1
|
Eshun G, Osonga FJ, Sadik OA. Quercetin-Derived Platinum Nanomaterials Influence Particle Stability, Catalytic, and Antimicrobial Performance. ACS OMEGA 2024; 9:38557-38568. [PMID: 39310166 PMCID: PMC11411542 DOI: 10.1021/acsomega.4c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 09/25/2024]
Abstract
Quercetin possesses high biological properties but low bioavailability, poor solubility, and rapid body clearance. Its structural modification is imperative for enhanced applications. Herein, we demonstrate the catalytic and antimicrobial characteristics of shape-dependent (cuboidal and peanuts) platinum nanoparticles. Modified quercetin, 4'-QP, was employed as the reducing and stabilizing agent for the aqueous synthesis of PtNPs without extraneous reagents. Monodispersed platinum nanocubes (C-PtNPs) and nanopeanuts (P-PtNPs) were produced by reacting 4'-QP and Pt ions in the ratios of 3:1 and 1:1, respectively. TEM characterization confirmed the formation of Pt nanocubes and Pt nanopeanuts, with their corresponding sizes of 39.1 ± 0.20 and 45.1 ± 0.24 nm. The shape-dependency of PtNPs on the nosocomial-causing bacteria, Citrobacter freundii ATCC 8090 (C. freundii) was determined by the Agar well-diffusion assay. Under the same particle size and dose treatments, C-PtNPs and P-PtNPs exhibited 16.28 ± 0.10 and 4.50 ± 0.15 mm zones of inhibition with minimum inhibitory concentrations of 25 and 45 μg/mL, respectively. SEM analysis of C-PtNPs treated C. freundii showed a damaged cell membrane and confirmed contact-killing as the antibacterial mechanism. The catalytic conversion of 4-nitrophenol (4-NP) to 4-amino phenol (4-AP) was tested using a shape-dependent PtNPs catalyst in the presence of sodium borohydride. The conversion rates (k) of C-PtNPs and P-PtNPs in wastewater samples from New Jersey were 0.0108 and 0.00607 s-1, respectively.
Collapse
Affiliation(s)
- Gaddi
B. Eshun
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| | - Francis J. Osonga
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| | - Omowunmi A. Sadik
- Department of Chemistry and Environmental
Science BioSMART Center, New Jersey Institute
of Technology, University Heights, 151 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Chakraborty P, Krishnani KK, Mulchandani A, Paniprasad K, Sarkar DJ, Sawant PB, Kumar N, Sarkar B, Mallik A, Pal P, Nagendrasai K, Das BK. Speciation-specific chromium bioaccumulation and detoxification in fish using hydrogel microencapsulated biogenic nanosilver and zeolite synergizing with biomarkers. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:298. [PMID: 38980518 DOI: 10.1007/s10653-024-02061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/31/2024] [Indexed: 07/10/2024]
Abstract
Grass carp intestinal waste-mediated biosynthesized nanosilver (AgNPs) was valorized using guaran and zeolite matrices, resulting in AgNPs-guaran, AgNPs-zeolite, and AgNPs-guaran -zeolite composites. The valorized products were examined using Environmental Scanning Electron Microscopy, Energy Dispersive X-ray analysis and X-ray Diffraction analysis to confirm uniform dispersion and entrapment of AgNPs within the matrixes. These valorized products were evaluated for their efficacy in detoxifying the ubiquitous and toxic hexavalent chromium (Cr6+) in aquatic environments, with Anabas testudineus exposed to 2 mg l-1 of Cr6+ for 60 days. Remarkable reduction of Cr6+ concentration to 0.86 ± 0.007 mg l-1 was achieved with AgNPs-guaran-zeolite composite, indicating successful reclamation of contaminated water and food safety assurance. Consistency in results was further corroborated by minimal stress-related alterations in fish physiological parameters and integrated biomarker response within the experimental group treated with the AgNPs-guaran-zeolite composite. Despite observed chromium accumulation in fish tissues, evidence of physiological stability was apparent, potentially attributable to trivalent chromium accumulation, serving as an essential nutrient for the fish. Additionally, the challenge study involving Anabas testudineus exposed to Aeromonas hydrophila exhibited the lowest cumulative mortality (11.11%) and highest survival rate (87.5%) within the same experimental group. The current study presents a novel approach encompassing the valorization of AgNPs for Cr6+ detoxification under neutral to alkaline pH conditions, offering a comprehensive framework for environmental remediation.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India.
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Kurcheti Paniprasad
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Paramita Banerjee Sawant
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Abhijit Mallik
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University, Imphal, 799210, India
| | - Kurapati Nagendrasai
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| |
Collapse
|
3
|
Stadnicka-Futoma A, Nobis M. Geographical-Historical Analysis of the Herbarium Specimens Representing the Economically Important Family Amaranthaceae ( Chenopodiaceae-Amaranthaceae Clade) Collected in 1821-2022 and Preserved in the Herbarium of the Jagiellonian University in Krakow. BIOLOGY 2024; 13:435. [PMID: 38927315 PMCID: PMC11201225 DOI: 10.3390/biology13060435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/31/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Herbaria constitute a form of documentation, store and secure comparative material, as well as constitute an extra original gene bank. They are an invaluable database among others for the biological, ethnobotanical and agricultural sciences. The digitization of herbarium collections significantly facilitates access to archival materials; however, searching them is still time-consuming. Therefore, our work aims to analyze the herbarium collection of 8801 sheets for specimens representing the economically important family Amaranthaceae (Chenopodiaceae-Amaranthaceae clade) deposited the oldest herbarium in Poland, the herbarium of the Jagiellonian University (KRA). These specimens have been collected from almost all the continents in dozens of countries for over 200 years. The analyses conducted, including the taxonomic coverage, geographical characteristics and origin, temporal coverage and utility importance of representative species, present the discussed resources in a more accessible way and may become a more attractive form for scientists potentially interested in more advanced research work.
Collapse
Affiliation(s)
- Agata Stadnicka-Futoma
- Department of Soil Science, Environmental Chemistry and Hydrology, Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Sciences, University of Rzeszów, ul. Zelwerowicza 8b, 35-601 Rzeszów, Poland
| | - Marcin Nobis
- Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland;
| |
Collapse
|
4
|
Chakraborty P, Krishnani KK, Mulchandani A, Sarkar DJ, Das BK, Paniprasad K, Banerjee Sawant P, Kumar N, Sarkar B, Poojary N, Mallik A, Pal P. Toxicity assessment of poultry-waste biosynthesized nanosilver in Anabas testudineus (Bloch, 1792) for responsible and sustainable aquaculture development-A multi-biomarker approach. ENVIRONMENTAL RESEARCH 2023; 235:116648. [PMID: 37451582 DOI: 10.1016/j.envres.2023.116648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
The current study investigates the potential utilization of poultry intestines for the synthesis of stable silver nanoparticles (AgNPs) and their impact on fish physiology. The AgNPs were synthesized and characterized using various analytical techniques. The toxicity of AgNPs on Anabas testudineus was evaluated, determining a 96-h LC50 value of 25.46 mg l-1. Subsequently, fish were exposed to concentrations corresponding to 1/10th, 1/25th, 1/50th, and 1/100th of the estimated LC50 for a duration of 60 days in a sub-acute study. A comprehensive range of biomarkers, including haematological, serum, oxidative stress, and metabolizing markers, were analyzed to assess the physiological responses of the fish. Additionally, histopathological examinations were conducted, and the accumulation of silver in biomarker organs was measured. The results indicate that silver tends to bioaccumulate in all biomarker organs in a dose- and time-dependent manner, except for the muscle tissue, where accumulation initially increased and subsequently decreased, demonstrating the fish's inherent ability for natural attenuation. Analysis of physiological data and integrated biomarker responses reveal that concentrations of 1/10th, 1/25th, and 1/50th of the LC50 can induce stress in the fish, while exposure to 1/100th of the LC50 shows minimal to no stress response. Overall, this study provides valuable insights into the toxicity and physiological responses of fish exposed to poultry waste biosynthesized AgNPs, offering potential applications in aquaculture while harnessing their unique features.
Collapse
Affiliation(s)
- Puja Chakraborty
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Kishore Kumar Krishnani
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India.
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, USA
| | - Dhruba Jyoti Sarkar
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Basanta Kumar Das
- ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, Kolkata, India
| | - Kurcheti Paniprasad
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Paramita Banerjee Sawant
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Neeraj Kumar
- ICAR-National Institute of Abiotic Stress Management, Baramati, Pune, Maharashtra, 413115, India
| | - Biplab Sarkar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, 834010, India
| | - Nalini Poojary
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Abhijit Mallik
- ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri (W), Mumbai, 400061, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University, Imphal, 799210, India
| |
Collapse
|
5
|
Wang H, Yuan CG, Liu C, Duan X, Guo Q, Shen Y, Liu J, Chen Y. Microwave-assisted continuous flow phytosynthesis of silver nanoparticle/reduced graphene oxide composites and related visible light catalytic performance. J Environ Sci (China) 2022; 115:286-293. [PMID: 34969456 DOI: 10.1016/j.jes.2021.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/14/2023]
Abstract
The creation of an environmentally friendly synthesis method for silver nanomaterials (AgNPs) is an urgent concern for sustainable nanotechnology development. In the present study, a novel straightforward and green method for the preparation of silver nanoparticle/reduced graphene oxide (AgNP/rGO) composites was successfully developed through the combination of phytosynthesis, continuous flow synthesis and microwave-assistance. Oriental persimmon (Diospyros kaki Thunb.) extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites. The experimental parameters were optimized and the morphologies of the prepared materials were investigated. The characterization results reveal that spherical AgNPs were quickly synthesized and uniformly dispersed on rGO sheets using the proposed online system. Fourier transform infrared spectroscopy analysis confirmed that phenols, flavonoids, and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites. Using sodium borohydride (NaBH4) degradation of p-nitrophenol (4-NP) as a model, the catalytic activity of the prepared AgNP/rGO materials was evaluated. The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials, and the composite had a much better catalytic activity than the bare AgNPs and rGO had. Compared with the conventional chemical method, our online method is facile, fast, cost-efficient, and environmentally friendly.
Collapse
Affiliation(s)
- Houyu Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Chun-Gang Yuan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China; Wetland Research Center for Baiyangdian Lake, North China Electric Power University, Baoding 071000, China.
| | - Chenchen Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Xuelei Duan
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Qi Guo
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Yiwen Shen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science & Engineering, North China Electric Power University, Baoding 071000, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
6
|
Rajasekar R, Thanasamy R, Samuel M, Edison TNJI, Raman N. Ecofriendly synthesis of silver nanoparticles using Heterotheca subaxillaris flower and its catalytic performance on reduction of methyl orange. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Flieger J, Franus W, Panek R, Szymańska-Chargot M, Flieger W, Flieger M, Kołodziej P. Green Synthesis of Silver Nanoparticles Using Natural Extracts with Proven Antioxidant Activity. Molecules 2021; 26:4986. [PMID: 34443574 PMCID: PMC8398508 DOI: 10.3390/molecules26164986] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
Natural extracts are a rich source of biomolecules that are useful not only as antioxidant drugs or diet supplements but also as complex reagents for the biogenic synthesis of metallic nanoparticles. The natural product components can act as strong reducing and capping substrates guaranteeing the stability of formed NPs. The current work demonstrates the suitability of extracts of Camellia sinensis, Ilex paraguariensis, Salvia officinalis, Tilia cordata, Levisticum officinale, Aegopodium podagraria, Urtica dioica, Capsicum baccatum, Viscum album, and marine algae Porphyra Yezoensis for green synthesis of AgNPs. The antioxidant power of methanolic extracts was estimated at the beginning according to their free radical scavenging activity by the DPPH method and reducing power activity by CUPRAC and SNPAC (silver nanoparticle antioxidant capacity) assays. The results obtained by the CUPRAC and SNAPC methods exhibited excellent agreement (R2~0.9). The synthesized AgNPs were characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), dynamic light scattering (DLS) particle size, and zeta potential. The UV-vis absorption spectra showed a peak at 423 nm confirming the presence of AgNPs. The shapes of extract-mediated AgNPs were mainly spherical, spheroid, rod-shaped, agglomerated crystalline structures. The NPs exhibited a high negative zeta potential value in the range from -49.8 mV to -56.1 mV, proving the existence of electrostatic stabilization. FTIR measurements indicated peaks corresponding to different functional groups such as carboxylic acids, alcohol, phenol, esters, ethers, aldehydes, alkanes, and proteins, which were involved in the synthesis and stabilization of AgNPs. Among the examined extracts, green tea showed the highest activity in all antioxidant tests and enabled the synthesis of the smallest nanoparticles, namely 62.51, 61.19, and 53.55 nm, depending on storage times of 30 min, 24 h, and 72 h, respectively. In turn, the Capsicum baccatum extract was distinguished by the lowest zeta potential, decreasing with storage time from -66.0 up to -88.6 mM.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Wojciech Franus
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | - Rafał Panek
- Department of Geotechnics, Civil Engineering and Architecture Faculty, Lublin University of Technology, Nadbystrzycka 40, 20-618 Lublin, Poland; (W.F.); (R.P.)
| | | | - Wojciech Flieger
- Chair and Department of Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Michał Flieger
- Faculty of Medicine, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Przemysław Kołodziej
- Department of Biology and Genetics, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
8
|
Kanniah P, Chelliah P, Thangapandi JR, Gnanadhas G, Mahendran V, Robert M. Green synthesis of antibacterial and cytotoxic silver nanoparticles by Piper nigrum seed extract and development of antibacterial silver based chitosan nanocomposite. Int J Biol Macromol 2021; 189:18-33. [PMID: 34389391 DOI: 10.1016/j.ijbiomac.2021.08.056] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022]
Abstract
In the present study, we have used seed extract of P. nigrum as an effective reducing agent for the synthesis of silver nanoparticles (Ag NPs) and silver based chitosan nanocomposite (Ag/CS NC). The silver nanoparticles were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). The appearance of a surface plasmon resonance (SPR) peak located at 430 nm reveals the formation of silver nanoparticles. The TEM analysis indicates that the attained silver nanoparticles were mostly in spherical shapes with sizes ranging between 15 and 38 nm. The high resolution liquid chromatography with mass spectroscopy (HR-LCMS) analysis was performed to screen the phytochemical constituents of P. nigrum seed extract. The silver nanoparticles synthesized by P. nigrum seed extract exhibited effective antibacterial activity against Bacillus subtilis (B. subtilis) and Escherichia coli (E. coli). In addition, the silver nanoparticles showed potent cytotoxicity against hazardous human cancer cell lines MDA-MB-231, PANC-1, SKOV-3, PC-3 and Hela. The observation of bright spots in the TEM dark field images represents the presence of Ag in CS suspension. Besides, the Ag/CS NC coated cotton fabric substantially showed remarkable antibacterial activity against B. subtilis and E. coli.
Collapse
Affiliation(s)
- Paulkumar Kanniah
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India.
| | - Parvathiraja Chelliah
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Jesi Reeta Thangapandi
- Department of Biotechnology, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - Gnanajobitha Gnanadhas
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, India
| | - Vanaja Mahendran
- Environmental Nanotechnology Division, Sri Paramakalyani Centre for Environmental Sciences, Manonmaniam Sundaranar University, Alwarkurichi, Tamil Nadu, India
| | - Marshan Robert
- Department of Physics and Research Centre, Womens Christian College, Nagercoil, Tamil Nadu, India
| |
Collapse
|
9
|
Toxicity of Essential Oils Nanoemulsion Against Aphis Craccivora and Their Inhibitory Activity on Insect Enzymes. Processes (Basel) 2021. [DOI: 10.3390/pr9040624] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Essential oils are widely used as botanical insecticides rather than chemically synthesized pesticides which led to catastrophic effects on humans, the environment, and eutrophication. Here, encapsulation of four essential oils Basilicum ocimum, Cuminum cyminum, Origanum marjorana, and Matricaria chamomilla were utilized in the presence of 3% v/v ethanol, as anti-insect against Aphis craccivora and compared to traditional insecticides dinotefuran and pymetrozine. Different tools were used to characterize the prepared nanoemulsion such as TEM, SEM, and Zeta potential analyzer. Besides, selected B. ocimum and C. cyminum were analyzed by gas chromatography-mass GC/mass spectrometry. The results reveal that nanoemulsion exhibited considerable toxic activities against laboratory and field strains of cowpea aphid. In the toxicity bioassay test of essential oils, moderate mortality was observed at 10,000 mg/L against aphid with lethal concentration that kills 50% of insects (LC50) values of basil 992 mg/L and marjoram 3162 mg/L. Else, nanoemulsion provided the highest mortality rate at 625 mg/L and the LC50 values of basil nanoemulsion (NE) 45 mg/L, and marjoram NE 188 mg/L in laboratory strains. The systemic effects of the tested substances acetylcholine esterase, alkaline phosphatase, β-esterases, glutathione S-transferase (GST), and mixed-function oxidase (MFO) enzymes on insects were found to be significantly decreased and increased when compared with control groups. Overall, these results highlight that the nanoemulsion is potential tools to control cowpea aphid and could be useful in developing integrated insect management in faba bean fields.
Collapse
|
10
|
An overview of the plant-mediated green synthesis of noble metal nanoparticles for antibacterial applications. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Khoshnamvand M, Hao Z, Fadare OO, Hanachi P, Chen Y, Liu J. Toxicity of biosynthesized silver nanoparticles to aquatic organisms of different trophic levels. CHEMOSPHERE 2020; 258:127346. [PMID: 32544815 DOI: 10.1016/j.chemosphere.2020.127346] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Although biosynthesized nanoparticles are regarded as green products, research on their toxicity to aquatic food chains is scarce. Herein, biosynthesized silver nanoparticles (Alcea rosea-silver nanoparticles, AR-AgNPs) were produced by the reaction of Ag ions with leaf extract of herbal plant Alcea rosea. Then, the toxic effects of AR-AgNPs and their precursors such as Ag+ ions and coating agent (A. rosea leaf extract) on organisms of different trophic levels of a freshwater food chain were investigated. To the three studied aquatic organisms including phytoplankton (Chlorella vulgaris), zooplankton (Daphnia magna) and fish (Danio rerio), the coating agents of AR-AgNPs showed no toxic effects, and Ag+ ions were more toxic in comparison to AR-AgNPs. Further investigations revealed that the release of Ag+ ions from AR-AgNPs to the test media were not considerable due to the high stability of AR-AgNPs, thus the toxicity stemmed mainly from the particles of AR-AgNPs in all the three trophic levels. Based on values of 72-h EC50 for C. vulgaris, 48-h LC50 for D. magna and 96-h LC50 for D. rerio, the most sensitive organism to AR-AgNPs exposure was D. magna (the second trophic level).
Collapse
Affiliation(s)
- Mehdi Khoshnamvand
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Oluniyi O Fadare
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran.
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Institute of Environment and Health, Jianghan University, Hubei Province, Wuhan, 430056, China.
| |
Collapse
|
12
|
Ashtiani S, Khoshnamvand M, Shaliutina-Kolešová A, Bouša D, Sofer Z, Friess K. Co 0·5Ni 0·5FeCrO 4 spinel nanoparticles decorated with UiO-66-based metal-organic frameworks grafted onto GO and O-SWCNT for gas adsorption and water purification. CHEMOSPHERE 2020; 255:126966. [PMID: 32416392 DOI: 10.1016/j.chemosphere.2020.126966] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
We report on the synthesis of unique nanocomposites based on graphene oxide (GO) and oxidized single-wall carbon nanotubes (O-SWCNTs) combined with UiO-66-NH2 and UiO-66-COOH metal-organic frameworks (MOFs) decorated onto Co0·5Ni0·5FeCrO4 spinel magnetic nanoparticles (SMNPs). Novel SMNPs of Co0·5Ni0·5FeCrO4, synthesized for the first time by the sol-gel method, exhibited exceptional thermal stability up to 985 °C. To modify the physicochemical properties of the SMNPs and MOFs, hydrophilic Zr-based MOFs were directly decorated onto the SMNP (MOF-d-SMNP) which led to improved dispersion properties and enhanced the catalytic activity of the SMNP by providing additional functional groups and active catalytic sites, along with surface area expansion. The synthesis and decoration were achieved by a hydrothermal process forming covalent bonding of MOFs onto the SMNPs, using O-SWCNTs and GO monolayers as platforms. Such an approach proved to be more effective than direct mixing of nanoparticles with the platforms, as it reduced the aggregation of nanoparticles and improved the dispersion forces of the MOF-d-SMNP. The MOF-d-SMNP/GO and MOF-d-SMNP/O-SWCNT nanocomposite properties were characterized by XRD, SEM-EDS, HRTEM, FTIR, TGA, gravimetric gas sorption and BET techniques. Performed experiments revealed exceptional adsorption capacity and catalytic activity (the reduction of the toxic pollutant 4-nitrophenol to 4-aminophenol). We demonstrated that novel nanocomposite materials MOF-d-SMNP/GO and MOF-d-SMNP/O-SWCNT showed potential for water treatment and gas sorption applications. Exhibited properties make these materials promising candidates for use in applications requiring, for example, catalytic activity at elevated temperatures.
Collapse
Affiliation(s)
- S Ashtiani
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6, Czech Republic.
| | - M Khoshnamvand
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - A Shaliutina-Kolešová
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Faculty of Fisheries and Protection of Waters, University of South Bohemia in Ceske Budejovice, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - D Bouša
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - Z Sofer
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6, Czech Republic
| | - K Friess
- Department of Physical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 16628, Prague 6, Czech Republic.
| |
Collapse
|
13
|
Green Synthesis of Silver Nanoparticles Using Bilberry and Red Currant Waste Extracts. Processes (Basel) 2019. [DOI: 10.3390/pr7040193] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The production of silver nanoparticles (Ag-NPs) from bilberry waste (BW) and red currant waste (RCW) extracts was studied. Red fruit extracts were obtained by treating BW and RCW with aqueous ethanol (50% v/v) at 40 °C. The formation of nanoparticles was monitored spectrophotometrically by measuring the intensity of the surface plasmon resonance band (SPR) of silver. The effects of temperature (20–60 °C) and pH (8–12) on the reaction kinetics and on the properties of Ag-NPs were investigated. Characterization by XRD and dynamic light scattering (DLS) techniques showed that Ag-NPs were highly crystalline, with a face-centered cubic structure and a hydrodynamic diameter of 25–65 nm. The zeta potential was in the range of −35.6 to −20.5 mV. Nanoparticles obtained from BW were slightly smaller and more stable than those from RCW. A kinetic analysis by the initial-rate method showed that there was an optimum pH, around 11, for the production of Ag-NPs. Overall, the results obtained suggest that BW and RCW can be advantageously used as a source of reducing and stabilizing agents for the green synthesis of Ag-NPs.
Collapse
|
14
|
Rapid mediated biosynthesis and quantification of AuNPs using persimmon (Diospyros Kaki L.f) fruit extract. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Silver nanoparticles synthesized using Allium ampeloprasum L. leaf extract: Characterization and performance in catalytic reduction of 4-nitrophenol and antioxidant activity. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.07.089] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Singh J, Dutta T, Kim KH, Rawat M, Samddar P, Kumar P. 'Green' synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnology 2018; 16:84. [PMID: 30373622 PMCID: PMC6206834 DOI: 10.1186/s12951-018-0408-4] [Citation(s) in RCA: 665] [Impact Index Per Article: 110.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/08/2018] [Indexed: 01/09/2023] Open
Abstract
In materials science, “green” synthesis has gained extensive attention as a reliable, sustainable, and eco-friendly protocol for synthesizing a wide range of materials/nanomaterials including
metal/metal oxides nanomaterials, hybrid materials, and bioinspired materials. As such, green synthesis is regarded as an important tool to reduce the destructive effects associated with the traditional methods of synthesis for nanoparticles commonly utilized in laboratory and industry. In this review, we summarized the fundamental processes and mechanisms of “green” synthesis approaches, especially for metal and metal oxide [e.g., gold (Au), silver (Ag), copper oxide (CuO), and zinc oxide (ZnO)] nanoparticles using natural extracts. Importantly, we explored the role of biological components, essential phytochemicals (e.g., flavonoids, alkaloids, terpenoids, amides, and aldehydes) as reducing agents and solvent systems. The stability/toxicity of nanoparticles and the associated surface engineering techniques for achieving biocompatibility are also discussed. Finally, we covered applications of such synthesized products to environmental remediation in terms of antimicrobial activity, catalytic activity, removal of pollutants dyes, and heavy metal ion sensing.
Collapse
Affiliation(s)
- Jagpreet Singh
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Tanushree Dutta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700 098, India
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, South Korea.
| | - Mohit Rawat
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Pallabi Samddar
- Department of Civil & Environmental Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Pawan Kumar
- Department of Nano Science and Materials, Central University of Jammu, Jammu, J & K, 180011, India.
| |
Collapse
|
17
|
Marslin G, Siram K, Maqbool Q, Selvakesavan RK, Kruszka D, Kachlicki P, Franklin G. Secondary Metabolites in the Green Synthesis of Metallic Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E940. [PMID: 29865278 PMCID: PMC6024997 DOI: 10.3390/ma11060940] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/25/2018] [Accepted: 05/30/2018] [Indexed: 12/18/2022]
Abstract
The ability of organisms and organic compounds to reduce metal ions and stabilize them into nanoparticles (NPs) forms the basis of green synthesis. To date, synthesis of NPs from various metal ions using a diverse array of plant extracts has been reported. However, a clear understanding of the mechanism of green synthesis of NPs is lacking. Although most studies have neglected to analyze the green-synthesized NPs (GNPs) for the presence of compounds derived from the extract, several studies have demonstrated the conjugation of sugars, secondary metabolites, and proteins in these biogenic NPs. Despite several reports on the bioactivities (antimicrobial, antioxidant, cytotoxic, catalytic, etc.) of GNPs, only a handful of studies have compared these activities with their chemically synthesized counterparts. These comparisons have demonstrated that GNPs possess better bioactivities than NPs synthesized by other methods, which might be attributed to the presence of plant-derived compounds in these NPs. The ability of NPs to bind with organic compounds to form a stable complex has huge potential in the harvesting of precious molecules and for drug discovery, if harnessed meticulously. A thorough understanding of the mechanisms of green synthesis and high-throughput screening of stabilizing/capping agents on the physico-chemical properties of GNPs is warranted to realize the full potential of green nanotechnology.
Collapse
Affiliation(s)
- Gregory Marslin
- Ratnam Institute of Pharmacy and Research, Nellore 524346, India.
| | - Karthik Siram
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, India.
| | - Qaisar Maqbool
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | | | - Dariusz Kruszka
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Piotr Kachlicki
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| | - Gregory Franklin
- Institute of Plant Genetics of the Polish Academy of Sciences, Poznan 60479, Poland.
| |
Collapse
|
18
|
Ga'al H, Fouad H, Mao G, Tian J, Jianchu M. Larvicidal and pupicidal evaluation of silver nanoparticles synthesized using Aquilaria sinensis and Pogostemon cablin essential oils against dengue and zika viruses vector Aedes albopictus mosquito and its histopathological analysis. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1171-1179. [PMID: 28859534 DOI: 10.1080/21691401.2017.1365723] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mosquitoes pose a threat to humans and animals, causing millions of deaths every year. Vector control by effective eco-friendly pesticides of natural origin is a serious issue that requires urgent attention. The employment of green-reducing extracts for nanoparticles biosynthesis in a rapid and single-step process represents a promising strategy. In this study, silver nanoparticles (AgNPs) were biofabricated using an essential oil of Aquilaria sinensis (AsEO) and Pogostemonis Herba essential oil of Pogostemon cablin (PcEO) in one step and cost-effective manner. UV-vis spectrophotometry, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction analysis and energy-dispersive X-ray spectroscopy were used to confirm the AgNPs formation and their biophysical characterization. The larvicidal and pupicidal toxicity of AsEO, PcEO and biosynthesized AgNPs were evaluated against larvae and pupae of the dengue and Zika virus vector Aedes albopictus. Compared to the tested essential oils, the biofabricated AgNPs showed the highest toxicity against larvae and pupae of Ae.albopictus. In particular, the LC50 values of AsEO ranged from 44.23 (I) to 166 (pupae), LC50 values of PcEO ranged from 32.49 (I) to 90.05(IV), LC50 values of AsEO-AgNPs from 0.81 (I) to 1.12 (IV) and LC50 values of PcEO-AgPNs from 0.85 (I) to 1.19 (IV). Furthermore, histological analysis of the midgut cells of the control and treated larvae exhibited that the epithelial cells and brush border were highly affected by the fabricated AgNPs compared to the essential oils (AsEO and PcEO). Overall, the A. sinensis and P. cablin essential oils fabricated AgNPs have a potential of application as a biopesticide for mosquito control through safer and cost-effective approach.
Collapse
Affiliation(s)
- Hassan Ga'al
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , Zhejiang , PR China.,b Department of Entomology, Faculty of Veterinary and Animal Husbandry , Somali National University , Mogadishu , Somalia
| | - Hatem Fouad
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , Zhejiang , PR China.,c Department of Field Crop Pests , Plant Protection Research Institute, Agricultural Research Centre , Cairo , Egypt
| | - Guofeng Mao
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Jiaxin Tian
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , Zhejiang , PR China
| | - Mo Jianchu
- a Ministry of Agriculture Key Laboratory of Agricultural Entomology , Institute of Insect Sciences, Zhejiang University , Hangzhou , Zhejiang , PR China
| |
Collapse
|
19
|
Sri Ramkumar SR, Sivakumar N, Selvakumar G, Selvankumar T, Sudhakar C, Ashokkumar B, Karthi S. Green synthesized silver nanoparticles from Garcinia imberti bourd and their impact on root canal pathogens and HepG2 cell lines. RSC Adv 2017. [DOI: 10.1039/c6ra28328d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nanoparticle biosynthesis using the extract of medicinal plants in a non-hazardous mode has gained wide attention for various applications in nanomedicine.
Collapse
Affiliation(s)
| | - N. Sivakumar
- Department of Molecular Microbiology
- School of Biotechnology
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - G. Selvakumar
- Department of Microbiology
- Alagappa University
- Karaikudi 630003
- India
| | - T. Selvankumar
- PG & Research Department of Biotechnology
- Mahendra Arts and Science College (Autonomous)
- Namakkal 637 501
- India
| | - C. Sudhakar
- PG & Research Department of Biotechnology
- Mahendra Arts and Science College (Autonomous)
- Namakkal 637 501
- India
| | - B. Ashokkumar
- Department of Genetic Engineering
- School of Biotechnology
- Madurai Kamaraj University
- Madurai 625 021
- India
| | - S. Karthi
- Department of Genetic Engineering
- School of Biotechnology
- Madurai Kamaraj University
- Madurai 625 021
- India
| |
Collapse
|