1
|
Akhtar S, Pranay K, Kumari K. Personal protective equipment and micro-nano plastics: A review of an unavoidable interrelation for a global well-being hazard. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100055. [PMID: 37102160 PMCID: PMC10089666 DOI: 10.1016/j.heha.2023.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The usage and the demand for personal protective equipments (PPEs) for our day-to-day survival in this pandemic period of COVID-19 have seen a steep rise which has consequently led to improper disposal and littering. Fragmentation of these PPE units has eventually given way to micro-nano plastics (MNPs) emission in the various environmental matrices and exposure of living organisms to these MNPs has proven to be severely toxic. Numerous factors contribute to the toxicity imparted by these MNPs that mainly include their shape, size, functional groups and their chemical diversity. Even though multiple studies on the impacts of MNPs toxicity are available for other organisms, human cell line studies for various plastic polymers, other than the most common ones namely polyethylene (PE), polystyrene (PS) and polypropylene (PP), are still at their nascent stage and need to be explored more. In this article, we cover a concise review of the literature on the impact of these MNPs in biotic and human systems focusing on the constituents of the PPE units and the additives that are essentially used for their manufacturing. This review will subsequently identify the need to gather scientific evidence at the smaller level to help combat this microplastic pollution and induce a more in-depth understanding of its adverse effect on our existence.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| | - Kumar Pranay
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences (IGIMS), Patna 800014, Bihar, India
| | - Kanchan Kumari
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| |
Collapse
|
2
|
Chortarea S, Kuru OC, Netkueakul W, Pelin M, Keshavan S, Song Z, Ma B, Gómes J, Abalos EV, Luna LAVD, Loret T, Fordham A, Drummond M, Kontis N, Anagnostopoulos G, Paterakis G, Cataldi P, Tubaro A, Galiotis C, Kinloch I, Fadeel B, Bussy C, Kostarelos K, Buerki-Thurnherr T, Prato M, Bianco A, Wick P. Hazard assessment of abraded thermoplastic composites reinforced with reduced graphene oxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129053. [PMID: 35650742 DOI: 10.1016/j.jhazmat.2022.129053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Graphene-related materials (GRMs) are subject to intensive investigations and considerable progress has been made in recent years in terms of safety assessment. However, limited information is available concerning the hazard potential of GRM-containing products such as graphene-reinforced composites. In the present study, we conducted a comprehensive investigation of the potential biological effects of particles released through an abrasion process from reduced graphene oxide (rGO)-reinforced composites of polyamide 6 (PA6), a widely used engineered thermoplastic polymer, in comparison to as-produced rGO. First, a panel of well-established in vitro models, representative of the immune system and possible target organs such as the lungs, the gut, and the skin, was applied. Limited responses to PA6-rGO exposure were found in the different in vitro models. Only as-produced rGO induced substantial adverse effects, in particular in macrophages. Since inhalation of airborne materials is a key occupational concern, we then sought to test whether the in vitro responses noted for these materials would translate into adverse effects in vivo. To this end, the response at 1, 7 and 28 days after a single pulmonary exposure was evaluated in mice. In agreement with the in vitro data, PA6-rGO induced a modest and transient pulmonary inflammation, resolved by day 28. In contrast, rGO induced a longer-lasting, albeit moderate inflammation that did not lead to tissue remodeling within 28 days. Taken together, the present study suggests a negligible impact on human health under acute exposure conditions of GRM fillers such as rGO when released from composites at doses expected at the workplace.
Collapse
Affiliation(s)
- Savvina Chortarea
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Ogul Can Kuru
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Woranan Netkueakul
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Sandeep Keshavan
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Zhengmei Song
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Baojin Ma
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Julio Gómes
- Avanzare Innovacion Tecnologica S.L. 26370 Navarrete, Spain
| | - Elvira Villaro Abalos
- Instituto de Tecnologías Químicas de La Rioja (InterQuímica), 26370 Navarrete, Spain
| | - Luis Augusto Visani de Luna
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Thomas Loret
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Alexander Fordham
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Matthew Drummond
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Nikolaos Kontis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Anagnostopoulos
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - George Paterakis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece
| | - Pietro Cataldi
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Costas Galiotis
- Institute of Chemical Engineering Sciences, Foundation of Research and Technology-Hellas (FORTH/ICE-HT), 26504 Patras, Greece; Department of Chemical Engineering, University of Patras, 26504 Patras, Greece
| | - Ian Kinloch
- National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Bengt Fadeel
- Nanosafety & Nanomedicine Laboratory, Institute of Environmental Medicine, Karolinska Institutet, 177 77 Stockholm, Sweden
| | - Cyrill Bussy
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PL, United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, United Kingdom; National Graphene Institute, University of Manchester, Manchester M13 9PL, United Kingdom; Catalan Institute of Nanoscience and Nanotechnology (ICN2), and Barcelona Institute of Science and Technology (BIST), Barcelona 08193, Spain
| | - Tina Buerki-Thurnherr
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy; Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia San Sebastián, Spain; Basque Foundation for Science (IKERBASQUE), 48013 Bilbao, Spain
| | - Alberto Bianco
- CNRS, Immunology, Immunopathology and Therapeutic Chemistry, UPR3572, University of Strasbourg, ISIS, 67000 Strasbourg, France
| | - Peter Wick
- Swiss Federal Laboratories for Materials Science and Technology (Empa), Laboratory for Particles-Biology Interactions, 9014 St. Gallen, Switzerland.
| |
Collapse
|
3
|
Jablonski J, Yu L, Malik S, Sharma A, Bajaj A, Balasubramaniam SL, Bleher R, Weiner RG, Duncan TV. Migration of Quaternary Ammonium Cations from Exfoliated Clay/Low-Density Polyethylene Nanocomposites into Food Simulants. ACS OMEGA 2019; 4:13349-13359. [PMID: 31460463 PMCID: PMC6705235 DOI: 10.1021/acsomega.9b01529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Clay/polymer nanocomposites (CPNs) are polymers incorporating refined clay particles that are frequently functionalized with quaternary ammonium cations (QACs) as dispersion aids. There is interest in commercializing CPNs for food contact applications because they have improved strength and barrier properties, but there are few studies on the potential for QACs in CPNs to transfer to foods under conditions of intended use. In this study, we manufactured low-density poly(ethylene) (LDPE)-based CPNs and assessed whether QACs can migrate into several food simulants under accelerated storage conditions. QACs were found to migrate to a fatty food simulant (ethanol) at levels of ∼1.1 μg mg-1 CPN mass after 10 days at 40 °C, constituting about 4% total migration (proportion of the initial QAC content in the CPN that migrated to the simulant). QAC migration into ethanol was ∼16× higher from LDPE containing approximately the same concentration of QACs but no clay, suggesting that most QACs in the CPN are tightly bound to clay particles and are immobile. Negligible QACs were found to migrate into aqueous, alcoholic, or acidic simulants from CPNs, and the amount of migrated QACs was also found to scale with the temperature and the initial clay concentration. The migration data were compared to a theoretical diffusion model, and it was found that the diffusion constant for QACs in the CPN was several orders of magnitude slower than predicted, which we attributed to the potential for QACs to migrate as dimers or other aggregates rather than as individual ions. Nevertheless, the use of the migration model resulted in a conservative estimate of the mass transfer of QAC from the CPN test specimens.
Collapse
Affiliation(s)
- Joseph
E. Jablonski
- Center
for Food Safety and Applied Nutrition, U.S.
Food and Drug Administration, Bedford
Park, Illinois 60501, United States
| | - Longjiao Yu
- Department
of Food Science and Nutrition, Illinois
Institute of Technology, Bedford
Park, Illinois 60501, United States
| | - Sargun Malik
- Department
of Food Science and Nutrition, Illinois
Institute of Technology, Bedford
Park, Illinois 60501, United States
| | - Ashutosh Sharma
- Department
of Food Science and Nutrition, Illinois
Institute of Technology, Bedford
Park, Illinois 60501, United States
| | - Akhil Bajaj
- Department
of Food Science and Nutrition, Illinois
Institute of Technology, Bedford
Park, Illinois 60501, United States
| | | | - Reiner Bleher
- Northwestern
University Atomic and Nanoscale Characterization Experimental (NUANCE)
Center, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca G. Weiner
- Center
for Food Safety and Applied Nutrition, U.S.
Food and Drug Administration, Bedford
Park, Illinois 60501, United States
| | - Timothy V. Duncan
- Center
for Food Safety and Applied Nutrition, U.S.
Food and Drug Administration, Bedford
Park, Illinois 60501, United States
| |
Collapse
|
4
|
González-Gálvez D, Janer G, Vilar G, Vílchez A, Vázquez-Campos S. The Life Cycle of Engineered Nanoparticles. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 947:41-69. [PMID: 28168665 DOI: 10.1007/978-3-319-47754-1_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first years in the twenty-first century have meant the inclusion of nanotechnology in most industrial sectors, from very specific sensors to construction materials. The increasing use of nanomaterials in consumer products has raised concerns about their potential risks for workers, consumers and the environment. In a comprehensive risk assessment or life cycle assessment, a life cycle schema is the starting point necessary to build up the exposure scenarios and study the processes and mechanisms driving to safety concerns. This book chapter describes the processes that usually occur at all the stages of the life cycle of the nano-enabled product, from the nanomaterial synthesis to the end-of-life of the products. Furthermore, release studies reported in literature related to these processes are briefly discussed.
Collapse
Affiliation(s)
- David González-Gálvez
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | - Gemma Janer
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | - Gemma Vilar
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | - Alejandro Vílchez
- LEITAT Technological Center, C/ de la Innovació 2, 08225, Terrassa (Barcelona), Spain
| | | |
Collapse
|
6
|
Al-Kattan A, Wichser A, Vonbank R, Brunner S, Ulrich A, Zuin S, Arroyo Y, Golanski L, Nowack B. Characterization of materials released into water from paint containing nano-SiO2. CHEMOSPHERE 2015; 119:1314-1321. [PMID: 24630447 DOI: 10.1016/j.chemosphere.2014.02.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 02/06/2014] [Accepted: 02/08/2014] [Indexed: 05/29/2023]
Abstract
In order to assess the possible risks of applications containing engineered nanomaterials, it is essential to generate more data about their release and exposure, so far largely overlooked areas of research. The aim of this work was to study the characterization of the materials released from paint containing nano-SiO2 during weathering and exposure to water. Panels coated with nano-SiO2 containing paint and a nano-free reference paint were exposed to accelerated weathering cycles in a climate chamber. The total release of 89 six-hour cycles of UV-illumination and precipitation was 2.3% of the total SiO2 contained in the paint. Additional tests with powdered and aged paint showed that the majority of the released Si was present in dissolved form and that only a small percentage was present in particulate and nano-particulate form. TEM imaging of the leachates indicated that the majority of the particulate Si was contained in composites together with Ca, representing the paint matrix, and only few single dispersed SiO2-NPs were detected. The results suggest that toxicological and ecotoxicological studies need to consider that the released particles may have been transformed or are embedded in a matrix.
Collapse
Affiliation(s)
- Ahmed Al-Kattan
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Analytical Chemistry, Überlandstrasse 129, 8600 Dübendorf, Switzerland; Empa, Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland
| | - Adrian Wichser
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Analytical Chemistry, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Roger Vonbank
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Building Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Samuel Brunner
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Building Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Andrea Ulrich
- Empa, Swiss Federal Laboratories for Material Science and Technology, Laboratory for Analytical Chemistry, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Stefano Zuin
- Venice Research Consortium, Via della Libertà 12, c/o VEGA Park, 30175 Venice, Italy
| | - Yadira Arroyo
- Empa, Swiss Federal Laboratories for Material Science and Technology, Electron Microscopy Center, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Luana Golanski
- CEA Commissariat à l'Energie Atomique et aux Energies Alternatives, rue des Martyrs 17, 38000 Grenoble, France
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Material Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, CH-9014 St. Gallen, Switzerland.
| |
Collapse
|