1
|
Rajaganesh R, Murugan K. Anti-dengue potential and mosquitocidal effect of marine green algae-stabilized Mn-doped superparamagnetic iron oxide nanoparticles (Mn-SPIONs): an eco-friendly approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19575-19594. [PMID: 38363508 DOI: 10.1007/s11356-024-32413-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Vector-borne diseases pose a significant public health challenge in economically disadvantaged nations. Malaria, dengue fever, chikungunya, Zika, yellow fever, Japanese encephalitis, and lymphatic filariasis are spread by mosquitoes. Consequently, the most effective method of preventing these diseases is to eliminate the mosquito population. Historically, the majority of control programs have depended on chemical pesticides, including organochlorines, organophosphates, carbamates, and pyrethroids. Synthetic insecticides used to eradicate pests have the potential to contaminate groundwater, surface water, beneficial soil organisms, and non-target species. Nanotechnology is an innovative technology that has the potential to be used in insect control with great precision. The goal of this study was to test the in vitro anti-dengue potential and mosquitocidal activity of Chaetomorpha aerea and C. aerea-synthesized Mn-doped superparamagnetic iron oxide nanoparticles (CA-Mn-SPIONs). The synthesis of CA-Mn-SPIONs using C. aerea extract was verified by the observable alteration in the colour of the reaction mixture, transitioning from a pale green colour to a brown. The study of UV-Vis spectra revealed absorbance peaks at approximately 290 nm, which can be attributed to the surface Plasmon resonance of the CA-Mn-SPIONs. The SEM, TEM, EDX, FTIR, vibrating sample magnetometry, and XRD analyses provided evidence that confirmed the presence of CA-Mn-SPIONs. In the present study, results revealed that C. aerea aqueous extract LC50 values against Ae. aegypti ranged from 222.942 (first instar larvae) to 349.877 ppm in bioassays (pupae). CA-Mn-SPIONs had LC50 ranging from 20.199 (first instar larvae) to 26.918 ppm (pupae). After treatment with 40 ppm CA-Mn-SPIONs and 500 ppm C. aerea extract in ovicidal tests, egg hatchability was lowered by 100%. Oviposition deterrence experiments showed that in Ae. aegypti, oviposition rates were lowered by more than 66% by 100 ppm of green algal extract and by more than 71% by 10 ppm of CA-Mn-SPIONs (oviposition activity index values were 0.50 and 0.55, respectively). Moreover, in vitro anti-dengue activity of CA-Mn-SPIONs has good anti-viral property against dengue viral cell lines. In addition, GC-MS analysis showed that 21 intriguing chemicals were discovered. Two significant phytoconstituents in the methanol extract of C. aerea include butanoic acid and palmitic acid. These two substances were examined using an in silico methodology against the NS5 methyltransferase protein and demonstrated good glide scores and binding affinities. Finally, we looked into the morphological damage and fluorescent emission of third instar Ae. aegypti larvae treated with CA-Mn-SPIONs. Fluorescent emission is consistent with ROS formation of CA-Mn-SPIONs against Ae. aegypti larvae. The present study determines that the key variables for the successful development of new insecticidal agents are rooted in the eco-compatibility and the provision of alternative tool for the pesticide manufacturing sector.
Collapse
Affiliation(s)
- Rajapandian Rajaganesh
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Medical Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| |
Collapse
|
2
|
Green Nano-Biotechnology: A New Sustainable Paradigm to Control Dengue Infection. Bioinorg Chem Appl 2022; 2022:3994340. [PMID: 35979184 PMCID: PMC9377959 DOI: 10.1155/2022/3994340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/09/2022] [Indexed: 12/17/2022] Open
Abstract
Dengue is a growing mosquito-borne viral disease prevalent in 128 countries, while 3.9 billion people are at high risk of acquiring the infection. With no specific treatment available, the only way to mitigate the risk of dengue infection is through controlling of vector, i.e., Aedes aegypti. Nanotechnology-based prevention strategies like biopesticides with nanoformulation are now getting popular for preventing dengue fever. Metal nanoparticles (NPs) synthesized by an eco-friendly process, through extracts of medicinal plants have indicated potential anti-dengue applications. Green synthesis of metal NPs is simple, cost-effective, and devoid of hazardous wastes. The recent progress in the phyto-synthesized multifunctional metal NPs for anti-dengue applications has encouraged us to review the available literature and mechanistic aspects of the dengue control using green-synthesized NPs. Furthermore, the molecular bases of the viral inhibition through NPs and the nontarget impacts or hazards with reference to the environmental integrity are discussed in depth. Till date, major focus has been on green synthesis of silver and gold NPs, which need further extension to other innovative composite nanomaterials. Further detailed mechanistic studies are required to critically evaluate the mechanistic insights during the synthesis of the biogenic NPs. Likewise, detailed analysis of the toxicological aspects of NPs and their long-term impact in the environment should be critically assessed.
Collapse
|
3
|
Murugan K, Subramaniam J, Rajaganesh R, Panneerselvam C, Amuthavalli P, Vasanthakumaran M, Jayashanthini S, Dinesh D, Anitha J, Wang L, Hwang JS, Dahms HU, Mudigonda S, Aziz AT. Efficacy and side effects of bio-fabricated sardine fish scale silver nanoparticles against malarial vector Anopheles stephensi. Sci Rep 2021; 11:19567. [PMID: 34599250 PMCID: PMC8486798 DOI: 10.1038/s41598-021-98899-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
Mosquitoes are a great menace for humankind since they transmit pathogenic organisms causing Malaria, Dengue, Chikungunya, Elephantiasis and Japanese encephalitis. There is an urgent need to discover new and novel biological tools to mitigate mosquito-borne diseases. To develop bioinsecticides through newly developed nanotechnology is another option in the present research scenario. In this study we synthesize and characterize sardine fish scales with silver nitrate by adopting various instrumental techniques such as UV- and FTIR-spectroscopy, energy-dispersive X-ray (EDAX), X-ray diffraction analyses (XRD) and scanning electron microscopy (SEM). Toxicity bioassays were conducted with young developmental stages of mosquito vectors. Significant mortality appeared after different life stages of mosquito vectors (young larval and pupal instars were exposed to the nanomaterials). LC50 values were 13.261 ppm for young first instar larvae and 32.182 ppm for pupae. Feeding and predatory potential of G. affinis, before and after exposure to nanoparticles against mosquito larval (I & II) instars of the mosquitoes showed promising results in laboratory experiments. Feeding potential of mosquito fish without nanoparticle treatment was 79.7% and 70.55% for the first and second instar larval populations respectively. At the nanoparticle-exposed situation the predatory efficiency of mosquitofish was 94.15% and 84.3%, respectively. Antioxidant enzymes like (SOD), (CAT), and (LPO) were estimated in the gill region of sardine fish in control and experimental waters. A significant reduction of egg hatchability was evident after nanoparticle application. It became evident from this study that the nano-fabricated materials provide suitable tools to control the malaria vector Anopheles stephensi in the aquatic phase of its life cycle. This finding suggests an effective novel approach to mosquito control.
Collapse
Affiliation(s)
- Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| | - Jayapal Subramaniam
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Pandiyan Amuthavalli
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | | | - Sudalaimani Jayashanthini
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Devakumar Dinesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Jaganathan Anitha
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, 030006, Shanxi, China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, 20224, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Hans-Uwe Dahms
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan
- Research Center for Environmental Medicine, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, 804, Taiwan
| | - Sunaina Mudigonda
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80424, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung City, 807, Taiwan
| | - Al Thabiani Aziz
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
4
|
Kojom Foko LP, Eya'ane Meva F, Eboumbou Moukoko CE, Ntoumba AA, Ekoko WE, Ebanda Kedi Belle P, Ndjouondo GP, Bunda GW, Lehman LG. Green-synthesized metal nanoparticles for mosquito control: A systematic review about their toxicity on non-target organisms. Acta Trop 2021; 214:105792. [PMID: 33310077 DOI: 10.1016/j.actatropica.2020.105792] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 01/14/2023]
Abstract
Studies capturing the high efficiency of green-synthesized metal nanoparticles (NPs) in targeting mosquito vectors of the world's main infectious diseases suggest the NPs' possible utilization as bio-insecticides. However, it is necessary to confirm that these potential bio-insecticides are not harmful to non-target organisms that are often sympatric and natural enemies of the vectors of these diseases. In this systematic review, we comprehensively analyse the content of 56 publications focused on the potentially deleterious effects of NPs on these non-target organisms. Current research on biosynthesised NPs, characterization, and impact on mosquito vectors and non-target larvivorous organisms is reviewed and critically discussed. Finally, we pinpoint some major challenges that merit future investigation. Plants (87.5%) were mainly used for synthesizing NPs in the studies. NPs were found to be spherical or mainly spherical in shape with a large distribution size. In most of the included studies, NPs showed interesting mosquitocidal activity (LC50 < 50 ppm). Some plant families (e.g., Meliaceae, Poaceae, Lamiaceae) have produced NPs with a particularly high larvicidal and pupicidal activity (LC50 < 10 ppm). Regarding non-target organisms, most of the studies concluded that NPs were safe to them, with boosted predatory activity in NP-treated milieu. In contrast, some studies reported NP-elicited adverse effects (i.e., genotoxic, nuclear, and enzymatic effects) on these non-target organisms. This review outlines the promising mosquitocidal effects of biosynthesized NPs, recognizing that NPs' potential usage is currently limited by the harm NPs are thought pose to non-target organism. It is of utmost importance to investigate green NPs to determine whether laboratory findings have applications in the real world.
Collapse
|
5
|
Bionetworks, system biology, and superorganisms. INSECT-BORNE DISEASES IN THE 21ST CENTURY 2020. [PMCID: PMC7441993 DOI: 10.1016/b978-0-12-818706-7.00004-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Neelawala D, Rajapakse S, Kumbukgolla WW. Potential of medicinal plants to treat dengue. INTERNATIONAL JOURNAL OF ONE HEALTH 2019. [DOI: 10.14202/ijoh.2019.86-91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Dengue is a major public health challenge worldwide, particularly in tropical areas. Nearly 390 million infections and 22,000 deaths occur every year. At present, there are no specific therapeutics available to treat dengue; however, possible treatment procedures are explained in the traditional medical systems (TMSs), such as Sri Lankan TMS, Indian Ayurvedic, Unani, and Siddha TMS. In these TMSs, medicinal plants have been used in several ways against dengue, such as virocides, larvicides, and mosquito repellents. Therefore, medicinal plants inherit biologically active compounds/lead compounds that are yet to be identified chemically and physiologically. Herein, we discuss the possible applications of crude plant extracts and isolated phytochemicals from medicinal plants such as quercetin, sulfated galactomannans, flavonoids, and glabranine in controlling dengue. Moreover, medicinal plant-based therapeutics can be safer, cost-effective, and non-toxic. Therefore, this paper reviews the medicinal plants that are used in TMSs to manage dengue, the phytochemicals they contain, and mode of action of these phytochemicals such as virocides, larvicides, and mosquito repellents.
Collapse
Affiliation(s)
- Dulanjalee Neelawala
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50000, Sri Lanka
| | - Sanjaya Rajapakse
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50000, Sri Lanka
| | - Wikum Widuranga Kumbukgolla
- Department of Biochemistry, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Anuradhapura 50000, Sri Lanka
| |
Collapse
|
7
|
One-Step Synthesis of Ag Nanoparticles Using Aqueous Extracts from Sundarbans Mangroves Revealed High Toxicity on Major Mosquito Vectors and Microbial Pathogens. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01631-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Pavela R, Maggi F, Iannarelli R, Benelli G. Plant extracts for developing mosquito larvicides: From laboratory to the field, with insights on the modes of action. Acta Trop 2019; 193:236-271. [PMID: 30711422 DOI: 10.1016/j.actatropica.2019.01.019] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/23/2019] [Accepted: 01/23/2019] [Indexed: 01/27/2023]
Abstract
In the last decades, major research efforts have been done to investigate the insecticidal activity of plant-based products against mosquitoes. This is a modern and timely challenge in parasitology, aimed to reduce the frequent overuse of synthetic pesticides boosting resistance development in mosquitoes and causing serious threats to human health and environment. This review covers the huge amount of literature available on plant extracts tested as mosquito larvicides, particularly aqueous and alcoholic ones, due to their easy formulation in water without using surfactants. We analysed results obtained on more than 400 plant species, outlining that 29 of them have outstanding larvicidal activity (i.e., LC50 values below 10 ppm) against major vectors belonging to the genera Anopheles, Aedes and Culex, among others. Furthermore, synergistic and antagonistic effects between plant extracts and conventional pesticides, as well as among selected plant extracts are discussed. The efficacy of pure compounds isolated from the most effective plant extracts and - when available - their mechanism of action, as well as the impact on non-target species, is also covered. These belong to the following class of secondary metabolites: alkaloids, alkamides, sesquiterpenes, triterpenes, sterols, flavonoids, coumarins, anthraquinones, xanthones, acetogenonins and aliphatics. Their mode of action on mosquito larvae ranges from neurotoxic effects to inhibition of detoxificant enzymes and larval development and/or midugut damages. In the final section, current drawbacks as well as key challenges for future research, including technologies to synergize efficacy and improve stability - thus field performances - of the selected plant extracts, are outlined. Unfortunately, despite the huge amount of laboratory evidences about their efficacy, only a limited number of studies was aimed to validate their efficacy in the field, nor the epidemiological impact potentially arising from these vector control operations has been assessed. This strongly limits the development of commercial mosquito larvicides of botanical origin, at variance with plant-borne products developed in the latest decades to kill or repel other key arthropod species of medical and veterinary importance (e.g., ticks and lice), as well as mosquito adults. Further research on these issues is urgently needed.
Collapse
Affiliation(s)
- Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06, Prague 6, Ruzyne, Czech Republic
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy.
| | - Romilde Iannarelli
- School of Pharmacy, University of Camerino, via Sant'Agostino, 62032 Camerino, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
9
|
Gawali P, Jadhav B. Synthesis of Ag/AgCl Nanoparticles and their action on Human Serum albumin: A fluorescence study. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Benelli G, Maggi F, Pavela R, Murugan K, Govindarajan M, Vaseeharan B, Petrelli R, Cappellacci L, Kumar S, Hofer A, Youssefi MR, Alarfaj AA, Hwang JS, Higuchi A. Mosquito control with green nanopesticides: towards the One Health approach? A review of non-target effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10184-10206. [PMID: 28755145 DOI: 10.1007/s11356-017-9752-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/27/2023]
Abstract
The rapid spread of highly aggressive arboviruses, parasites, and bacteria along with the development of resistance in the pathogens and parasites, as well as in their arthropod vectors, represents a huge challenge in modern parasitology and tropical medicine. Eco-friendly vector control programs are crucial to fight, besides malaria, the spread of dengue, West Nile, chikungunya, and Zika virus, as well as other arboviruses such as St. Louis encephalitis and Japanese encephalitis. However, research efforts on the control of mosquito vectors are experiencing a serious lack of eco-friendly and highly effective pesticides, as well as the limited success of most biocontrol tools currently applied. Most importantly, a cooperative interface between the two disciplines is still lacking. To face this challenge, we have reviewed a wide number of promising results in the field of green-fabricated pesticides tested against mosquito vectors, outlining several examples of synergy with classic biological control tools. The non-target effects of green-fabricated nanopesticides, including acute toxicity, genotoxicity, and impact on behavioral traits of mosquito predators, have been critically discussed. In the final section, we have identified several key challenges at the interface between "green" nanotechnology and classic biological control, which deserve further research attention.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124, Pisa, Italy.
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 16106, Prague 6, Czech Republic
| | - Kadarkarai Murugan
- Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632 115, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, Tamil Nadu, 608 002, India
| | - Baskaralingam Vaseeharan
- Nanobiosciences and Nanopharmacology Division, Biomaterials and Biotechnology in Animal Health Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630004, India
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, 62032, Camerino, Italy
| | - Suresh Kumar
- Department of Medical Microbiology and Parasitology, 43400, Serdang, Malaysia
| | - Anders Hofer
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, Sweden
| | - Mohammad Reza Youssefi
- Department of Veterinary Parasitology, Babol-Branch, Islamic Azad University, Babol, Iran
| | - Abdullah A Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Akon Higuchi
- Department of Chemical and Materials Engineering, National Central University, Taoyuan, 32001, Taiwan
| |
Collapse
|
11
|
Jinu U, Jayalakshmi N, Sujima Anbu A, Mahendran D, Sahi S, Venkatachalam P. Biofabrication of Cubic Phase Silver Nanoparticles Loaded with Phytochemicals from Solanum nigrum Leaf Extracts for Potential Antibacterial, Antibiofilm and Antioxidant Activities Against MDR Human Pathogens. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1125-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|