1
|
Vinegoni C, Fumene Feruglio P, Brand C, Lee S, Nibbs AE, Stapleton S, Shah S, Gryczynski I, Reiner T, Mazitschek R, Weissleder R. Measurement of drug-target engagement in live cells by two-photon fluorescence anisotropy imaging. Nat Protoc 2017; 12:1472-1497. [PMID: 28686582 PMCID: PMC5928516 DOI: 10.1038/nprot.2017.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability to directly image and quantify drug-target engagement and drug distribution with subcellular resolution in live cells and whole organisms is a prerequisite to establishing accurate models of the kinetics and dynamics of drug action. Such methods would thus have far-reaching applications in drug development and molecular pharmacology. We recently presented one such technique based on fluorescence anisotropy, a spectroscopic method based on polarization light analysis and capable of measuring the binding interaction between molecules. Our technique allows the direct characterization of target engagement of fluorescently labeled drugs, using fluorophores with a fluorescence lifetime larger than the rotational correlation of the bound complex. Here we describe an optimized protocol for simultaneous dual-channel two-photon fluorescence anisotropy microscopy acquisition to perform drug-target measurements. We also provide the necessary software to implement stream processing to visualize images and to calculate quantitative parameters. The assembly and characterization part of the protocol can be implemented in 1 d. Sample preparation, characterization and imaging of drug binding can be completed in 2 d. Although currently adapted to an Olympus FV1000MPE microscope, the protocol can be extended to other commercial or custom-built microscopes.
Collapse
Affiliation(s)
- Claudio Vinegoni
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Paolo Fumene Feruglio
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Christian Brand
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sungon Lee
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- School of Electrical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Antoinette E Nibbs
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shawn Stapleton
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Sunil Shah
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Ignacy Gryczynski
- Institute for Molecular Medicine, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ralph Mazitschek
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ralph Weissleder
- Center for System Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Wadduwage DN, Singh VR, Choi H, Yaqoob Z, Heemskerk H, Matsudaira P, So PTC. Near-common-path interferometer for imaging Fourier-transform spectroscopy in wide-field microscopy. OPTICA 2017; 4:546-556. [PMID: 29392168 PMCID: PMC5788042 DOI: 10.1364/optica.4.000546] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 05/29/2023]
Abstract
Imaging Fourier-transform spectroscopy (IFTS) is a powerful method for biological hyperspectral analysis based on various imaging modalities, such as fluorescence or Raman. Since the measurements are taken in the Fourier space of the spectrum, it can also take advantage of compressed sensing strategies. IFTS has been readily implemented in high-throughput, high-content microscope systems based on wide-field imaging modalities. However, there are limitations in existing wide-field IFTS designs. Non-common-path approaches are less phase-stable. Alternatively, designs based on the common-path Sagnac interferometer are stable, but incompatible with high-throughput imaging. They require exhaustive sequential scanning over large interferometric path delays, making compressive strategic data acquisition impossible. In this paper, we present a novel phase-stable, near-common-path interferometer enabling high-throughput hyperspectral imaging based on strategic data acquisition. Our results suggest that this approach can improve throughput over those of many other wide-field spectral techniques by more than an order of magnitude without compromising phase stability.
Collapse
Affiliation(s)
- Dushan N. Wadduwage
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Center for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Vijay Raj Singh
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Heejin Choi
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zahid Yaqoob
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Hans Heemskerk
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Center for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
| | - Paul Matsudaira
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Center for BioImaging Sciences, Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore
- MechanoBiology Institute, National University of Singapore, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Peter T. C. So
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- Singapore MIT Alliance for Research and Technology, BioSystems and Micromechanics, 1 CREATE Way, #04-13/14 Enterprise Wing, Singapore 138602, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
3
|
Vinegoni C, Leon Swisher C, Fumene Feruglio P, Giedt RJ, Rousso DL, Stapleton S, Weissleder R. Real-time high dynamic range laser scanning microscopy. Nat Commun 2016; 7:11077. [PMID: 27032979 PMCID: PMC4821995 DOI: 10.1038/ncomms11077] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/19/2016] [Indexed: 01/21/2023] Open
Abstract
In conventional confocal/multiphoton fluorescence microscopy, images are typically acquired under ideal settings and after extensive optimization of parameters for a given structure or feature, often resulting in information loss from other image attributes. To overcome the problem of selective data display, we developed a new method that extends the imaging dynamic range in optical microscopy and improves the signal-to-noise ratio. Here we demonstrate how real-time and sequential high dynamic range microscopy facilitates automated three-dimensional neural segmentation. We address reconstruction and segmentation performance on samples with different size, anatomy and complexity. Finally, in vivo real-time high dynamic range imaging is also demonstrated, making the technique particularly relevant for longitudinal imaging in the presence of physiological motion and/or for quantification of in vivo fast tracer kinetics during functional imaging. Confocal and multiphoton fluorescence microscopy often suffers from low dynamic range. Here the authors develop a high dynamic range, laser scanning fluorescence technique by simultaneously recording different light intensity ranges. The method can be adapted to commercial systems.
Collapse
Affiliation(s)
- C Vinegoni
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - C Leon Swisher
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - P Fumene Feruglio
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA.,Department of Neurological, Biomedical and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy
| | - R J Giedt
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - D L Rousso
- Center for Brain Science, Department of Molecular and Cell Biology, Harvard University, 52 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - S Stapleton
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| | - R Weissleder
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Richard B. Simches Research Center, 185 Cambridge Street, Boston, Massachusetts 02114, USA
| |
Collapse
|
4
|
Yannas IV, Tzeranis D, So PT. Surface biology of collagen scaffold explains blocking of wound contraction and regeneration of skin and peripheral nerves. Biomed Mater 2015; 11:014106. [PMID: 26694657 PMCID: PMC5775477 DOI: 10.1088/1748-6041/11/1/014106] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We review the details of preparation and of the recently elucidated mechanism of biological (regenerative) activity of a collagen scaffold (dermis regeneration template, DRT) that has induced regeneration of skin and peripheral nerves (PN) in a variety of animal models and in the clinic. DRT is a 3D protein network with optimized pore size in the range 20-125 µm, degradation half-life 14 ± 7 d and ligand densities that exceed 200 µM α1β1 or α2β1 ligands. The pore has been optimized to allow migration of contractile cells (myofibroblasts, MFB) into the scaffold and to provide sufficient specific surface for cell-scaffold interaction; the degradation half-life provides the required time window for satisfactory binding interaction of MFB with the scaffold surface; and the ligand density supplies the appropriate ligands for specific binding of MFB on the scaffold surface. A dramatic change in MFB phenotype takes place following MFB-scaffold binding which has been shown to result in blocking of wound contraction. In both skin wounds and PN wounds the evidence has shown clearly that contraction blocking by DRT is followed by induction of regeneration of nearly perfect organs. The biologically active structure of DRT is required for contraction blocking; well-matched collagen scaffold controls of DRT, with structures that varied from that of DRT, have failed to induce regeneration. Careful processing of collagen scaffolds is required for adequate biological activity of the scaffold surface. The newly understood mechanism provides a relatively complete paradigm of regenerative medicine that can be used to prepare scaffolds that may induce regeneration of other organs in future studies.
Collapse
Affiliation(s)
- I V Yannas
- Departments of Mechanical and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
5
|
Tzeranis DS, Soller EC, Buydash MC, So PTC, Yannas IV. In Situ Quantification of Surface Chemistry in Porous Collagen Biomaterials. Ann Biomed Eng 2015; 44:803-15. [PMID: 26369635 DOI: 10.1007/s10439-015-1445-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 09/01/2015] [Indexed: 01/28/2023]
Abstract
Cells inside a 3D matrix (such as tissue extracellular matrix or biomaterials) sense their insoluble environment through specific binding interactions between their adhesion receptors and ligands present on the matrix surface. Despite the critical role of the insoluble matrix in cell regulation, there exist no widely-applicable methods for quantifying the chemical stimuli provided by a matrix to cells. Here, we describe a general-purpose technique for quantifying in situ the density of ligands for specific cell adhesion receptors of interest on the surface of a 3D matrix. This paper improves significantly the accuracy of the procedure introduced in a previous publication by detailed marker characterization, optimized staining, and improved data interpretation. The optimized methodology is utilized to quantify the ligands of integrins α 1 β 1, α 2 β 1 on two kinds of matched porous collagen scaffolds, which are shown to possess significantly different ligand density, and significantly different ability to induce peripheral nerve regeneration in vivo. Data support the hypothesis that cell adhesion regulates contractile cell phenotypes, recently shown to be inversely related to organ regeneration. The technique provides a standardized way to quantify the surface chemistry of 3D matrices, and a means for introducing matrix effects in quantitative biological models.
Collapse
Affiliation(s)
- Dimitrios S Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA. .,Department of Mechanical Engineering, National Technical University of Athens, 15780, Zografou, Greece.
| | - Eric C Soller
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Melissa C Buydash
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Peter T C So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ioannis V Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
6
|
Young MD, Field JJ, Sheetz KE, Bartels RA, Squier J. A pragmatic guide to multiphoton microscope design. ADVANCES IN OPTICS AND PHOTONICS 2015; 7:276-378. [PMID: 27182429 PMCID: PMC4863715 DOI: 10.1364/aop.7.000276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope.
Collapse
Affiliation(s)
- Michael D. Young
- Center for Microintegrated Optics for Advanced Biological Control, Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA
| | - Jeffrey J. Field
- W. M. Keck Laboratory for Raman Imaging of Cell-to-Cell Communications, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Kraig E. Sheetz
- Photonics Research Center, Department of Physics and Nuclear Engineering, United States Military Academy, West Point, New York 10996, USA
| | - Randy A. Bartels
- W. M. Keck Laboratory for Raman Imaging of Cell-to-Cell Communications, Colorado State University, Fort Collins, Colorado 80523, USA
- Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
- School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Jeff Squier
- Center for Microintegrated Optics for Advanced Biological Control, Department of Physics, Colorado School of Mines, 1500 Illinois Street, Golden, Colorado 80401, USA
| |
Collapse
|
7
|
Choi H, Wadduwage D, Matsudaira PT, So PT. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry. BIOMEDICAL OPTICS EXPRESS 2014; 5:3494-507. [PMID: 25360367 PMCID: PMC4206319 DOI: 10.1364/boe.5.003494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 08/22/2014] [Indexed: 06/04/2023]
Abstract
A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively.
Collapse
Affiliation(s)
- Heejin Choi
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dushan Wadduwage
- BioSym, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 138602, Singapore
| | - Paul T. Matsudaira
- Department of Biological Sciences, National University of Singapore, Singapore 138602, Singapore
| | - Peter T.C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- BioSym, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore
- Laser Biomedical Research Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
8
|
Fluorescent sensors for biological applications. SENSORS 2014; 14:17829-31. [PMID: 25256112 PMCID: PMC4208252 DOI: 10.3390/s140917829] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/24/2014] [Indexed: 02/03/2023]
|
9
|
Field JJ, Sheetz KE, Chandler EV, Hoover EE, Young MD, Ding SY, Sylvester AW, Kleinfeld D, Squier JA. Differential Multiphoton Laser Scanning Microscopy. IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS : A PUBLICATION OF THE IEEE LASERS AND ELECTRO-OPTICS SOCIETY 2012; 18:14-28. [PMID: 27390511 PMCID: PMC4932844 DOI: 10.1109/jstqe.2010.2077622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Multifocal multiphoton microscopy (MMM) in the biological and medical sciences has become an important tool for obtaining high resolution images at video rates. While current implementations of MMM achieve very high frame rates, they are limited in their applicability to essentially those biological samples that exhibit little or no scattering. In this paper, we report on a method for MMM in which imaging detection is not necessary (single element point detection is implemented), and is therefore fully compatible for use in imaging through scattering media. Further, we demonstrate that this method leads to a new type of MMM wherein it is possible to simultaneously obtain multiple images and view differences in excitation parameters in a single shot.
Collapse
Affiliation(s)
- Jeffrey J. Field
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Kraig E. Sheetz
- Department of Physics and Nuclear Engineering, United
States Military Academy, West Point, NY 10996, USA
| | - Eric V. Chandler
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Erich E. Hoover
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Michael D. Young
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| | - Shi-you Ding
- National Renewable Energy Laboratory, 1617 Cole Boulevard,
Golden, CO 80401, USA
| | - Anne W. Sylvester
- Department of Molecular Biology, University of Wyoming,
Laramie, WY 82071, USA
| | - David Kleinfeld
- Department of Physics, Graduate Program in Neuroscience,
Center for Neural Circuits and Behavior, University of California at San Diego, La
Jolla, CA 92093, USA
| | - Jeff A. Squier
- Center for Microintegrated Optics for Advanced Bioimaging
and Control, Department of Physics, Colorado School of Mines, Golden, CO 80401,
USA
| |
Collapse
|
10
|
Sullivan NL, Tzeranis DS, Wang Y, So PT, Newman D. Quantifying the dynamics of bacterial secondary metabolites by spectral multiphoton microscopy. ACS Chem Biol 2011; 6:893-9. [PMID: 21671613 PMCID: PMC3212935 DOI: 10.1021/cb200094w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phenazines, a group of fluorescent small molecules produced by the bacterium Pseudomonas aeruginosa, play a role in maintaining cellular redox homeostasis. Phenazines have been challenging to study in vivo due to their redox activity, presence both intra- and extracellularly, and their diverse chemical properties. Here, we describe a noninvasive in vivo optical technique to monitor phenazine concentrations within bacterial cells using time-lapsed spectral multiphoton fluorescence microscopy. This technique enables simultaneous monitoring of multiple weakly fluorescent molecules (phenazines, siderophores, NAD(P)H) expressed by bacteria in culture. This work provides the first in vivo measurements of reduced phenazine concentration as well as the first description of the temporal dynamics of the phenazine-NAD(P)H redox system in Pseudomonas aeruginosa, illuminating an unanticipated role for 1-hydroxyphenazine. Similar approaches could be used to study the abundance and redox dynamics of a wide range of small molecules within bacteria, both as single cells and in communities.
Collapse
Affiliation(s)
- Nora L. Sullivan
- Department of Biology and Howard Hughes Medical Institute, ‡Department of Mechanical Engineering, and §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Dimitrios S. Tzeranis
- Department of Biology and Howard Hughes Medical Institute, ‡Department of Mechanical Engineering, and §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Yun Wang
- Department of Biology and Howard Hughes Medical Institute, ‡Department of Mechanical Engineering, and §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Peter T.C. So
- Department of Biology and Howard Hughes Medical Institute, ‡Department of Mechanical Engineering, and §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Dianne Newman
- Department of Biology and Howard Hughes Medical Institute, ‡Department of Mechanical Engineering, and §Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| |
Collapse
|
11
|
Driscoll JD, Shih AY, Iyengar S, Field JJ, White GA, Squier JA, Cauwenberghs G, Kleinfeld D. Photon counting, censor corrections, and lifetime imaging for improved detection in two-photon microscopy. J Neurophysiol 2011; 105:3106-13. [PMID: 21471395 PMCID: PMC3118755 DOI: 10.1152/jn.00649.2010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 03/30/2011] [Indexed: 11/22/2022] Open
Abstract
We present a high-speed photon counter for use with two-photon microscopy. Counting pulses of photocurrent, as opposed to analog integration, maximizes the signal-to-noise ratio so long as the uncertainty in the count does not exceed the gain-noise of the photodetector. Our system extends this improvement through an estimate of the count that corrects for the censored period after detection of an emission event. The same system can be rapidly reconfigured in software for fluorescence lifetime imaging, which we illustrate by distinguishing between two spectrally similar fluorophores in an in vivo model of microstroke.
Collapse
Affiliation(s)
- Jonathan D Driscoll
- Department of Physics, University of California at San Diego, La Jolla, CA 92093-0374, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Tzeranis DS, Roy A, So PTC, Yannas IV. An optical method to quantify the density of ligands for cell adhesion receptors in three-dimensional matrices. J R Soc Interface 2010; 7 Suppl 5:S649-61. [PMID: 20671067 PMCID: PMC3024575 DOI: 10.1098/rsif.2010.0321.focus] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 07/09/2010] [Indexed: 12/21/2022] Open
Abstract
The three-dimensional matrix that surrounds cells is an important insoluble regulator of cell phenotypes. Examples of such insoluble surfaces are the extracellular matrix (ECM), ECM analogues and synthetic polymeric biomaterials. Cell-matrix interactions are mediated by cell adhesion receptors that bind to chemical entities (adhesion ligands) on the surface of the matrix. There are currently no established methods to obtain quantitative estimates of the density of adhesion ligands recognized by specific cell adhesion receptors. This article presents a new optical-based methodology for measuring ligands of adhesion receptors on three-dimensional matrices. The study also provides preliminary quantitative results for the density of adhesion ligands of integrins alpha(1)beta(1) and alpha(2)beta(1) on the surface of collagen-based scaffolds, similar to biomaterials that are used clinically to induce regeneration in injured skin and peripheral nerves. Preliminary estimates of the surface density of the ligands of these two major collagen-binding receptors are 5775 +/- 2064 ligands microm(-2) for ligands of alpha(1)beta(1) and 17 084 +/- 5353 ligands microm(-2) for ligands of alpha(2)beta(1). The proposed methodology can be used to quantify the surface chemistry of insoluble surfaces that possess biological activity, such as native tissue ECM and biomaterials, and therefore can be used in cell biology, biomaterials science and regenerative medical studies for quantitative description of a matrix and its effects on cells.
Collapse
Affiliation(s)
- Dimitrios S. Tzeranis
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amit Roy
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Ophthalmology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Peter T. C. So
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ioannis V. Yannas
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
13
|
Chen J, Lee A, Zhao J, Wang H, Lui H, McLean DI, Zeng H. Spectroscopic characterization and microscopic imaging of extracted andin situcutaneous collagen and elastic tissue components under two-photon excitation. Skin Res Technol 2009; 15:418-26. [DOI: 10.1111/j.1600-0846.2009.00381.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Kwon HS, Nam YS, Wiktor-Brown DM, Engelward BP, So PTC. Quantitative morphometric measurements using site selective image cytometry of intact tissue. J R Soc Interface 2009; 6 Suppl 1:S45-57. [PMID: 19049958 DOI: 10.1098/rsif.2008.0431.focus] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Site selective two-photon tissue image cytometry has previously been successfully applied to measure the number of rare cells in three-dimensional tissue specimens up to cubic millimetres in size. However, the extension of this approach for high-throughput quantification of cellular morphological states has not been demonstrated. In this paper, we report the use of site-selective tissue image cytometry for the study of homologous recombination (HR) events during cell division in the pancreas of transgenic mice. Since HRs are rare events, recombinant cells distribute sparsely inside the organ. A detailed measurement throughout the whole tissue is thus not practical. Instead, the site selective two-photon tissue cytometer incorporates a low magnification, wide field, one-photon imaging subsystem that rapidly identifies regions of interest containing recombinant cell clusters. Subsequently, high-resolution three-dimensional assays based on two-photon microscopy can be performed only in these regions of interest. We further show that three-dimensional morphology extraction algorithms can be used to analyse the resultant high-resolution two-photon image stacks providing information not only on the frequency and the distribution of these recombinant cell clusters and their constituent cells, but also on their morphology.
Collapse
Affiliation(s)
- Hyuk-Sang Kwon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
15
|
Changes in the biochemical constituents and morphologic appearance of the human cervical stroma during pregnancy. Eur J Obstet Gynecol Reprod Biol 2009; 144 Suppl 1:S82-9. [PMID: 19303693 DOI: 10.1016/j.ejogrb.2009.02.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The cervix is the lower portion of the uterus. It is composed of fibrous tissue and its mechanical integrity is crucial for maintaining a healthy gestation. During normal pregnancy, the cervical extracellular matrix (ECM) remodels in preparation for labor. The objective of this study was to investigate the biochemical and morphological changes in cervical stroma associated with physiological remodeling during normal pregnancy. STUDY DESIGN Using human cervical tissue obtained from pregnant and non-pregnant patients, the ECM was analyzed for its biochemical constituents and histologic morphology. The ECM was assayed for hydration, collagen concentration, collagen solubility, total sulfated glycosaminoglycan concentration, and individual disaccharide concentration. The ECM morphology was visualized using conventional histological techniques (Masson's trichrome stain, polarized light microscopy) as well as second harmonic generation (SHG) imaging. RESULTS When comparing pregnant to non-pregnant tissue, significant increases were measured for total sulfated glycosaminoglycans, hyaluronic acid, and collagen solubility. The microscopy studies confirmed that the collagenous network of the cervical stroma was anisotropic and pregnancy was associated with a discernable decrease in collagen organization. CONCLUSION Significant changes were seen in the concentration and organization of cervical ECM constituents during normal pregnancy.
Collapse
|
16
|
Spectral unmixing: analysis of performance in the olfactory bulb in vivo. PLoS One 2009; 4:e4418. [PMID: 19198655 PMCID: PMC2635473 DOI: 10.1371/journal.pone.0004418] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 12/23/2008] [Indexed: 11/25/2022] Open
Abstract
Background The generation of transgenic mice expressing combinations of fluorescent proteins has greatly aided the reporting of activity and identification of specific neuronal populations. Methods capable of separating multiple overlapping fluorescence emission spectra, deep in the living brain, with high sensitivity and temporal resolution are therefore required. Here, we investigate to what extent spectral unmixing addresses these issues. Methodology/Principal Findings Using fluorescence resonance energy transfer (FRET)-based reporters, and two-photon laser scanning microscopy with synchronous multichannel detection, we report that spectral unmixing consistently improved FRET signal amplitude, both in vitro and in vivo. Our approach allows us to detect odor-evoked FRET transients 180–250 µm deep in the brain, the first demonstration of in vivo spectral imaging and unmixing of FRET signals at depths greater than a few tens of micrometer. Furthermore, we determine the reporter efficiency threshold for which FRET detection is improved by spectral unmixing. Conclusions/Significance Our method allows the detection of small spectral variations in depth in the living brain, which is essential for imaging efficiently transgenic animals expressing combination of multiple fluorescent proteins.
Collapse
|
17
|
Larson AM, Lee A, Lee PF, Bayless KJ, Yeh AT. ULTRASHORT PULSE MULTISPECTRAL NONLINEAR OPTICAL MICROSCOPY. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2009; 2:27-35. [PMID: 19898687 PMCID: PMC2773561 DOI: 10.1142/s1793545809000292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Ultrashort pulse, multispectral nonlinear optical microscopy (NLOM) is developed and used to image, simultaneously, a mixed population of cells expressing different fluorescent protein mutants in a 3D tissue model of angiogenesis. Broadband, sub-10-fs pulses are used to excite multiple fluorescent proteins and generate second harmonic in collagen simultaneously. A 16-channel multispectral detector is used to delineate the multiple nonlinear optical signals, pixel by pixel, in NLOM. The ability to image multiple fluorescent protein mutants and collagen, simultaneously, enables serial measurements of cell-cell and cell-matrix interactions in our 3D tissue model and characterization of fundamental processes in angiogenic morphogenesis.
Collapse
Affiliation(s)
- Adam M. Larson
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843 USA
| | - Anthony Lee
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843 USA
| | - Po-Feng Lee
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843 USA
| | - Kayla J. Bayless
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843 USA
| | - Alvin T. Yeh
- Department of Biomedical Engineering, Texas A&M University, 337 Zachry Engineering Center, 3120 TAMU, College Station, TX 77843 USA http://biomed.tamu.edu/tml
| |
Collapse
|
18
|
Benninger RK, Ashby WJ, Ring EA, Piston DW. Single-photon-counting detector for increased sensitivity in two-photon laser scanning microscopy. OPTICS LETTERS 2008; 33:2895-7. [PMID: 19079484 PMCID: PMC2749309 DOI: 10.1364/ol.33.002895] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present the use and characterization of a photon-counting detector for increased sensitivity at low signal levels in fluorescence laser scanning microscopy (LSM). Conventional LSM photomultiplier tube detectors utilize analog current integration and thus suffer from excessive noise at low signal levels, introduced during current measurement. In this Letter we describe the implementation of a fast single-photon-counting (SPC) detector on a conventional two-photon laser scanning microscope and detail its use in imaging low fluorescence intensities. We show that for a low photon flux, the SPC detector is shot-noise limited and thus provides increased detection sensitivity compared with analog current integration.
Collapse
Affiliation(s)
| | - William J. Ashby
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN. 37232, USA
| | - Elisabeth A. Ring
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN. 37232, USA
| | - David W. Piston
- Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN. 37232, USA
| |
Collapse
|
19
|
Palero JA, de Bruijn HS, van der Ploeg van den Heuvel A, Sterenborg HJCM, van Weelden H, Gerritsen HC. In vivo nonlinear spectral imaging microscopy of visible and ultraviolet irradiated hairless mouse skin tissues. Photochem Photobiol Sci 2008; 7:1422-5. [PMID: 18958331 DOI: 10.1039/b808776h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the capability of nonlinear spectral imaging microscopy (NSIM) in investigating ultraviolet and visible light induced effects on albino Skh:HR-1 hairless mouse skin non-invasively.
Collapse
|
20
|
Moon S, Kim DY. Analog single-photon counter for high-speed scanning microscopy. OPTICS EXPRESS 2008; 16:13990-14003. [PMID: 18773010 DOI: 10.1364/oe.16.013990] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We introduce a novel single-photon sensitive photodetection method of analog single-photon counting (SPC) for the application of high-speed scanning microscopy that requires high measurement speed and wide dynamic range for the photodetector. This scheme is based on analog electronic circuits which can perform proper differentiation and integration operations before and after discrimination of the analog signal from the photomultiplier tube (PMT), respectively. In spite of its simpler implementation, our analog SPC scheme exhibits good sensitivity and operation stability. Related with the dynamic range, the maximum count rate of our analog SPC is significantly improved due to the fast operation of the analog circuitry. This characteristic of the higher counting rate makes this scheme very suitable for high-speed scanning microscopy. It has also been demonstrated that the afterpulsing problem of an analog-mode PMT is the major noise source that degrades the image quality in the application of scanning microscopy, and our SPC scheme successfully neutralizes this kind of impulse noises to obtain a nearly shot-noise-limited imaging performance.
Collapse
Affiliation(s)
- Sucbei Moon
- Department of Information and Communications, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, Republic of Korea.
| | | |
Collapse
|
21
|
Previte MJR, Pelet S, Kim KH, Buehler C, So PTC. Spectrally resolved fluorescence correlation spectroscopy based on global analysis. Anal Chem 2008; 80:3277-84. [PMID: 18351754 PMCID: PMC5780552 DOI: 10.1021/ac702474u] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multicolor fluorescence correlation spectroscopy has been recently developed to study chemical interactions of multiple chemical species labeled with spectrally distinct fluorophores. In the presence of spectral overlap, there exists a lower detectability limit for reaction products with multicolor fluorophores. In addition, the ability to separate bound product from reactants allows thermodynamic properties such as dissociation constants to be measured for chemical reactions. In this report, we utilize a spectrally resolved two-photon microscope with single-photon counting sensitivity to acquire spectral and temporal information from multiple chemical species. Further, we have developed a global fitting analysis algorithm that simultaneously analyzes all distinct auto- and cross-correlation functions from 15 independent spectral channels. We have demonstrated that the global analysis approach allows the concentration and diffusion coefficients of fluorescent particles to be resolved despite the presence of overlapping emission spectra.
Collapse
Affiliation(s)
- Michael J R Previte
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | |
Collapse
|
22
|
Kim KH, Ragan T, Previte MJR, Bahlmann K, Harley BA, Wiktor-Brown DM, Stitt MS, Hendricks CA, Almeida KH, Engelward BP, So PTC. Three-dimensional tissue cytometer based on high-speed multiphoton microscopy. Cytometry A 2008; 71:991-1002. [PMID: 17929292 DOI: 10.1002/cyto.a.20470] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Image cytometry technology has been extended to 3D based on high-speed multiphoton microscopy. This technique allows in situ study of tissue specimens preserving important cell-cell and cell-extracellular matrix interactions. The imaging system was based on high-speed multiphoton microscopy (HSMPM) for 3D deep tissue imaging with minimal photodamage. Using appropriate fluorescent labels and a specimen translation stage, we could quantify cellular and biochemical states of tissues in a high throughput manner. This approach could assay tissue structures with subcellular resolution down to a few hundred micrometers deep. Its throughput could be quantified by the rate of volume imaging: 1.45 mm(3)/h with high resolution. For a tissue containing tightly packed, stratified cellular layers, this rate corresponded to sampling about 200 cells/s. We characterized the performance of 3D tissue cytometer by quantifying rare cell populations in 2D and 3D specimens in vitro. The measured population ratios, which were obtained by image analysis, agreed well with the expected ratios down to the ratio of 1/10(5). This technology was also applied to the detection of rare skin structures based on endogenous fluorophores. Sebaceous glands and a cell cluster at the base of a hair follicle were identified. Finally, the 3D tissue cytometer was applied to detect rare cells that had undergone homologous mitotic recombination in a novel transgenic mouse model, where recombination events could result in the expression of enhanced yellow fluorescent protein in the cells. 3D tissue cytometry based on HSMPM demonstrated its screening capability with high sensitivity and showed the possibility of studying cellular and biochemical states in tissues in situ. This technique will significantly expand the scope of cytometric studies to the biomedical problems where spatial and chemical relationships between cells and their tissue environments are important.
Collapse
Affiliation(s)
- Ki Hean Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yeh AT, Gibbs H, Hu JJ, Larson AM. Advances in Nonlinear Optical Microscopy for Visualizing Dynamic Tissue Properties in Culture. TISSUE ENGINEERING PART B-REVIEWS 2008; 14:119-31. [DOI: 10.1089/teb.2007.0284] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Alvin T. Yeh
- Department of Biomedical Engineering, Texas A & M University, College Staion, Texas
| | - Holly Gibbs
- Department of Biomedical Engineering, Texas A & M University, College Staion, Texas
| | - Jin-Jia Hu
- Department of Biomedical Engineering, Texas A & M University, College Staion, Texas
| | - Adam M. Larson
- Department of Biomedical Engineering, Texas A & M University, College Staion, Texas
| |
Collapse
|
24
|
Yazdanfar S, Chen YY, So PTC, Laiho LH. Multifunctional Imaging of Endogenous Contrast by Simultaneous Nonlinear and Optical Coherence Microscopy of Thick Tissues. Microsc Res Tech 2007; 70:628-33. [PMID: 17323366 DOI: 10.1002/jemt.20447] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A variety of high resolution optical microscopy techniques have been developed in recent years for basic and clinical studies of biological systems. We demonstrate a trimodal microscope combining optical coherence microscopy (OCM) with two forms of nonlinear microscopy, namely two-photon excited fluorescence (2PF) and second harmonic generation (SHG), for imaging turbid media. OCM combines the advantages of confocal detection and coherence gating for structural imaging in highly scattering tissues. Nonlinear microscopy enables the detection of biochemical species, such as elastin, NAD(P)H, and collagen. While 2PF arises from nonlinear excitation of fluorescent species, SHG is a form of nonlinear scattering observed in materials that lack a center of inversion symmetry, such as type I collagen. Characterization of the microscope showed nearly diffraction-limited spatial resolution in all modalities. Images were obtained in fish scales and excised human skin samples. The primary endogenous sources of contrast in the dermis were due to elastin autofluorescence and collagen SHG. Multimodal microscopy allows the simultaneous visualization of structural and functional information of biological systems.
Collapse
Affiliation(s)
- Siavash Yazdanfar
- Division of Biological Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
25
|
Pelet S, Previte MJR, Kim D, Kim KH, Su TTJ, So PTC. Frequency domain lifetime and spectral imaging microscopy. Microsc Res Tech 2006; 69:861-74. [PMID: 16924635 DOI: 10.1002/jemt.20361] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the femtoliter observation volume of a two-photon microscope, multiple fluorophores can be present and complex photophysics can take place. Combined detection of the fluorescence emission spectra and lifetimes can provide deeper insight into specimen properties than these two imaging modalities taken separately. Therefore, we have developed a detection scheme based on a frequency-modulated multichannel photomultiplier, which measures simultaneously the spectrum and the lifetime of the emitted fluorescence. Experimentally, the efficiency of the frequency domain lifetime measurement was compared to a time domain set-up. The performance of this spectrally and lifetime-resolved microscope was evaluated on reference specimens and living cells labeled with three different stains targeting the membrane, the mitochondria, and the nucleus.
Collapse
Affiliation(s)
- Serge Pelet
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Sinclair MB, Haaland DM, Timlin JA, Jones HDT. Hyperspectral confocal microscope. APPLIED OPTICS 2006; 45:6283-91. [PMID: 16892134 DOI: 10.1364/ao.45.006283] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.
Collapse
Affiliation(s)
- Michael B Sinclair
- Department 1824, Sandia National Laboratories. Mail Stop 1411, Albuquerque, New Mexico 87185, USA.
| | | | | | | |
Collapse
|
27
|
Pelet S, Previte MJR, So PTC. Comparing the quantification of Forster resonance energy transfer measurement accuracies based on intensity, spectral, and lifetime imaging. JOURNAL OF BIOMEDICAL OPTICS 2006; 11:34017. [PMID: 16822067 DOI: 10.1117/1.2203664] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The measurement of Forster resonance energy transfer (FRET) in microscopes can be realized by different imaging modalities. In the present work, reference FRET constructs are developed to allow the comparison of FRET microscopy measurements using intensity, spectral, and lifetime imaging. Complimentary DNA strands are respectively labeled with Oregon Green 488 (OG488) or tetramethylrhodamine (TMR). The OG488 dye is fixed at the 5(') end of one strand, and the TMR label position is allowed to vary along the complimentary strand. Since OG488 and TMR are FRET pairs, the FRET efficiency can be determined theoretically from the distance separating the two dyes of the double-stranded DNA molecules. Microscopic images are formed by imaging microcapillaries containing various mixtures of oligonucleotides labeled with the FRET fluorophore pair, only the donor, or only acceptor. Traditional two-channel intensity measurements are compared with spectrally resolved imaging and fluorescence lifetime imaging by calculating a FRET index. The latter proves to be the best method to quantify FRET efficiency in the image. More importantly, the intensity fraction of molecules undergoing FRET can be quantitatively measured in each pixel of the image.
Collapse
Affiliation(s)
- Serge Pelet
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
28
|
Simultaneous imaging of GFP, CFP and collagen in tumors in vivo using multiphoton microscopy. BMC Biotechnol 2005; 5:14. [PMID: 15910685 PMCID: PMC1159039 DOI: 10.1186/1472-6750-5-14] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 05/23/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The development of multiphoton laser scanning microscopy has greatly facilitated the imaging of living tissues. However, the use of genetically encoded fluorescent proteins to distinguish different cell types in living animals has not been described at single cell resolution using multiphoton microscopy. RESULTS Here we describe a method for the simultaneous imaging, by multiphoton microscopy, of Green Fluorescent Protein, Cyan Fluorescent Protein and collagen in vivo in living tumors. This novel method enables: 1) the simultaneous visualization of overall cell shape and sub-cellular structures such as the plasma membrane or proteins of interest in cells inside living animals, 2) direct comparison of the behavior of single cells from different cell lines in the same microenvironment in vivo. CONCLUSION Using this multi-fluor, multiphoton technique, we demonstrate that motility and metastatic differences between carcinoma cells of differing metastatic potential can be imaged in the same animal simultaneously at sub-cellular resolution.
Collapse
|