1
|
Chhikara A, Tomar D, Bartwal G, Chaurasia M, Sharma A, Gopal S, Chandra S. Thiadiazole Functionalized Salicylaldehyde-Schiff Base as a pH-responsive and chemo-reversible "Turn-Off" fluorescent probe for selective cu (II) detection: Logic Gate Behaviour and Molecular Docking Studies. J Fluoresc 2023; 33:25-41. [PMID: 36208370 DOI: 10.1007/s10895-022-02991-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/31/2022] [Indexed: 02/03/2023]
Abstract
A novel thiadiazole functionalized schiff base chemoreceptor (E)-2,4-dichloro-6-(((5-mercapto-1,3,4-thiadiazol-2-yl)imino)methyl)phenol (SB-1) has been synthesized and characterized spectroscopically by using various techniques. Its photophysical behaviour was scanned towards a variety of metal ions in mixed aqueous media. The chemosensor (SB-1) displayed excellent selectivity towards Cu2+ ion through fluorescent diminishment (turn-off phenomenon). Colorimetric analyses showed a rapid colour change from yellow to dark red under visible light upon addition of Cu2+ ions. Interestingly, the original yellow colour reappeared back instantly after the addition of EDTA2- anions, thus confirming the reversible nature of SB-1. Competitive experiments validated no interference from the other co-existing metal ions in the recognition process of SB-1 towards Cu2+ ion. Job's plot confirmed 1:1 binding stoichiometry between SB-1 and Cu2+ ion with the binding constant value of 3.87 × 104 M- 1. The limit of detection was determined to be 1.01 × 10- 7 M suggesting good sensitivity of SB-1 towards Cu2+ ions. Furthermore, pH-dependent UV-Vis spectral behaviour of SB-1 confirmed that it could act as an effective optical pH-sensor for highly acidic environment as well. Portable nature of probe SB-1 was explored by fabricating "easy-to-use" paper test strips, which allow robust and rapid detection of Cu2+ ions. Based on the multi-responsive properties of SB-1, a 'NOR' logic gate was constructed by applying Cu2+ and EDTA2- as chemical inputs (ln1: Cu2+, ln2: EDTA2-) while emission intensity observed at 560 nm was considered as output signal (O1). DFT optimized geometries confirmed that chemosensor SB-1 exists in Azo form (Enol form) in its ground state. Molecular docking of the SB-1 and its copper complex, into the binding site of TRK protein tyrosine kinase (PDB: 1t46) was also carried out to explore their biological activity and their potential use as TRK inhibitors.
Collapse
Affiliation(s)
- Aruna Chhikara
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India.
| | - Deepak Tomar
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| | - Gaurav Bartwal
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh, India
| | - Madhuri Chaurasia
- Department of Chemistry, Zakir Husain Delhi College, University of Delhi, New Delhi, India
| | - Anuj Sharma
- Department of Chemistry, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Swarita Gopal
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Sulekh Chandra
- Department of Chemistry, Dyal Singh College, University of Delhi, New Delhi, India.
| |
Collapse
|
2
|
Budziak-Wieczorek I, Ślusarczyk L, Myśliwa-Kurdziel B, Kurdziel M, Srebro-Hooper M, Korona-Glowniak I, Gagoś M, Gładyszewski G, Stepulak A, Kluczyk D, Matwijczuk A. Spectroscopic characterization and assessment of microbiological potential of 1,3,4-thiadiazole derivative showing ESIPT dual fluorescence enhanced by aggregation effects. Sci Rep 2022; 12:22140. [PMID: 36550169 PMCID: PMC9780306 DOI: 10.1038/s41598-022-26690-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
In the presented study, advanced experimental techniques, including electronic absorption and fluorescence spectroscopies [with Resonance Light Scattering (RLS)], measurements of fluorescence lifetimes in the frequency domain, calculations of dipole moment fluctuations, quantum yields, and radiative and non-radiative transfer constants, were used to characterize a selected analogue from the group of 1,3,4-thiadiazole, namely: 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl]benzene-1,3-diol (NTBD), intrinsically capable to demonstrate enol → keto excited-states intramolecular proton transfer (ESIPT) effects. The results of spectroscopic analyses conducted in solvent media as well as selected mixtures were complemented by considering biological properties of the derivative in question, particularly in terms of its potential microbiological activity. The compound demonstrated a dual fluorescence effect in non-polar solvents, e.g. chloroform and DMSO/H2O mixtures, while in polar solvents only a single emission maximum was detected. In the studied systems, ESIPT effects were indeed observed, as was the associated phenomenon of dual fluorescence, and, as demonstrated for the DMSO: H2O mixtures, the same could be relatively easily induced by aggregation effects related to aggregation-induced emission (AIE). Subsequently conducted quantum-chemical (TD-)DFT calculations supported further possibility of ESIPT effects. The following article provides a comprehensive description of the spectroscopic and biological properties of the analyzed 1,3,4-thiadiazole derivatives, highlighting its potential applicability as a very good fluorescence probes as well as a compound capable of high microbiological activity.
Collapse
Affiliation(s)
- Iwona Budziak-Wieczorek
- grid.411201.70000 0000 8816 7059Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
| | - Lidia Ślusarczyk
- grid.411201.70000 0000 8816 7059Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| | - Beata Myśliwa-Kurdziel
- grid.5522.00000 0001 2162 9631Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Martyna Kurdziel
- grid.5522.00000 0001 2162 9631Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Monika Srebro-Hooper
- grid.5522.00000 0001 2162 9631Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Izabela Korona-Glowniak
- grid.411484.c0000 0001 1033 7158Department of Pharmaceutical Microbiology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- grid.29328.320000 0004 1937 1303Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland ,grid.411484.c0000 0001 1033 7158Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Grzegorz Gładyszewski
- grid.41056.360000 0000 8769 4682Department of Applied Physics, Lublin University of Technology, Nadbystrzycka 38, 20-618 Lublin, Poland
| | - Andrzej Stepulak
- grid.411484.c0000 0001 1033 7158Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Dariusz Kluczyk
- grid.29328.320000 0004 1937 1303Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Maria Curie-Sklodowska University, 20-033 Lublin, Poland
| | - Arkadiusz Matwijczuk
- grid.411201.70000 0000 8816 7059Department of Biophysics, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
3
|
Dróżdż A, Sławińska-Brych A, Kubera D, Kimsa-Dudek M, Gola JM, Adamska J, Kruszniewska-Rajs C, Matwijczuk A, Karcz D, Dąbrowski W, Stepulak A, Gagoś M. Effect of Antibiotic Amphotericin B Combinations with Selected 1,3,4-Thiadiazole Derivatives on RPTECs in an In Vitro Model. Int J Mol Sci 2022; 23:ijms232315260. [PMID: 36499589 PMCID: PMC9738598 DOI: 10.3390/ijms232315260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
4-(5-methyl-1,3,4-thiadiazole-2-yl) benzene-1,3-diol (C1) and 4-[5-(naphthalen-1-ylmethyl)-1,3,4-thiadiazol-2-yl] benzene1,3-diol (NTBD) are representative derivatives of the thiadiazole group, with a high antimycotic potential and minimal toxicity against normal human fibroblast cells. The present study has proved its ability to synergize with the antifungal activity of AmB. The aim of this work was to evaluate the cytotoxic effects of C1 or NTBD, alone or in combination with AmB, on human renal proximal tubule epithelial cells (RPTECs) in vitro. Cell viability was assessed with the MTT assay. Flow cytometry and spectrofluorimetric techniques were used to assess the type of cell death and production of reactive oxygen species (ROS), respectively. The ELISA assay was performed to measure the caspase-2, -3, and -9 activity. ATR-FTIR spectroscopy was used to evaluate biomolecular changes in RPTECs induced by the tested formulas. The combinations of C1/NTBD and AmB did not exert a strong inhibitory effect on the viability/growth of kidney cells, as evidenced by the negligible changes in the apoptotic/necrotic rate and caspase activity, compared to the control cells. Both NTBD and C1 displayed stronger anti-oxidant activity when combined with AmB. The relatively low nephrotoxicity of the thiadiazole derivative combinations and the protective activity against AmB-induced oxidative stress may indicate their potential use in the therapy of fungal infections.
Collapse
Affiliation(s)
- Agnieszka Dróżdż
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Dominika Kubera
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Magdalena Kimsa-Dudek
- Department of Nutrigenomics and Bromatology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Joanna Magdalena Gola
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
- Correspondence:
| | - Jolanta Adamska
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Celina Kruszniewska-Rajs
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics, Cracow University of Technology, 31-155 Krakow, Poland
| | - Wojciech Dąbrowski
- I Clinic of Anaesthesiology and Intensive Therapy with Clinical Paediatric Department, Medical University of Lublin, Jaczewskiego 8, 20-090 Lublin, Poland
| | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
| |
Collapse
|
4
|
Karcz D, Starzak K, Ciszkowicz E, Lecka-Szlachta K, Kamiński D, Creaven B, Jenkins H, Radomski P, Miłoś A, Ślusarczyk L, Matwijczuk A. Novel Coumarin-Thiadiazole Hybrids and Their Cu(II) and Zn(II) Complexes as Potential Antimicrobial Agents and Acetylcholinesterase Inhibitors. Int J Mol Sci 2021; 22:ijms22189709. [PMID: 34575894 PMCID: PMC8471537 DOI: 10.3390/ijms22189709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
A series of coumarin-thiadiazole hybrids and their corresponding Cu(II) and Zn(II) complexes were synthesized and characterized with the use of spectroscopic techniques. The results obtained indicate that all the coumarin-thiadiazole hybrids act as bidentate chelators of Cu(II) and Zn(II) ions. The complexes isolated differ in their ligand:metal ratio depending on the central metal. In most cases, the Zn(II) complexes are characteristic of a 1:1 ligand:metal ratio, while in the Cu(II) complexes the ligand:metal ratio is 2:1. All compounds were tested as potential antibacterial agents against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains demonstrating activities notably lower than commercially available antibiotics. The more promising results were obtained from the assessment of antineurodegenerative potency as all compounds showed moderate acetylcholinesterase (AChE) inhibition activity.
Collapse
Affiliation(s)
- Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
- Correspondence: ; Tel.: +48-(12)-628-2177
| | - Karolina Starzak
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Ewa Ciszkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Katarzyna Lecka-Szlachta
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Daniel Kamiński
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Bernadette Creaven
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, D07 ADY7 Grangegorman, Ireland;
| | - Hollie Jenkins
- Department of Applied Science, Technological University Dublin, D24 FKT9 Tallaght, Ireland;
| | - Piotr Radomski
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Anna Miłoś
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Lidia Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| |
Collapse
|
5
|
Najjar A, Hassan EA, Zabermawi N, Saber SH, Bajrai LH, Almuhayawi MS, Abujamel TS, Almasaudi SB, Azhar LE, Moulay M, Harakeh S. Optimizing the catalytic activities of methanol and thermotolerant Kocuria flava lipases for biodiesel production from cooking oil wastes. Sci Rep 2021; 11:13659. [PMID: 34211018 PMCID: PMC8249636 DOI: 10.1038/s41598-021-93023-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
In this study, two highly thermotolerant and methanol-tolerant lipase-producing bacteria were isolated from cooking oil and they exhibited a high number of catalytic lipase activities recording 18.65 ± 0.68 U/mL and 13.14 ± 0.03 U/mL, respectively. Bacterial isolates were identified according to phenotypic and genotypic 16S rRNA characterization as Kocuria flava ASU5 (MT919305) and Bacillus circulans ASU11 (MT919306). Lipases produced from Kocuria flava ASU5 showed the highest methanol tolerance, recording 98.4% relative activity as well as exhibited high thermostability and alkaline stability. Under the optimum conditions obtained from 3D plots of response surface methodology design, the Kocuria flava ASU5 biocatalyst exhibited an 83.08% yield of biodiesel at optimized reaction variables of, 60 ○C, pH value 8 and 1:2 oil/alcohol molar ratios in the reaction mixture. As well as, the obtained results showed the interactions of temperature/methanol were significant effects, whereas this was not noted in the case of temperature/pH and pH/methanol interactions. The obtained amount of biodiesel from cooking oil was 83.08%, which was analyzed by a GC/Ms profile. The produced biodiesel was confirmed by Fourier-transform infrared spectroscopy (FTIR) approaches showing an absorption band at 1743 cm-1, which is recognized for its absorption in the carbonyl group (C=O) which is characteristic of ester absorption. The energy content generated from biodiesel synthesized was estimated as 12,628.5 kJ/mol. Consequently, Kocuria flava MT919305 may provide promising thermostable, methanol-tolerant lipases, which may improve the economic feasibility and biotechnology of enzyme biocatalysis in the synthesis of value-added green chemicals.
Collapse
Affiliation(s)
- Azhar Najjar
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Elhagag Ahmed Hassan
- Department of Botany and Microbiology, Faculty of Science, Assiut University, Assiut, Egypt.
| | - Nidal Zabermawi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saber H Saber
- Laboratory of Molecular Cell Biology, Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
| | - Leena H Bajrai
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed S Almuhayawi
- Department of Medical Microbiology/Parasitology and Molecular Microbiology Laboratory, King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Turki S Abujamel
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saad B Almasaudi
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Leena E Azhar
- Preventive Medicine, General Directorate of Health Affairs, Aseer Region, Abha, Saudi Arabia
| | - Mohammed Moulay
- Department of Biology, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Embryonic Stem Cells Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Steve Harakeh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
- Yousef Abdullatif Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
6
|
Ila RD, Verma SP, Krishnamoorthy G. The origin of the longer wavelength emission in 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole and its analogue 2-phenylamino-5-(2-hydroxybenzono)-1,3,4-thiadiazole† ‡. Photochem Photobiol Sci 2020; 19:844-853. [PMID: 33856680 DOI: 10.1039/c9pp00490d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/26/2020] [Indexed: 05/18/2024]
Abstract
In aqueous solution, 2-(4-fluorophenylamino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole (FABT) was found to emit dual emission and the longer wavelength emission was assigned to the combination of aggregation and conformational change. In a number of molecules that possess an intramolecular hydrogen bond between the proton donor and the acceptor, the longer wavelength emission is often observed due to the emission from the tautomer formed by excited state intramolecular proton transfer (ESIPT). Therefore, an analogue of FABT, 2-phenylamino-5-(2-hydroxybenzono)-1,3,4-thiadiazole (PHBT), was synthesized to determine the origin of the longer wavelength emission. The luminescence of PHBT and its methoxy derivatives was studied and compared with that of FABT. Theoretical calculations were also performed on both FABT and PHBT. Based on the experimental and theoretical investigations, the nonexistence of the keto tautomer in the ground state and the origin of the longer wavelength emission are divulged.
Collapse
Affiliation(s)
- Reshmi Dani Ila
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - Surya Pratap Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India
| | - G Krishnamoorthy
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, 781039, India.
| |
Collapse
|
7
|
Non-Typical Fluorescence Effects and Biological Activity in Selected 1,3,4-thiadiazole Derivatives: Spectroscopic and Theoretical Studies on Substituent, Molecular Aggregation, and pH Effects. Int J Mol Sci 2019; 20:ijms20215494. [PMID: 31690061 PMCID: PMC6862516 DOI: 10.3390/ijms20215494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/30/2019] [Indexed: 12/19/2022] Open
Abstract
The below article presents the results of spectroscopic research, theoretical (time-dependent density functional theory (TD-DFT)), microbiological, and antioxidative calculations for three compounds from the group of 1,3,4-thiadiazoles: 2-amino-5-phenyl-1,3,4-thiadiazole (TB), 2-amino-5-(2-hydroxyphenyl)-1,3,4-thiadiazole (TS), 2-amino-5-(2-hydroxy-5-sulfobenzoyl)-1,3,4-thiadiazole (TSF). In the fluorescence emission spectra (TS) of solutions with varying concentrations of hydrogen ions, a particularly interesting effect of dual fluorescence was observed. The aforementioned effect was observed even more clearly in the environment of butan-1-ol, relative to the compound's concentration. Depending on the modification of the resorcylic substituent (TS and TSF), we observed the emergence of two separate, partially overlapping, fluorescence emission spectra or a single emission spectrum. Interpretation of the obtained spectra using stationary and time-resolved spectroscopy allowed the correlation of the effect's emergence with the phenomenon of molecular aggregation (of a particular type) as well as, above all, the structure of the substituent system. The overlap of said effects most likely induces the processes related to the phenomenon of charge transfer (in TS) and is responsible for the observed fluorescence effects. Also, the position of the -OH group (in the resorcylic ring) is significant and can facilitate the charge transfer (CT). The determinations of the changes in the dipole moment and TD-DFT calculations further corroborate the above assumption. The following paper presents the analysis (the first for this particular group of analogues) of the fluorescence effects relative to the changes in the structure of the resorcylic group combined with pH effects. The results of biological studies also indicate the highest pharmacological potential of the analogue in the case where the effects of dual fluorescence emission are observed, which predisposes this particular group of fluorophores as effective fluorescence probes or potential pharmaceuticals with antimycotic properties.
Collapse
|
8
|
Budziak I, Karcz D, Makowski M, Myśliwa-Kurdziel B, Kasprzak K, Matwijczuk A, Chruściel E, Oniszczuk A, Adwent L, Matwijczuk A. Spectroscopic and theoretical investigation into substituent- and aggregation-related dual fluorescence effects in the selected 2-amino-1,3,4-thiadiazoles. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111261] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
9
|
Starzak K, Matwijczuk A, Creaven B, Matwijczuk A, Wybraniec S, Karcz D. Fluorescence Quenching-Based Mechanism for Determination of Hypochlorite by Coumarin-Derived Sensors. Int J Mol Sci 2019; 20:ijms20020281. [PMID: 30642004 PMCID: PMC6358793 DOI: 10.3390/ijms20020281] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/03/2019] [Accepted: 01/09/2019] [Indexed: 01/05/2023] Open
Abstract
A fluorescence quenching-based mechanism for the determination of hypochlorite was proposed based on spectroscopic and chromatographic studies on the hypochlorite-sensing potency of three structurally similar and highly fluorescent coumarins. The mode of action was found to rely upon a chlorination of the coumarin-based probes resulting from their reaction with sodium hypochlorite. Importantly, the formation of chlorinated derivatives was accompanied by a linear decrease in the fluorescence intensities of the probes tested. The results obtained suggest the applicability of a coumarin-dependent hypochlorite recognition mechanism for the detection of, as well as for quantitative determination of, hypochlorite species in vitro.
Collapse
Affiliation(s)
- Karolina Starzak
- Department of Analytical Chemistry (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Bernadette Creaven
- Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| | - Alicja Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland.
| | - Sławomir Wybraniec
- Department of Analytical Chemistry (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| | - Dariusz Karcz
- Department of Analytical Chemistry (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland.
| |
Collapse
|
10
|
Matwijczuk A, Zając G, Karcz D, Chruściel E, Matwijczuk A, Kachel-Jakubowska M, Łapczyńska-Kordon B, Gagoś M. Spectroscopic studies of the quality of WCO (Waste Cooking Oil) fatty acid methyl esters. BIO WEB OF CONFERENCES 2018. [DOI: 10.1051/bioconf/20181002019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Different kinds of biodiesel fuels become more and more attractive form of fuel due to their unique characteristics such as: biodegradability, replenishability, and what is more a very low level of toxicity in terms of using them as a fuel. The test on the quality of diesel fuel is becoming a very important issue mainly due to the fact that its high quality may play an important role in the process of commercialization and admitting it on the market. The most popular techniques among the wellknown are: molecular spectroscopy and molecular chromatography (especially the spectroscopy of the electron absorption and primarily the infrared spectroscopy (FTIR)).The issue presents a part of the results obtained with the use of spectroscopy of the electron absorption and in majority infrared spectroscopy FTIR selected for testing samples of the acid fats WCO (Waste Cooking Oil) types. The samples were obtained using laboratory methods from sunflower oil and additionally from waste animal fats delivered from slaughterhouses. Acid methyl esters were selected as references to present the samples. In order to facilitate the spectroscopic analysis, free glycerol, methanol, esters and methyl linolenic acid were measured
Collapse
|
11
|
Matwijczuk A, Górecki A, Makowski M, Pustuła K, Skrzypek A, Waś J, Niewiadomy A, Gagoś M. Spectroscopic and Theoretical Studies of Fluorescence Effects in 2-Methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole Induced by Molecular Aggregation. J Fluoresc 2017; 28:65-77. [PMID: 28889356 PMCID: PMC5799588 DOI: 10.1007/s10895-017-2175-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/30/2017] [Indexed: 01/12/2023]
Abstract
The article presents the results of fluorescence analyses of 2-methylamino-5-(2,4-dihydroxyphenyl)-1,3,4-thiadiazole (MDFT) in an aqueous environment. MDFT dissolved in aqueous solutions with a pH value in the range from 1 to 4.5 yielded an interesting effect of two clearly separated fluorescence emissions. In turn, a single fluorescence was observed in MDFT dissolved in water solutions with a pH value from 4.5 to 12. As it was suggested in the previous investigations of other 1,3,4-thiadiazole compounds, these effects may be associated with conformational changes in the structure of the analysed molecule accompanied by aggregation effects. Crystallographic data showed that the effect of the two separated fluorescence emissions occurred in a conformation with the –OH group in the resorcyl ring bound on the side of the sulphur atom from the 1,3,4-thiadiazole ring. The hypothesis of aggregation as the mechanism involved in the change in the spectral properties at low pH is supported by the results of (Time-Dependent) Density Functional Theory calculations. The possibility of rapid analysis of conformational changes with the fluorescence spectroscopy technique may be rather important outcome obtained from the spectroscopic studies presented in this article. Additionally, the presented results seem to be highly important as they can be easily observed in solutions and biologically important samples.
Collapse
Affiliation(s)
- Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Marcin Makowski
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Katarzyna Pustuła
- Department of Theoretical Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Alicja Skrzypek
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland
| | - Joanna Waś
- Departament of Chemistry, Jagiellonian University, Ingardena 3, 30-060, Kraków, Poland
| | - Andrzej Niewiadomy
- Department of Chemistry, University of Life Sciences in Lublin, Akademicka 15, 20-950, Lublin, Poland.,Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland.
| |
Collapse
|
12
|
Matwijczuk A, Kluczyk D, Górecki A, Niewiadomy A, Gagoś M. Spectroscopic Studies of Fluorescence Effects in Bioactive 4-(5-Heptyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol and 4-(5-Methyl-1,3,4-Thiadiazol-2-yl)Benzene-1,3-Diol Molecules Induced by pH Changes in Aqueous Solutions. J Fluoresc 2017; 27:1201-1212. [PMID: 28247069 PMCID: PMC5487764 DOI: 10.1007/s10895-017-2053-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/19/2017] [Indexed: 01/27/2023]
Abstract
This paper presents the results of stationary fluorescence spectroscopy and time-resolved spectroscopy analyses of two 1,3,4-thiadiazole analogues, i.e. 4-(5-methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C1) and 4-(5-heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol (C7) in an aqueous medium containing different concentrations of hydrogen ions. An interesting dual florescence effect was observed when both compounds were dissolved in aqueous solutions at pH below 7 for C1 and 7.5 for C7. In turn, for C1 and C7 dissolved in water at pH higher than the physiological value (mentioned above), single fluorescence was only noted. Based on previous results of investigations of the selected 1,3,4-thiadiazole compounds, it was noted that the presented effects were associated with both conformational changes in the analysed molecules and charge transfer (CT) effects, which were influenced by the aggregation factor. However, in the case of C1 and C7, the dual fluorescence effects were visible in a higher energetic region (different than that observed in the 1,3,4-thiadiazoles studied previously). Measurements of the fluorescence lifetimes in a medium characterised by different concentrations of hydrogen ions revealed clear lengthening of the excited-state lifetime in a pH range at which dual fluorescence effects can be observed. An important finding of the investigations presented in this article is the fact that the spectroscopic effects observed not only are interesting from the cognitive point of view but also can help in development of an appropriate theoretical model of molecular interactions responsible for the dual fluorescence effects in the analysed 1,3,4-thiadiazoles. Furthermore, the study will clarify a broad range of biological and pharmaceutical applications of these compounds, which are more frequently used in clinical therapies. Graphical Abstract Upper left corner - C7 molecule at high pH, right upper corner - fluorescence emission spectrum for C7 dissolved in H2O at high pH (7-12) - single fluorescence. Bottom left corner - C7 molecule at low pH (1-7), lower right corner - fluorescence emission spectrum for C7 dissolved in water at low pH - two fluorescence emissions. The circles indicate the group related to dissociation of molecules at low and high pH and the additional long circles indicate C1 or a molecule with a shorter acyl chain.
Collapse
Affiliation(s)
- Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| | - Dariusz Kluczyk
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland
| | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236, Warsaw, Poland.,Department of Chemistry, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033, Lublin, Poland.
| |
Collapse
|
13
|
Matwijczuk A, Karcz D, Walkowiak R, Furso J, Gładyszewska B, Wybraniec S, Niewiadomy A, Karwasz GP, Gagoś M. Effect of Solvent Polarizability on the Keto/Enol Equilibrium of Selected Bioactive Molecules from the 1,3,4-Thiadiazole Group with a 2,4-Hydroxyphenyl Function. J Phys Chem A 2017; 121:1402-1411. [DOI: 10.1021/acs.jpca.6b08707] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arkadiusz Matwijczuk
- Department
of Biophysics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Dariusz Karcz
- Department
of Analytical Chemistry (C1), Faculty of Chemical Engineering and
Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Radosław Walkowiak
- Department
of Biophysics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Justyna Furso
- Department
of Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Bożena Gładyszewska
- Department
of Physics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Sławomir Wybraniec
- Department
of Analytical Chemistry (C1), Faculty of Chemical Engineering and
Technology, Krakow University of Technology, Warszawska 24, 31-155 Krakow, Poland
| | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
- Department
of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
| | - Grzegorz P. Karwasz
- Aleksander
Jabłoński Institute of Physics, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Mariusz Gagoś
- Department
of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|
14
|
Karcz D, Matwijczuk A, Boroń B, Creaven B, Fiedor L, Niewiadomy A, Gagoś M. Isolation and spectroscopic characterization of Zn(II), Cu(II), and Pd(II) complexes of 1,3,4-thiadiazole-derived ligand. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.08.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
15
|
Kluczyk D, Matwijczuk A, Górecki A, Karpińska MM, Szymanek M, Niewiadomy A, Gagoś M. Molecular Organization of Dipalmitoylphosphatidylcholine Bilayers Containing Bioactive Compounds 4-(5-Heptyl-1,3,4-thiadiazol-2-yl) Benzene-1,3-diol and 4-(5-Methyl-1,3,4-thiadiazol-2-yl) Benzene-1,3-diols. J Phys Chem B 2016; 120:12047-12063. [PMID: 27798830 DOI: 10.1021/acs.jpcb.6b09371] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This article presents the results of spectroscopic studies of two compounds from the 1,3,4-thiadiazole group, that is, 4-(5-methyl-1,3,4-thiadiazole-2-yl)benzene-1,3-diol (C1) and 4-(5-heptyl-1,3,4-thiadiazole-2-yl)benzene-1,3-diol (C7), present at different molar concentrations in 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) liposome systems. In the case of both investigated compounds, fluorescence measurements revealed the presence of several emission bands, whose appearance is related to the molecular organization induced by changes in the phase transition in DPPC. On the basis of the interpretation of Fourier transform infrared spectra, we determined the molecular organization of the analyzed compounds in multilayers formed from DPPC and the 1,3,4-thiadiazoles. It was found that the compound with a longer alkyl substituent both occupied the lipid polar head region in the lipid multilayer and interacted with lipid hydrocarbon chains. In turn, the compound with a shorter alkyl substituent interacted more strongly with the membrane polar region. On the basis of the knowledge from previous investigations conducted using different solvents, the fluorescence effects observed were related to the phenomenon of molecular aggregation. The effects were strongly influenced by the structure of the compound and, primarily, by the type of the alkyl substituent used in the molecule. The substantial shortening of fluorescence lifetimes associated with the effect of long-wave emission (with a maximum at 505 nm) decay also confirms the model of aggregation effects in the analyzed systems. Similar effects can be very easily distinguished and associated with respective forms of the compounds in biologically relevant samples.
Collapse
Affiliation(s)
- Dariusz Kluczyk
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| | | | - Andrzej Górecki
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University , Gronostajowa 7, 30-387 Krakow, Poland
| | - Monika M Karpińska
- Institute of Industrial Organic Chemistry , Annopol 6, 03-236 Warsaw, Poland
| | | | - Andrzej Niewiadomy
- Institute of Industrial Organic Chemistry , Annopol 6, 03-236 Warsaw, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology and Biochemistry, Maria Curie-Skłodowska University , 20-033 Lublin, Poland
| |
Collapse
|
16
|
Matwijczuk A, Kluczyk D, Górecki A, Niewiadomy A, Gagoś M. Solvent Effects on Molecular Aggregation in 4-(5-Heptyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol and 4-(5-Methyl-1,3,4-thiadiazol-2-yl)benzene-1,3-diol. J Phys Chem B 2016; 120:7958-69. [DOI: 10.1021/acs.jpcb.6b06323] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Arkadiusz Matwijczuk
- Department
of Biophysics, University of Life Sciences in Lublin, Akademicka
13, 20-950 Lublin, Poland
| | - Dariusz Kluczyk
- Department
of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| | - Andrzej Górecki
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Andrzej Niewiadomy
- Department
of Chemistry, University of Life Sciences in Lublin, 20-950 Lublin, Poland
- Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
| | - Mariusz Gagoś
- Department
of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|
17
|
Matwijczuk A, Kamiński D, Górecki A, Ludwiczuk A, Niewiadomy A, Maćkowski S, Gagoś M. Spectroscopic Studies of Dual Fluorescence in 2-((4-Fluorophenyl)amino)-5-(2,4-dihydroxybenzeno)-1,3,4-thiadiazole. J Phys Chem A 2015; 119:10791-805. [DOI: 10.1021/acs.jpca.5b06475] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Andrzej Górecki
- Department of Physical
Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, 31-007 Kraków, Poland
| | - Agnieszka Ludwiczuk
- Chair and Department of Pharmacognosy with Medicinal
Plant Unit, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland
| | | | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, 87-100 Toruń, Poland
| | - Mariusz Gagoś
- Department of Cell Biology, Institute of Biology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland
| |
Collapse
|