stephanie Frenz
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| | - Gabriela Sciuccati
- Hematology and Oncology Department, Hospital de Pediatria “Prof. Dr. J.P. Garrahan,” Buenos Aires, Argentina
| | - Armando Partida-Gaytan
- Unidad de Investigación en Inmunodeficiencias Primarias, Instituto Nacional de Pediatría, Mexico City, Mexico
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells,” University of Goettingen, Goettingen, Germany
- Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Goettingen, Goettingen, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children’s Hospital and Gene Center, University Hospital, Ludwig-Maximilians-Universität (LMU), Munich, Germany
| |
Collapse
|
12
|
A Novel Homozygous HAX1 Mutation in a Child With Cyclic Neutropenia: A Case Report and Review. J Pediatr Hematol Oncol 2022; 44:e420-e423. [PMID: 33633030 DOI: 10.1097/mph.0000000000002110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Cyclic neutropenia is a rare genetic disorder causing the arrest of neutrophil function and is characterized by periodic neutropenia and recurrent infections. Patients with cyclic neutropenia with autosomal dominant, sporadic, and X-linked may have mutations in the ELANE gene, and autosomal recessive cases have homozygous/compound heterozygous variants in the HAX1 gene primarily. OBSERVATION The authors describe a novel variant in the HAX1 gene, which was detected by next-generation sequencing in an 8-year-old male child who presented with recurrent infections and neutropenia. CONCLUSION The patient extends the clinical variability associated with HAX1 variants and highlights the importance of genetic investigations in patients with suspected cyclic neutropenia.
Collapse
|
13
|
Velez-Tirado N, Yamazaki-Nakashimada MA, Lopez Valentín E, Partida-Gaytan A, Scheffler-Mendoza SC, Chaia Semerena GM, Alvarez-Cardona A, Suárez Gutiérrez MA, Medina Torres EA, Baeza Capetillo P, Hirschmugl T, Garncarz W, Espinosa-Padilla SE, Aguirre Hernández J, Klein C, Boztug K, Lugo Reyes SO. Severe congenital neutropenia due to G6PC3 deficiency: Case series of five patients and literature review. Scand J Immunol 2021; 95:e13136. [PMID: 34964150 DOI: 10.1111/sji.13136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 12/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Glucose-6-phosphate catalytic subunit 3 (G6PC3) deficiency is characterized by severe congenital neutropenia with recurrent pyogenic infections, a prominent superficial venous pattern, and cardiovascular and urogenital malformations, caused by an alteration of glucose homeostasis, with increased endoplasmic reticulum stress and cell apoptosis. METHODS We reviewed our patients with G6PC3 deficiency diagnosed along the last decade in Mexico; we also searched the PubMed/Medline database for the terms ("G6PC3 deficiency" OR "Dursun syndrome" OR "Severe congenital neutropenia type 4"), and selected articles published in English from 2009 to 2020. Results We found 89 patients reported from at least 14 countries in 4 continents. We describe five new cases from Mexico. Of the 94 patients 56% are male, 48% from Middle East countries, none of them had adverse reactions to live vaccines; all presented with at least one severe infection prior to age 2. 75% had syndromic features, mainly atrial septal defect in 55%, and prominent superficial veins in 62%. CONCLUSIONS With a total of 94 patients reported in the past decade, we delineate the most frequent laboratory and genetic features, their treatment, and outcomes, and to expand the knowledge of syndromic and non-syndromic phenotypes in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Patricia Baeza Capetillo
- Genetics Department, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico.,Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | | | - Jesús Aguirre Hernández
- Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,St. Anna Children's Cancer Research Institute (CCRI).,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
14
|
Doll L, Aghaallaei N, Dick AM, Welte K, Skokowa J, Bajoghli B. A zebrafish model for HAX1-associated congenital neutropenia. Haematologica 2021; 106:1311-1320. [PMID: 32327498 PMCID: PMC8094079 DOI: 10.3324/haematol.2019.240200] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Indexed: 12/13/2022] Open
Abstract
Severe congenital neutropenia is a rare heterogeneous group of diseases, characterized by an arrest of granulocyte maturation. Autosomal recessive mutations in the HAX1 gene are frequently detected in affected individuals. However, the precise role of HAX1 during neutrophil differentiation is poorly understood. To date, no reliable animal model has been established to study HAX1-associated congenital neutropenia. Here we show that knockdown of zebrafish hax1 impairs neutrophil development without affecting other myeloid cells and erythrocytes. Furthermore, we found that interference with Hax1 function decreases the expression level of key target genes of the granulocyte colony-stimulating factor signaling pathway. The reduced neutrophil numbers in the morphants could be reversed by granulocyte colony-stimulating factor, which is also the main therapeutic intervention for patients who have congenital neutropenia. Our results demonstrate that the zebrafish is a suitable model for HAX1-associated neutropenia. We anticipate that this model will serve as an in vivo platform to identify new avenues for developing tailored therapeutic strategies for patients with congenital neutropenia, particularly for those individuals who do not respond to granulocyte colony-stimulating factor treatment.
Collapse
Affiliation(s)
- Larissa Doll
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Narges Aghaallaei
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Advaita M Dick
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Karl Welte
- University Children Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| | - Baubak Bajoghli
- Dept. of Oncology, Hematology, Immunology and Rheumatology, University Hospital Tübingen, Germany
| |
Collapse
|
15
|
Pisani C, Onori A, Gabanella F, Di Certo MG, Passananti C, Corbi N. Identification of protein/mRNA network involving the PSORS1 locus gene CCHCR1 and the PSORS4 locus gene HAX1. Exp Cell Res 2021; 399:112471. [PMID: 33417922 DOI: 10.1016/j.yexcr.2021.112471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/22/2020] [Accepted: 12/30/2020] [Indexed: 01/22/2023]
Abstract
CCHCR1 (Coiled-Coil alpha-Helical Rod 1), maps to chromosomal region 6p21.3, within the major psoriasis susceptibility locus PSORS1. CCHCR1 itself is a plausible psoriasis candidate gene, however its role in psoriasis pathogenesis remains unclear. We previously demonstrated that CCHCR1 protein acts as a cytoplasmic docking site for RNA polymerase II core subunit 3 (RPB3) in cycling cells, suggesting a role for CCHCR1 in vesicular trafficking between cellular compartments. Here, we report a novel interaction between CCHCR1 and the RNA binding protein HAX1. HAX1 maps to chromosomal region 1q21.3 within the PSORS4 locus and is over-expressed in psoriasis. Both CCHCR1 and HAX1 share subcellular co-localization with mitochondria, nuclei and cytoplasmic vesicles as P-bodies. By a series of ribonucleoprotein immunoprecipitation (RIP) assays, we isolated a pool of mRNAs complexed with HAX1 and/or CCHCR1 proteins. Among the mRNAs complexed with both CCHCR1 and HAX1 proteins, there are Vimentin mRNA, previously described to be bound by HAX1, and CAMP/LL37 mRNA, whose gene product is over-expressed in psoriasis.
Collapse
Affiliation(s)
- Cinzia Pisani
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Annalisa Onori
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Francesca Gabanella
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy; CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Italy.
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Italy.
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Italy.
| |
Collapse
|
16
|
Choi HY, Park N, Lee B, Choe YI, Woo DK, Park JY, Yoo JC. CPNE1-mediated neuronal differentiation can be inhibited by HAX1 expression in HiB5 cells. Biochem Biophys Res Commun 2020; 533:319-324. [PMID: 32958249 DOI: 10.1016/j.bbrc.2020.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022]
Abstract
We previously demonstrated that CPNE1 induces neuronal differentiation and identified two binding proteins of CPNE1 (14-3-3γ and Jab1) as potential regulators of CPNE1-mediated neuronal differentiation in hippocampal progenitor cells. To better understand the cellular processes in which CPNE1 participates in neuronal differentiation, we here carried out a yeast two-hybrid screening to find another CPNE1 binding protein. Among the identified proteins, HCLS1-related protein X-1 (HAX1) directly interacts with CPNE1. Immunostaining experiments showed that a fraction of CPNE1 and HAX1 co-localized in the cytosol, particularly in the plasma membrane. In addition, the physical interaction as well as the specific binding regions between CPNE1 and HAX1 were confirmed in vitro and in vivo. Moreover, AKT phosphorylation, Tuj1 (neuronal marker protein) expression, and neurite outgrowth are all reduced in CPNE1/HAX1 overexpressing cells compared to CPNE1 only overexpressing HiB5 cells. Conversely, the HAX1 mutant that does not bind to CPNE1 was unable to inhibit the CPNE1-mediated neuronal differentiation. Together these results indicate that HAX1 is a binding partner of CPNE1 and CPNE1-mediated neuronal differentiation is negatively affected through the binding of HAX1, especially its N-terminal region, with CPNE1.
Collapse
Affiliation(s)
- Hye Young Choi
- Department of Radiology, Gyeongsang National University Hospital and College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Nammi Park
- Cardiovascular and Metabolic Disease Center, Paik Hospital, Inje University, Busan, 47392, Republic of Korea
| | - Boah Lee
- Department of Bio and Brain Engineering, KAIST, Daejeon, 305-701, Republic of Korea
| | - Yeong In Choe
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Dong Kyun Woo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Jae-Yong Park
- School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Cheal Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
17
|
Lyu B, Lyu W, Zhang X. Kostmann Syndrome With Neurological Abnormalities: A Case Report and Literature Review. Front Pediatr 2020; 8:586859. [PMID: 33381479 PMCID: PMC7767819 DOI: 10.3389/fped.2020.586859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/09/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Severe congenital neutropenia (SCN), also known as Kostmann syndrome, is a rare heterogeneous group of diseases characterized by arrested neutrophil maturation in the bone marrow. Case Presentation: We report a case of Kostmann syndrome and review previously reported SCN cases with neurological abnormalities. A 10-year-old boy had a history of recurrent, once a month, infection starting at 6 months of age. He had neutropenia for more than 9 years, as well as intellectual disability. He was homozygous for the exon 3 c.430dupG mutation of the HAX1 gene NM-006118. After treatment of antibiotics and G-CSF, his symtoms were relieved and was 3 months free of infection. The search revealed 29 articles related to Kostmann syndrome caused by HAX1 gene mutation; they were screened, and the main clinical features of 13 cases of Kostmann syndrome with neurological abnormalities were summarized and analyzed. Conclusions: Kostmann syndrome has three main characteristics: severe neutropenia (<0.2 × 109/L), maturation arrest of granulopoiesis at the promyelocyte stage, and death due to infections. HAX1 gene mutations affecting both isoforms A and B are associated with additional neurological symptoms. G-CSF can improve and maintain neutrophil counts, and improve prognosis and quality of life. At present, hematopoietic stem cell transplantation is the only cure.
Collapse
Affiliation(s)
- Baiyu Lyu
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Lyu
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoying Zhang
- Department of Pediatrics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Vamecq J, Papegay B, Nuyens V, Boogaerts J, Leo O, Kruys V. Mitochondrial dysfunction, AMPK activation and peroxisomal metabolism: A coherent scenario for non-canonical 3-methylglutaconic acidurias. Biochimie 2019; 168:53-82. [PMID: 31626852 DOI: 10.1016/j.biochi.2019.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Abstract
The occurrence of 3-methylglutaconic aciduria (3-MGA) is a well understood phenomenon in leucine oxidation and ketogenesis disorders (primary 3-MGAs). In contrast, its genesis in non-canonical (secondary) 3-MGAs, a growing-up group of disorders encompassing more than a dozen of inherited metabolic diseases, is a mystery still remaining unresolved for three decades. To puzzle out this anthologic problem of metabolism, three clues were considered: (i) the variety of disorders suggests a common cellular target at the cross-road of metabolic and signaling pathways, (ii) the response to leucine loading test only discriminative for primary but not secondary 3-MGAs suggests these latter are disorders of extramitochondrial HMG-CoA metabolism as also attested by their failure to increase 3-hydroxyisovalerate, a mitochondrial metabolite accumulating only in primary 3-MGAs, (iii) the peroxisome is an extramitochondrial site possessing its own pool and displaying metabolism of HMG-CoA, suggesting its possible involvement in producing extramitochondrial 3-methylglutaconate (3-MG). Following these clues provides a unifying common basis to non-canonical 3-MGAs: constitutive mitochondrial dysfunction induces AMPK activation which, by inhibiting early steps in cholesterol and fatty acid syntheses, pipelines cytoplasmic acetyl-CoA to peroxisomes where a rise in HMG-CoA followed by local dehydration and hydrolysis may lead to 3-MGA yield. Additional contributors are considered, notably for 3-MGAs associated with hyperammonemia, and to a lesser extent in CLPB deficiency. Metabolic and signaling itineraries followed by the proposed scenario are essentially sketched, being provided with compelling evidence from the literature coming in their support.
Collapse
Affiliation(s)
- Joseph Vamecq
- Inserm, CHU Lille, Univ Lille, Department of Biochemistry and Molecular Biology, Laboratory of Hormonology, Metabolism-Nutrition & Oncology (HMNO), Center of Biology and Pathology (CBP) Pierre-Marie Degand, CHRU Lille, EA 7364 RADEME, University of North France, Lille, France.
| | - Bérengère Papegay
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Vincent Nuyens
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Jean Boogaerts
- Laboratory of Experimental Medicine (ULB unit 222), University Hospital Center, Charleroi, (CHU Charleroi), Belgium
| | - Oberdan Leo
- Laboratory of Immunobiology, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| | - Véronique Kruys
- Laboratory of Molecular Biology of the Gene, Department of Molecular Biology, ULB Immunology Research Center (UIRC), Free University of Brussels (ULB), Gosselies, Belgium
| |
Collapse
|
19
|
|
20
|
Furutani E, Newburger PE, Shimamura A. Neutropenia in the age of genetic testing: Advances and challenges. Am J Hematol 2019; 94:384-393. [PMID: 30536760 DOI: 10.1002/ajh.25374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
Identification of genetic causes of neutropenia informs precision medicine approaches to medical management and treatment. Accurate diagnosis of genetic neutropenia disorders informs treatment options, enables risk stratification, cancer surveillance, and attention to associated medical complications. The rapidly expanding genetic testing options for the evaluation of neutropenia have led to exciting advances but also new challenges. This review provides a practical guide to germline genetic testing for neutropenia.
Collapse
Affiliation(s)
- Elissa Furutani
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| | - Peter E. Newburger
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
- Department of PediatricsUniversity of Massachusetts Medical School Worcester MA
| | - Akiko Shimamura
- Dana Farber and Boston Children's Cancer and Blood Disorders Center Boston MA
| |
Collapse
|
21
|
Novel HAX1 Gene Mutation in a Vietnamese Boy with Severe Congenital Neutropenia. Case Rep Pediatr 2019; 2018:2798621. [PMID: 30598852 PMCID: PMC6288574 DOI: 10.1155/2018/2798621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/11/2018] [Indexed: 11/18/2022] Open
Abstract
Severe congenital neutropenia (SCN) is a rare disease that involves a heterogeneous group of hereditary diseases. Mutations in the HAX1 gene can cause an autosomal recessive form of SCN-characterized low blood neutrophil count from birth, increased susceptibility to recurrent and life-threatening infections, and preleukemia predisposition. A 7-year-old boy was admitted due to life-threatening infections, mental retardation, and severe neutropenia. He had early-onset bacterial infections, and his serial complete blood count showed persistent severe neutropenia. One older sister and one older brother of the patient died at the age of 6 months and 5 months, respectively, because of severe infection. Bone marrow analysis revealed a maturation arrest at the promyelocyte/myelocyte stage with few mature neutrophils. In direct DNA sequencing analysis, we found a novel homozygous frameshift mutation (c.423_424insG, p.Gly143fs) in the HAX1 gene, confirming the diagnosis of SCN. The patient was successfully treated with granulocyte colony-stimulating factor (G-CSF) and antibiotics. A child with early-onset recurrent infections and neutropenia should be considered to be affected with SCN. Genetic analysis is useful to confirm diagnosis. Timely diagnosis and suitable treatment with G-CSF and antibiotics are important to prevent further complication.
Collapse
|
22
|
Bakhtiar S, Shadur B, Stepensky P. The Evidence for Allogeneic Hematopoietic Stem Cell Transplantation for Congenital Neutrophil Disorders: A Comprehensive Review by the Inborn Errors Working Party Group of the EBMT. Front Pediatr 2019; 7:436. [PMID: 31709206 PMCID: PMC6821686 DOI: 10.3389/fped.2019.00436] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/07/2019] [Indexed: 12/19/2022] Open
Abstract
Congenital disorders of the immune system affecting maturation and/or function of phagocytic leucocytes can result in severe infectious and inflammatory complications with high mortality and morbidity. Further complications include progression to MDS/AML in some cases. Allogeneic stem cell transplantation is the only curative treatment for most patients with these diseases. In this review, we provide a detailed update on indications and outcomes of alloHSCT for congenital neutrophil disorders, based on data from the available literature.
Collapse
Affiliation(s)
- Shahrzad Bakhtiar
- Division for Pediatric Stem Cell Transplantation and Immunology, University Hospital Frankfurt, Frankfurt, Germany
| | - Bella Shadur
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel.,Department of Immunology, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,Graduate Research School, University of New South Wales, Kensington, NSW, Australia
| | - Polina Stepensky
- Department of Bone Marrow Transplantation and Cancer Immunotherapy, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
23
|
Coexistence of Gaucher Disease and severe congenital neutropenia. Blood Cells Mol Dis 2018; 76:1-6. [PMID: 30473482 DOI: 10.1016/j.bcmd.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 11/21/2022]
Abstract
Gaucher Disease (GD) is the most common lysosomal storage disorder has traditionally been classified into three clinical phenotypes. Type 3 GD is characterized by neurological involvement but neurological symptoms generally appear later in life than in type 2 disease. Neutropenia is much rarer than other hematological manifestations in GD and has not been scrutinized adequately. Severe congenital neutropenia (SCN) is a rare disease entity which is characterized by a paucity of peripherally circulating neutrophils with arrest of neutrophil maturation at the promyelocyte stage and consequent increased susceptibility to severe and recurrent infections. We report a patient who presented in the first year of life with visceral involvement and severe neutropenia in whom the propositus had a unique coexistence of Gaucher Disease and severe congenital neutropenia associated with a mutation in HAX1. In contrast to his expired siblings he had experienced no severe infections. These clinical observations suggest that enzyme replacement therapy may display a modulating factor with respect to the clinical course of SCN. SYNOPSIS: Our patient is the only report of the combination of Gaucher Disease and Kostmann Syndrome in the literature. The clinical course of our patient is not severe when comparing with exitus siblings and other Kostmann Syndrome patients. But when considering the patient's only clinical difference is ERT, this case is very important to emphasise the role of enzyme replacement therapy in bone marrow.
Collapse
|
24
|
Lu X, Xue P, Fu L, Zhang J, Jiang J, Guo X, Bao G, Xu G, Sun Y, Chen J, Cui Z. HAX1 is associated with neuronal apoptosis and astrocyte proliferation after spinal cord injury. Tissue Cell 2018; 54:1-9. [PMID: 30309497 DOI: 10.1016/j.tice.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 12/13/2022]
Abstract
HS1-associated protein X-1 (HAX1) is a class of multifunctional protein, participated in various physiological processes such as cell apoptosis, proliferation and motility. However, the HAX1 expression and function in the spinal cord injury (SCI) pathological process have not been investigated. In our current research, the rat model of SCI was established, and then we explored the possible role of HAX1 after SCI. The results of western blot indicated that HAX1 was present in sham operated control group and significantly elevated at 3 days post SCI, then declined gradually. Immunohistochemical studies indicated HAX1 expression was enhanced significantly in white and gray matter at 3 days post SCI compared with sham operated group. Double immunofluorescence staining showed the proportion of cells, double-labeled HAX1 and neurons, astrocytes, increased significantly at 3 days post SCI. In addition, co-localization of HAX1/active caspase-3 and HAX1/PCNA was tested in cells. Furthermore, over-expression of HAX1 inhibited neuronal apoptosis in vitro, and in astrocytes HAX1 silencing could down-regulate PCNA expression post LPS treatment. Meanwhile, CCK8 assay showed that knockdown of HAX1 could inhibit the astrocyte proliferation. In summary, our data indicated that HAX1 might play significant roles in pathological process of neuronal apoptosis and astrocyte proliferation during SCI.
Collapse
Affiliation(s)
- Xiongsong Lu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China; Medical College, Nantong University, Jiangsu, People's Republic of China
| | - Pengfei Xue
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Luyu Fu
- Department of Pathophysiology, Medical College, Nantong University, Jiangsu, People's Republic of China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiawei Jiang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Xiaofeng Guo
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guofeng Bao
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Guanhua Xu
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yuyu Sun
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jiajia Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|