1
|
Yang X, Xu H, Yang X, Wang H, Zou L, Yang Q, Qi X, Li L, Duan H, Yan X, Fu NY, Tan J, Hou Z, Jiao B. Mcam inhibits macrophage-mediated development of mammary gland through non-canonical Wnt signaling. Nat Commun 2024; 15:36. [PMID: 38167296 PMCID: PMC10761817 DOI: 10.1038/s41467-023-44338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.
Collapse
Affiliation(s)
- Xing Yang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Haibo Xu
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiaopeng Qi
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Li
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongxia Duan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Xiyun Yan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Baowei Jiao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
2
|
Gastélum-López MDLÁ, Aguilar-Medina M, García Mata C, López-Gutiérrez J, Romero-Quintana G, Bermúdez M, Avendaño-Felix M, López-Camarillo C, Pérez-Plascencia C, Beltrán AS, Ramos-Payán R. Organotypic 3D Cell-Architecture Impacts the Expression Pattern of miRNAs-mRNAs Network in Breast Cancer SKBR3 Cells. Noncoding RNA 2023; 9:66. [PMID: 37987362 PMCID: PMC10661268 DOI: 10.3390/ncrna9060066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/20/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Currently, most of the research on breast cancer has been carried out in conventional two-dimensional (2D) cell cultures due to its practical benefits, however, the three-dimensional (3D) cell culture is becoming the model of choice in cancer research because it allows cell-cell and cell-extracellular matrix (ECM) interactions, mimicking the native microenvironment of tumors in vivo. METHODS In this work, we evaluated the effect of 3D cell organization on the expression pattern of miRNAs (by Small-RNAseq) and mRNAs (by microarrays) in the breast cancer SKBR3 cell line and analyzed the biological processes and signaling pathways regulated by the differentially expressed protein-coding genes (DE-mRNAs) and miRNAs (DE-microRNAs) found in the organoids. RESULTS We obtained well-defined cell-aggregated organoids with a grape cluster-like morphology with a size up to 9.2 × 105 μm3. The transcriptomic assays showed that cell growth in organoids significantly affected (all p < 0.01) the gene expression patterns of both miRNAs, and mRNAs, finding 20 upregulated and 19 downregulated DE-microRNAs, as well as 49 upregulated and 123 downregulated DE-mRNAs. In silico analysis showed that a subset of 11 upregulated DE-microRNAs target 70 downregulated DE-mRNAs. These genes are involved in 150 gene ontology (GO) biological processes such as regulation of cell morphogenesis, regulation of cell shape, regulation of canonical Wnt signaling pathway, morphogenesis of epithelium, regulation of cytoskeleton organization, as well as in the MAPK and AGE-RAGE signaling KEGG-pathways. Interestingly, hsa-mir-122-5p (Fold Change (FC) = 15.4), hsa-mir-369-3p (FC = 11.4), and hsa-mir-10b-5p (FC = 20.1) regulated up to 81% of the 70 downregulated DE-mRNAs. CONCLUSION The organotypic 3D cell-organization architecture of breast cancer SKBR3 cells impacts the expression pattern of the miRNAs-mRNAs network mainly through overexpression of hsa-mir-122-5p, hsa-mir-369-3p, and hsa-mir-10b-5p. All these findings suggest that the interaction between cell-cell and cell-ECM as well as the change in the culture architecture impacts gene expression, and, therefore, support the pertinence of migrating breast cancer research from conventional cultures to 3D models.
Collapse
Affiliation(s)
- María de los Ángeles Gastélum-López
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Maribel Aguilar-Medina
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Cristina García Mata
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Jorge López-Gutiérrez
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Geovanni Romero-Quintana
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - Mercedes Bermúdez
- Faculty of Dentistry, Autonomous University of Chihuahua, Av. Escorza No. 900, Centro, Chihuahua 31125, Chihuahua, Mexico;
| | - Mariana Avendaño-Felix
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| | - César López-Camarillo
- Postgraduate in Genomic Sciences, Autonomous University of Mexico City, San Lorenzo 290, Col del Valle, Mexico City 03100, Mexico;
| | - Carlos Pérez-Plascencia
- National Cancer Institute, Av. San Fernando 22, Belisario Domínguez Sec. 16, Tlalpan, Mexico City 14080, Mexico;
- FES Iztacala, National Autonomous University of Mexico, Av. de los Barrios S/N, Los Reyes Ixtacala, Tlalnepantla 54090, Estado de Mexico, Mexico
| | - Adriana S Beltrán
- Human Pluripotent Stem Cell Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Rosalío Ramos-Payán
- Faculty of Biological and Chemical Sciences, Autonomous University of Sinaloa, Josefa Ortiz de Domínguez s/n y Avenida de las Américas, Culiacan 80013, Sinaloa, Mexico (M.A.-M.); (G.R.-Q.); (M.A.-F.)
| |
Collapse
|
3
|
Greaney AM, Raredon MSB, Kochugaeva MP, Niklason LE, Levchenko A. SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. iScience 2023; 26:106175. [PMID: 36788793 PMCID: PMC9912025 DOI: 10.1016/j.isci.2023.106175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/05/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Despite much concerted effort to better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feedforward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.
Collapse
Affiliation(s)
- Allison Marie Greaney
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
| | - Micha Sam Brickman Raredon
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Medical Scientist Training Program, Yale University, New Haven, CT 06511, USA
| | - Maria P. Kochugaeva
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Laura E. Niklason
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Vascular Biology and Therapeutics Program, Yale School of Medicine, New Haven, CT 06511, USA
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT 06510, USA
- Humacyte Inc., Durham, NC 27713, USA
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale University, New Haven, CT 06511, USA
- Yale Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
4
|
Sibuea S, Ho JK, Pouton CW, Haynes JM. TGFβ3, dibutyryl cAMP and a notch inhibitor modulate phenotype late in stem cell-derived dopaminergic neuron maturation. Front Cell Dev Biol 2023; 11:1111705. [PMID: 36819101 PMCID: PMC9928866 DOI: 10.3389/fcell.2023.1111705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/04/2023] Open
Abstract
The generation of midbrain dopaminergic neurons (mDAs) from pluripotent stem cells (hPSC) holds much promise for both disease modelling studies and as a cell therapy for Parkinson's disease (PD). Generally, dopaminergic neuron differentiation paradigms rely on inhibition of smad signalling for neural induction followed by hedgehog signalling and an elevation of β-catenin to drive dopaminergic differentiation. Post-patterning, differentiating dopaminergic neuron cultures are permitted time for maturation after which the success of these differentiation paradigms is usually defined by expression of tyrosine hydroxylase (TH), the rate limiting enzyme in the synthesis of dopamine. However, during maturation, culture media is often supplemented with additives to promote neuron survival and or promote cell differentiation. These additives include dibutyryl cyclic adenosine monophosphate (dbcAMP), transforming growth factor β3 (TGFβ3) and or the γ-secretase inhibitor (DAPT). While these factors are routinely added to cultures, their impact upon pluripotent stem cell-derived mDA phenotype is largely unclear. In this study, we differentiate pluripotent stem cells toward a dopaminergic phenotype and investigate how the omission of dbcAMP, TGFβ3 or DAPT, late in maturation, affects the regulation of multiple dopaminergic neuron phenotype markers. We now show that the removal of dbcAMP or TGFβ3 significantly and distinctly impacts multiple markers of the mDA phenotype (FOXA2, EN1, EN2, FOXA2, SOX6), while commonly increasing both MSX2 and NEUROD1 and reducing expression of both tyrosine hydroxylase and WNT5A. Removing DAPT significantly impacted MSX2, OTX2, EN1, and KCNJ6. In the absence of any stressful stimuli, we suggest that these culture additives should be viewed as mDA phenotype-modifying, rather than neuroprotective. We also suggest that their addition to cultures is likely to confound the interpretation of both transplantation and disease modelling studies.
Collapse
Affiliation(s)
- Shanti Sibuea
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,National Agency of Drug and Food Control, Jakarta, Indonesia
| | - Joan K. Ho
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - Colin W. Pouton
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia
| | - John M. Haynes
- Stem Cell Biology Group, Monash Institute of Pharmaceutical Sciences Monash University, Parkville, VIC, Australia,*Correspondence: John M. Haynes,
| |
Collapse
|
5
|
Czikora Á, Erdélyi K, Ditrói T, Szántó N, Jurányi EP, Szanyi S, Tóvári J, Strausz T, Nagy P. Cystathionine β-synthase overexpression drives metastatic dissemination in pancreatic ductal adenocarcinoma via inducing epithelial-to-mesenchymal transformation of cancer cells. Redox Biol 2022; 57:102505. [PMID: 36279629 PMCID: PMC9594639 DOI: 10.1016/j.redox.2022.102505] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/30/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest of all cancer types with a constant rise in global incidence. Therefore, better understanding of PDAC biology, in order to design more efficient diagnostic and treatment modalities, is a priority. Here we found that the expression levels of cystathionine β-synthase (CBS), a transsulfuration enzyme, is markedly elevated in metastatic PDAC cells compared to cell lines isolated from non-metastatic primary tumors. On human immunohistochemical samples from PDAC patients we also found higher CBS staining in cancerous ductal cells compared to in non-tumor tissue, which was further elevated in the lymph node metastasis of the same patients. In mice, orthotopically injected CBS-silenced T3M4 cells induced fewer liver metastases compared to control cells indicating important roles for CBS in PDAC cancer cell invasion and malignant transformation. Wound healing and colony formation assays in cell culture confirmed that CBS-deficient metastatic T3M4 and non-metastatic BxPC3 primary tumor cells migrate slower and have impaired anchorage-independent growth capacities compared to control T3M4 cells. CBS silencing in T3M4 cells lowered WNT5a and SNAI1 gene expression down to levels that were observed in BxPC3 cells as well as resulted in an increase in E-cadherin and a decrease in Vimentin signals in mouse tumors when injected orthotopically. These observations suggested a primary role for the epithelial to mesenchymal transformation of cancer cells in CBS-mediated tumor aggressiveness. Under normal conditions, STAT3, an upstream regulator of Wnt signaling pathways, was less phosphorylated and more oxidized in shCBS T3M4 and BxPC3 compared to control T3M4 cells, which is consistent with decreased transcriptional activity at lower CBS levels due to less protection against oxidation. Sulfur metabolome analyses suggested that this CBS-mediated protection against oxidative modifications is likely to be related to persulfide/sulfide producing activities of the enzyme rather than its canonical function to produce cystathionine for cysteine synthesis. Taken together, CBS overexpression through regulation of the EMT plays a significant role in PDAC cancer cell invasion and metastasis.
Collapse
Affiliation(s)
- Ágnes Czikora
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Katalin Erdélyi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Tamás Ditrói
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Noémi Szántó
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Eszter Petra Jurányi
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Szilárd Szanyi
- Head and Neck Tumors Multidisciplinary Center and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Department of Morphology and Physiology, Faculty of Health Sciences, Semmelweis University, Budapest, Hungary
| | - József Tóvári
- Department of Experimental Pharmacology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Tamás Strausz
- Center of Tumor Pathology Department of Surgical and Molecular Pathology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary
| | - Péter Nagy
- Department of Molecular Immunology and Toxicology and the National Tumor Biology Laboratory, National Institute of Oncology, Budapest, Hungary; Department of Anatomy and Histology, ELKH Laboratory of Redox Biology, University of Veterinary Medicine, Budapest, Hungary; Chemistry Institute, University of Debrecen, Debrecen, Hungary.
| |
Collapse
|
6
|
Ademi H, Djari C, Mayère C, Neirijnck Y, Sararols P, Rands CM, Stévant I, Conne B, Nef S. Deciphering the origins and fates of steroidogenic lineages in the mouse testis. Cell Rep 2022; 39:110935. [PMID: 35705036 DOI: 10.1016/j.celrep.2022.110935] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 03/22/2022] [Accepted: 05/19/2022] [Indexed: 11/03/2022] Open
Abstract
Leydig cells (LCs) are the major androgen-producing cells in the testis. They arise from steroidogenic progenitors (SPs), whose origins, maintenance, and differentiation dynamics remain largely unknown. Single-cell transcriptomics reveal that the mouse steroidogenic lineage is specified as early as embryonic day 12.5 (E12.5) and has a dual mesonephric and coelomic origin. SPs specifically express the Wnt5a gene and evolve rapidly. At E12.5 and E13.5, they give rise first to an intermediate population of pre-LCs, and finally to fetal LCs. At E16.5, SPs possess the characteristics of the dormant progenitors at the origin of adult LCs and are also transcriptionally closely related to peritubular myoid cells (PMCs). In agreement with our in silico analysis, in vivo lineage tracing indicates that Wnt5a-expressing cells are bona fide progenitors of PMCs as well as fetal and adult LCs, contributing to most of the LCs present in the fetal and adult testis.
Collapse
Affiliation(s)
- Herta Ademi
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Cyril Djari
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Chloé Mayère
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Yasmine Neirijnck
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Pauline Sararols
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Chris M Rands
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland; Swiss Institute of Bioinformatics, 1211 Geneva, Switzerland
| | - Isabelle Stévant
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland
| | - Béatrice Conne
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland; iGE3, Institute of Genetics and Genomics of Geneva, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
7
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
8
|
Greaney AM, Raredon MSB, Kochugaeva MP, Niklason LE, Levchenko A. SARS-CoV-2 leverages airway epithelial protective mechanism for viral infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.29.478335. [PMID: 35132420 PMCID: PMC8820667 DOI: 10.1101/2022.01.29.478335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Despite much concerted effort to better understand SARS-CoV-2 viral infection, relatively little is known about the dynamics of early viral entry and infection in the airway. Here we analyzed a single-cell RNA sequencing dataset of early SARS-CoV-2 infection in a humanized in vitro model, to elucidate key mechanisms by which the virus triggers a cell-systems-level response in the bronchial epithelium. We find that SARS-CoV-2 virus preferentially enters the tissue via ciliated cell precursors, giving rise to a population of infected mature ciliated cells, which signal to basal cells, inducing further rapid differentiation. This feed-forward loop of infection is mitigated by further cell-cell communication, before interferon signaling begins at three days post-infection. These findings suggest hijacking by the virus of potentially beneficial tissue repair mechanisms, possibly exacerbating the outcome. This work both elucidates the interplay between barrier tissues and viral infections, and may suggest alternative therapeutic approaches targeting non-immune response mechanisms.
Collapse
|
9
|
Dehghani-Ghobadi Z, Sheikh Hasani S, Arefian E, Hossein G. Wnt5A and TGFβ1 Converges through YAP1 Activity and Integrin Alpha v Up-Regulation Promoting Epithelial to Mesenchymal Transition in Ovarian Cancer Cells and Mesothelial Cell Activation. Cells 2022; 11:cells11020237. [PMID: 35053353 PMCID: PMC8773996 DOI: 10.3390/cells11020237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/05/2022] [Accepted: 01/07/2022] [Indexed: 01/28/2023] Open
Abstract
In this paper, we investigate whether Wnt5A is associated with the TGF-β1/Smad2/3 and Hippo-YAP1/TAZ-TEAD pathways, implicated in epithelial to mesenchymal transition (EMT) in epithelial ovarian cancer. We used 3D and 2D cultures of human epithelial ovarian cancer cell lines SKOV-3, OVCAR-3, CAOV-4, and different subtypes of human serous ovarian cancer compared to normal ovary specimens. Wnt5A showed a positive correlation with TAZ and TGFβ1 in high- and low-grade serous ovarian cancer specimens compared to borderline serous and normal ovaries. Silencing Wnt5A by siRNAs significantly decreased Smad2/3 activation and YAP1 expression and nuclear shuttling in ovarian cancer (OvCa) cells. Furthermore, Wnt5A was required for TGFβ1-induced cell migration and invasion. In addition, inhibition of YAP1 transcriptional activity by Verteporfin (VP) altered OvCa cell migration and invasion through decreased Wnt5A expression and inhibition of Smad2/3 activation, which was reverted in the presence of exogenous Wnt5A. We found that the activation of TGFβ1 and YAP1 nuclear shuttling was promoted by Wnt5A-induced integrin alpha v. Lastly, Wnt5A was implicated in activating human primary omental mesothelial cells and subsequent invasion of ovarian cancer cells. Together, we propose that Wnt5A could be a critical mediator of EMT-associated pathways.
Collapse
Affiliation(s)
- Zeinab Dehghani-Ghobadi
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran;
| | - Shahrzad Sheikh Hasani
- Department of Gynecology Oncology Valiasr, Imam Khomeini Hospital, Tehran University of Medical Science, Tehran 1419733141, Iran;
| | - Ehsan Arefian
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran;
| | - Ghamartaj Hossein
- Developmental Biology Laboratory, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran 1417614411, Iran;
- Correspondence: ; Tel.: +98-21-6111-2622; Fax: +98-21-6649-2992
| |
Collapse
|
10
|
Fultang N, Chakraborty M, Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:321-342. [PMID: 35582030 PMCID: PMC9019272 DOI: 10.20517/cdr.2020.106] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/28/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022]
Abstract
Triple Negative Breast Cancer (TNBC) is the most lethal subtype of breast cancer. Despite the successes of emerging targeted therapies, relapse, recurrence, and therapy failure rates in TNBC significantly outpace other subtypes of breast cancer. Mounting evidence suggests accumulation of therapy resistant Cancer Stem Cell (CSC) populations within TNBCs contributes to poor clinical outcomes. These CSCs are enriched in TNBC compared to non-TNBC breast cancers. The mechanisms underlying CSC accumulation have been well-characterized and discussed in other reviews. In this review, we focus on TNBC-specific mechanisms that allow the expansion and activity of self-renewing CSCs. We highlight cellular signaling pathways and transcription factors, specifically enriched in TNBC over non-TNBC breast cancer, contributing to stemness. We also analyze publicly available single-cell RNA-seq data from basal breast cancer tumors to highlight the potential of emerging bioinformatic approaches in identifying novel drivers of stemness in TNBC and other cancers.
Collapse
Affiliation(s)
- Norman Fultang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19140, USA
| | - Madhuparna Chakraborty
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| | - Bela Peethambaran
- Department of Biological Sciences, The University of the Sciences, Philadelphia, PA 19140, USA
| |
Collapse
|
11
|
Abstract
Despite the decline in death rate from breast cancer and recent advances in targeted therapies and combinations for the treatment of metastatic disease, metastatic breast cancer remains the second leading cause of cancer-associated death in U.S. women. The invasion-metastasis cascade involves a number of steps and multitudes of proteins and signaling molecules. The pathways include invasion, intravasation, circulation, extravasation, infiltration into a distant site to form a metastatic niche, and micrometastasis formation in a new environment. Each of these processes is regulated by changes in gene expression. Noncoding RNAs including microRNAs (miRNAs) are involved in breast cancer tumorigenesis, progression, and metastasis by post-transcriptional regulation of target gene expression. miRNAs can stimulate oncogenesis (oncomiRs), inhibit tumor growth (tumor suppressors or miRsupps), and regulate gene targets in metastasis (metastamiRs). The goal of this review is to summarize some of the key miRNAs that regulate genes and pathways involved in metastatic breast cancer with an emphasis on estrogen receptor α (ERα+) breast cancer. We reviewed the identity, regulation, human breast tumor expression, and reported prognostic significance of miRNAs that have been documented to directly target key genes in pathways, including epithelial-to-mesenchymal transition (EMT) contributing to the metastatic cascade. We critically evaluated the evidence for metastamiRs and their targets and miRNA regulation of metastasis suppressor genes in breast cancer progression and metastasis. It is clear that our understanding of miRNA regulation of targets in metastasis is incomplete.
Collapse
Affiliation(s)
- Belinda J Petri
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA
| | - Carolyn M Klinge
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40292, USA.
| |
Collapse
|
12
|
Yadav V, Jobe N, Mehdawi L, Andersson T. Targeting Oncogenic WNT Signalling with WNT Signalling-Derived Peptides. Handb Exp Pharmacol 2021; 269:279-303. [PMID: 34455485 DOI: 10.1007/164_2021_528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
WNT signalling is known to be a crucial regulator of embryonic development and tissue homeostasis. Aberrant expression of WNT signalling elements or their mutations has been implicated in carcinogenesis and/or the progression of several different cancer types. Investigations of how WNT signalling affects carcinogenesis and cancer progression have revealed that it has essential roles in the regulation of proliferation, apoptosis, and cancer stemness and in angiogenesis and metastasis. Consequently, WNT-targeted therapy has gained much attention and has resulted in the development of several small molecules, the majority of which act as inhibitors of different WNT signalling events. However, although numerous inhibitory WNT signalling drug candidates have been included in clinical trials, no significant breakthroughs have been made. This could possibly be due to problems with inefficient binding to the target, compensatory signalling mechanisms and toxicity towards normal cells. Therapeutic peptides targeting WNT signalling in cancer cells have been developed as an alternative approach, with the hope that they might overcome the limitations reported for small WNT inhibitory molecules. In this chapter, we describe recent developments made in the design and characterization of WNT signalling-derived peptides aiming at their use as alternative cancer therapeutics and/or combined adjuvant therapy to conventional therapies.
Collapse
Affiliation(s)
- Vikas Yadav
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Njainday Jobe
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Lubna Mehdawi
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Tommy Andersson
- Experimental Pathology, Department of Translational Medicine, Clinical Research Centre, Lund University, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
13
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
14
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F, Cui H. Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther 2020; 5:8. [PMID: 32296030 PMCID: PMC7005297 DOI: 10.1038/s41392-020-0110-5] [Citation(s) in RCA: 988] [Impact Index Per Article: 247.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/18/2022] Open
Abstract
Since cancer stem cells (CSCs) were first identified in leukemia in 1994, they have been considered promising therapeutic targets for cancer therapy. These cells have self-renewal capacity and differentiation potential and contribute to multiple tumor malignancies, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. The biological activities of CSCs are regulated by several pluripotent transcription factors, such as OCT4, Sox2, Nanog, KLF4, and MYC. In addition, many intracellular signaling pathways, such as Wnt, NF-κB (nuclear factor-κB), Notch, Hedgehog, JAK-STAT (Janus kinase/signal transducers and activators of transcription), PI3K/AKT/mTOR (phosphoinositide 3-kinase/AKT/mammalian target of rapamycin), TGF (transforming growth factor)/SMAD, and PPAR (peroxisome proliferator-activated receptor), as well as extracellular factors, such as vascular niches, hypoxia, tumor-associated macrophages, cancer-associated fibroblasts, cancer-associated mesenchymal stem cells, extracellular matrix, and exosomes, have been shown to be very important regulators of CSCs. Molecules, vaccines, antibodies, and CAR-T (chimeric antigen receptor T cell) cells have been developed to specifically target CSCs, and some of these factors are already undergoing clinical trials. This review summarizes the characterization and identification of CSCs, depicts major factors and pathways that regulate CSC development, and discusses potential targeted therapy for CSCs.
Collapse
Affiliation(s)
- Liqun Yang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Pengfei Shi
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Gaichao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jie Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Wen Peng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Jiayi Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Guanghui Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Xiaowen Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Zhen Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China
| | - Fei Chen
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, 400716, Chongqing, China.
- Cancer Center, Medical Research Institute, Southwest University, 400716, Chongqing, China.
| |
Collapse
|
15
|
Betaglycan drives the mesenchymal stromal cell osteogenic program and prostate cancer-induced osteogenesis. Oncogene 2019; 38:6959-6969. [PMID: 31409900 DOI: 10.1038/s41388-019-0913-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022]
Abstract
Bone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models. These analyses revealed a cast of shared differentially induced genes in MSC, including betaglycan, a co-receptor for TGFβ. Betaglycan has not been studied in the context of bone metastatic disease previously. Here we report that loss of betaglycan in MSC is sufficient to augment TGFβ signaling, proliferation and migration, and completely blocks the MSC-osteoblast differentiation program. Further, betaglycan was revealed as necessary for prostate cancer-induced osteogenesis in vivo. Mechanistically, gene expression analysis revealed betaglycan controls the expression of a large repertoire of genes in MSCs, and that betaglycan loss provokes >60-fold increase in the expression of Wnt5a that plays important roles in stemness. In accord with the increased Wnt5a levels, there was a marked induction of canonical Wnt signaling in betaglycan ablated MSCs, and the addition of recombinant Wnt5a to MSCs was sufficient to impair osteogenic differentiation. Finally, the addition of Wnt5a neutralizing antibody was sufficient to induce the expression of osteogenic genes in betaglycan-ablated MSCs. Collectively, these findings suggest a betaglycan-Wnt5a circuit represents an attractive vulnerability to ameliorate prostate cancer-induced osteogenesis.
Collapse
|
16
|
Revilla G, Corcoy R, Moral A, Escolà-Gil JC, Mato E. Cross-Talk between Inflammatory Mediators and the Epithelial Mesenchymal Transition Process in the Development of Thyroid Carcinoma. Int J Mol Sci 2019; 20:ijms20102466. [PMID: 31109060 PMCID: PMC6566886 DOI: 10.3390/ijms20102466] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/09/2019] [Accepted: 05/16/2019] [Indexed: 12/14/2022] Open
Abstract
There is strong association between inflammatory processes and their main metabolic mediators, such as leptin, adiponectin secretion, and low/high-density lipoproteins, with the cancer risk and aggressive behavior of solid tumors. In this scenario, cancer cells (CCs) and cancer stem cells (CSCs) have important roles. These cellular populations, which come from differentiated cells and progenitor stem cells, have increased metabolic requirements when it comes to maintaining or expanding the tumors, and they serve as links to some inflammatory mediators. Although the molecular mechanisms that are involved in these associations remain unclear, the two following cellular pathways have been suggested: 1) the mesenchymal-epithelial transition (MET) process, which permits the differentiation of adult stem cells throughout the acquisition of cell polarity and the adhesion to epithelia, as well to new cellular lineages (CSCs); and, 2) a reverse process, termed the epithelial-mesenchymal transition (EMT), where, in pathophysiological conditions (tissue injury, inflammatory process, and oxidative stress), the differentiated cells can acquire a multipotent stem cell-like phenotype. The molecular mechanisms that regulate both EMT and MET are complex and poorly understood. Especially, in the thyroid gland, little is known regarding MET/EMT and the role of CCs or CSCs, providing an exciting, new area of knowledge to be investigated. This article reviews the progress to date in research on the role of inflammatory mediators and metabolic reprogramming during the carcinogenesis process of the thyroid gland and the EMT pathways.
Collapse
Affiliation(s)
- Giovanna Revilla
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Rosa Corcoy
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
- Departament de Medicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Antonio Moral
- Department of General Surgery-Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Departament de Cirugia, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
| | - Joan Carles Escolà-Gil
- Institut d'Investigacions Biomèdiques (IIB) Sant Pau, Hospital de la Santa Creu i Sant Pau (HSCSP), 08041 Barcelona, Spain.
- Departament de Bioquímica, Biologia Molecular i Biomedicina, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), 28029 Madrid, Spain.
| | - Eugenia Mato
- Department of Endocrinology, Hospital de la Santa Creu i Sant Pau (HSCSP), 08025 Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
| |
Collapse
|
17
|
Zeng R, Huang J, Zhong MZ, Li L, Yang G, Liu L, Wu Y, Yao X, Shi J, Wu Z. Multiple Roles of WNT5A in Breast Cancer. Med Sci Monit 2016; 22:5058-5067. [PMID: 28005837 PMCID: PMC5201118 DOI: 10.12659/msm.902022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is one of the most common malignant tumors of women. Modern combinatorial therapeutic regimens can reduce patient tumor burdens to undetectable levels, yet in many cases these tumors will relapse. Understanding of breast cancer biology, developing more potent therapeutic approaches, and overcoming resistance are of great importance. WNT5A is a non-canonical signaling member of the WNT family. Its role in breast cancer still remains unclear. Most of the evidence shows that WNT5A is a suppressor in breast cancer and loss of its expression is associated with poor prognosis, while some evidence suggests the tumorigenicity of WNT5A. WNT signaling molecules are potent targets for treatment of cancer. Therefore, understanding the role of WNT5A in breast cancer may provide new ideas and methods for breast cancer treatment. We review the evidence concerning WNT5A and breast cancer involving the signaling pathways and the molecular-targeted therapy of WNT5A. Our results show that the role WNT5A plays depends on the availability of key receptors and intercellular interactions among different cell types.
Collapse
Affiliation(s)
- Ruolan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Junhui Huang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Mei-Zuo Zhong
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Li Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Guorong Yang
- Department of Oncology, The First People's Hospital of Chenzhou, University of South China, Chenzhou, Hunan, China (mainland)
| | - Li Liu
- 32th Department, Hunan Tumor Hospital, The Affiliated Tumor Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China (mainland)
| | - Yin Wu
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Xiaoyi Yao
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| | - Jing Shi
- Department of Oncology, Xiangya Hospital, Central South University,, Changsha, Hunan, China (mainland)
| | - Zhifu Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, China (mainland)
| |
Collapse
|
18
|
Bae WJ, Lee SH, Rho YS, Koo BS, Lim YC. Transforming growth factor β1 enhances stemness of head and neck squamous cell carcinoma cells through activation of Wnt signaling. Oncol Lett 2016; 12:5315-5320. [PMID: 28105240 DOI: 10.3892/ol.2016.5336] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/22/2016] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor β (TGFβ) ligands, including TGFβ1, are multifunctional cytokines known as key regulators of cell growth, differentiation and inflammation. Dysregulated TGFβ signaling is common in numerous solid tumors, including head and neck squamous cell carcinoma (HNSCC). Previously, TGFβ ligands were also reported to be associated with an enhancement of stemness in glioma stem-like cells. However, their role in HNSCC cancer stem cells (CSCs) has not been explored. The present study demonstrated that TGFβ1 enriches the properties of HNSCC CSCs. TGFβ1 promoted sphere formation and increased stemness-associated gene expression (Oct4 and Sox2) of primary HNSCC CSCs. Additionally, the population of aldehyde dehydrogenase (ALDH)-positive cells was increased subsequent to exogenous treatment of cells with TGFβ1. In addition, following stimulation with TGFβ1, the cells exhibited more resistance to cisplatin and elevated expression of Twist, Snail and Slug. Mechanistically, TGFβ1 acts as an upstream stimulator of Wnt/β-catenin signaling. Collectively, the present findings provide insights toward the development of TGFβ1 signaling inhibition strategies for treating HNSCC CSCs.
Collapse
Affiliation(s)
- Woo-Jin Bae
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 142-702, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Sungkyunkwan University School of Medicine, Kangbuk Samsung Hospital, Seoul 03181, Republic of Korea
| | - Young-Soo Rho
- Department of Otorhinolaryngology-Head and Neck Surgery, Ilsong Memorial Institute of Head and Neck Cancer, Hallym University, College of Medicine, Seoul 05355, Republic of Korea
| | - Bon-Seok Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungnam National University, College of Medicine, Daejeon 35015, Republic of Korea
| | - Young-Chang Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 142-702, Republic of Korea
| |
Collapse
|
19
|
Hahn JM, McFarland KL, Combs KA, Supp DM. Partial epithelial-mesenchymal transition in keloid scars: regulation of keloid keratinocyte gene expression by transforming growth factor-β1. BURNS & TRAUMA 2016; 4:30. [PMID: 27574697 PMCID: PMC4994224 DOI: 10.1186/s41038-016-0055-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/04/2016] [Indexed: 12/17/2022]
Abstract
Background Keloids are an extreme form of abnormal scarring that result from a pathological fibroproliferative wound healing process. The molecular mechanisms driving keloid pathology remain incompletely understood, hindering development of targeted, effective therapies. Recent studies in our laboratory demonstrated that keloid keratinocytes exhibit adhesion abnormalities and display a transcriptional signature reminiscent of cells undergoing epithelial-mesenchymal transition (EMT), suggesting a role for EMT in keloid pathology. In the current study, we further define the EMT-like phenotype of keloid scars and investigate regulation of EMT-related genes in keloid. Methods Primary keratinocytes from keloid scar and normal skin were cultured in the presence or absence of transforming growth factor beta 1 (TGF-β1) +/− inhibitors of TGF-β1 and downstream signaling pathways. Gene expression was measured using quantitative polymerase chain reaction. Migration was analyzed using an in vitro wound healing assay. Proteins in keloid scar and normal skin sections were localized by immunohistochemistry. Statistical analyses utilized SigmaPlot (SyStat Software, San Jose, CA) or SAS® (SAS Institute, Cary, NC). Results In keloid and normal keratinocytes, TGF-β1 regulated expression of EMT-related genes, including hyaluronan synthase 2, vimentin, cadherin-11, wingless-type MMTV integration site family, member 5A, frizzled 7, ADAM metallopeptidase domain 19, and interleukin-6. Inhibition of canonical TGF-β1 signaling in keloid keratinocytes significantly inhibited expression of these genes, and TGF-β1 stimulation of normal keratinocytes increased their expression. The inhibition of the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway or the p38 mitogen-activated protein kinase pathway attenuated TGF-β1-induced expression of subsets of these genes. Migration of keloid keratinocytes, previously shown to be increased compared with normal keratinocytes, was significantly reduced by inhibition of TGF-β1 or ERK1/2 signaling. Biomarkers of EMT, including reduced E-cadherin and increased active β-catenin, were observed in keloid epidermis in vivo. However, evidence of basement membrane breakdown in keloid scar was not observed. Conclusions The results suggest that keloid keratinocytes exist in an EMT-like metastable state, similar to activated keratinocytes in healing wounds. The EMT-like gene expression pattern of keloid keratinocytes is regulated by canonical and non-canonical TGF-β1 signaling pathways. Therefore, interventions targeting TGF-β1-regulated EMT-like gene expression in keloid keratinocytes may serve to suppress keloid scarring. Electronic supplementary material The online version of this article (doi:10.1186/s41038-016-0055-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jennifer M Hahn
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Kevin L McFarland
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Kelly A Combs
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA
| | - Dorothy M Supp
- Research Department, Shriners Hospitals for Children - Cincinnati, Cincinnati, OH USA ; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
20
|
Lu C, Wang X, Zhu H, Feng J, Ni S, Huang J. Over-expression of ROR2 and Wnt5a cooperatively correlates with unfavorable prognosis in patients with non-small cell lung cancer. Oncotarget 2016; 6:24912-21. [PMID: 26305508 PMCID: PMC4694803 DOI: 10.18632/oncotarget.4701] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 07/09/2015] [Indexed: 01/27/2023] Open
Abstract
We investigated the expression of receptor tyrosine kinase-like orphan receptor (ROR) 2 and Wnt5a and their prognostic significance in non-small cell lung cancer (NSCLC). Tissue microarray-based immunohistochemical analysis was performed to determine the expression of ROR2 and Wnt5a in 219 patients. mRNA expression of ROR2 and Wnt5a was examined in 20 pairs of NSCLC and matched adjacent normal tissues by real-time PCR. Compared with non-tumorous tissues, both mRNA expression and protein product of ROR2 and Wnt5a genes were significantly increased in NSCLC. c2 analysis revealed that high ROR2 or Wnt5a expression in NSCLC was significantly associated with advanced TNM stage. High expression of both ROR2 and Wnt5a was also related to advanced TNM stage. Multivariate analyses suggested that ROR2, Wnt5a and TNM stage were independent prognostic factors in NSCLC. Our clinical findings suggest that high ROR2 or Wnt5a expression is associated with poor prognosis in NSCLC, and combined detection of ROR2 and Wnt5a is helpful in predicting the prognosis of NSCLC.
Collapse
Affiliation(s)
- Chenlin Lu
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Xudong Wang
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Huijun Zhu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jian Feng
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Songshi Ni
- Department of Respiratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jianfei Huang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
21
|
Kumawat K, Gosens R. WNT-5A: signaling and functions in health and disease. Cell Mol Life Sci 2016; 73:567-87. [PMID: 26514730 PMCID: PMC4713724 DOI: 10.1007/s00018-015-2076-y] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/13/2015] [Accepted: 10/15/2015] [Indexed: 12/14/2022]
Abstract
WNT-5A plays critical roles in a myriad of processes from embryonic morphogenesis to the maintenance of post-natal homeostasis. WNT-5A knock-out mice fail to survive and present extensive structural malformations. WNT-5A predominantly activates β-catenin-independent WNT signaling cascade but can also activate β-catenin signaling to relay its diverse cellular effects such as cell polarity, migration, proliferation, cell survival, and immunomodulation. Moreover, aberrant WNT-5A signaling is associated with several human pathologies such as cancer, fibrosis, and inflammation. Thus, owing to its diverse functions, WNT-5A is a crucial signaling molecule currently under intense investigation with efforts to not only delineate its signaling mechanisms and functions in physiological and pathological conditions, but also to develop strategies for its therapeutic targeting.
Collapse
Affiliation(s)
- Kuldeep Kumawat
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands.
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
22
|
Fernández NB, Lorenzo D, Picco ME, Barbero G, Dergan-Dylon LS, Marks MP, García-Rivello H, Gimenez L, Labovsky V, Grumolato L, Lopez-Bergami P. ROR1 contributes to melanoma cell growth and migration by regulating N-cadherin expression via the PI3K/Akt pathway. Mol Carcinog 2015; 55:1772-1785. [PMID: 26509654 DOI: 10.1002/mc.22426] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/01/2015] [Accepted: 10/18/2015] [Indexed: 01/30/2023]
Abstract
The Receptor tyrosine kinase-like Orphan Receptor 1 (ROR1) is primarily expressed by neural crest cells during embryogenesis. Following a complete downregulation after birth, ROR1 was shown to re-express in various types of cancers. Little is known about ROR1 expression and function in melanoma. Here we show that ROR1 is aberrantly expressed in both melanoma cell lines and tumors and that its expression associates with poor Post-Recurrence Survival of melanoma. Using gain- and loss-of-function approaches we found that ROR1 enhances both anchorage-dependent and -independent growth of melanoma cells. In addition, ROR1 decreases cell adhesion and increases cell motility and migration. Mechanistically, ROR1 was found to induce upregulation of Akt and the mesenquimal markers N-cadherin and vimentin. The regulation of N-cadherin by ROR1 relies on both Akt dependent and independent mechanisms. ROR1 does not affect Wnt canonical pathway but was found to be engaged in a positive feedback loop with Wnt5a. In summary, we show that ROR1 contributes to melanoma progression and is a candidate biomarker of poor prognosis. Although further studies are needed to confirm this possibility, the present work indicates that ROR1 is a good prospective target for melanoma cancer therapy. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Natalia Brenda Fernández
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Daniela Lorenzo
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Elisa Picco
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Gastón Barbero
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina
| | - Leonardo Sebastián Dergan-Dylon
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María Paula Marks
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | | | - Vivian Labovsky
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Luca Grumolato
- INSERM U982, Institute for Research and Innovation in Biomedicine, University of Rouen, France
| | - Pablo Lopez-Bergami
- Instituto de Medicina y Biología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnóstico, Universidad Maimónides, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
23
|
Lin X, Xu W, Shao M, Fan Q, Wen G, Li C, Jing L, Sun X. Shenling Baizhu San supresses colitis associated colorectal cancer through inhibition of epithelial-mesenchymal transition and myeloid-derived suppressor infiltration. Altern Ther Health Med 2015; 15:126. [PMID: 25897964 PMCID: PMC4428101 DOI: 10.1186/s12906-015-0649-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 04/15/2015] [Indexed: 12/11/2022]
Abstract
Background Shenling Baizhu San (SBS) is a well-known and classical Chinese medicine formula. It has been used for treatment of gastrointestinal disorders for about nine hundred years. Recent reports showed that it was effective in curing colitis and ameliorating the major manifestations of postoperational colorectal cancer (CRC). This study was to evaluate the effects of SBS on azoxymethane (AOM) and dextran sodium sulfate (DSS) induced colitis associated CRC (caCRC) and to analyze the underlying mechanism of SBS in preventing CRC. Methods The colon tissue of mice in different group was determined by immunohistochemistry and western blot. TGF-β1 in serum was measured by ELISA. Myeloid-derived suppressor cells (MDSCs) were identified by flow cytometry and immunohistochemistry. Results The formed neoplasms phenotypically resembled human caCRC with upregulated β-catenin, p53 and proliferating cell nuclear antigen (PCNA). SBS treatment reduced the death rate of mice and decreased the incidence and multiplicity of colonic neoplasms. SBS decreased the number of MDSCs and the level of transforming growth factor β1 (TGF-β1). SBS alleviated epithelial mesenchymal transition (EMT) through downregulating N-cadherin (N-cad), Vimentin, Fibronectin, Snail, and upregulating E-cadherin (E-cad). It reduced the activation of Wnt5a and EMT induced by TGF-β1. Conclusions SBS reduced the death rate through decreasing the incidence and multiplicity of colonic tumors. SBS lowered MDSCs infiltration and inhibited TGF-β1 induced EMT to exert its anti-caCRC effects. Electronic supplementary material The online version of this article (doi:10.1186/s12906-015-0649-9) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Esquivel-Velázquez M, Ostoa-Saloma P, Palacios-Arreola MI, Nava-Castro KE, Castro JI, Morales-Montor J. The role of cytokines in breast cancer development and progression. J Interferon Cytokine Res 2015; 35:1-16. [PMID: 25068787 PMCID: PMC4291218 DOI: 10.1089/jir.2014.0026] [Citation(s) in RCA: 318] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022] Open
Abstract
Cytokines are highly inducible, secretory proteins that mediate intercellular communication in the immune system. They are grouped into several protein families that are referred to as tumor necrosis factors, interleukins, interferons, and colony-stimulating factors. In recent years, it has become clear that some of these proteins as well as their receptors are produced in the organisms under physiological and pathological conditions. The exact initiation process of breast cancer is unknown, although several hypotheses have emerged. Inflammation has been proposed as an important player in tumor initiation, promotion, angiogenesis, and metastasis, all phenomena in which cytokines are prominent players. The data here suggest that cytokines play an important role in the regulation of both induction and protection in breast cancer. This knowledge could be fundamental for the proposal of new therapeutic approaches to particularly breast cancer and other cancer-related disorders.
Collapse
Affiliation(s)
- Marcela Esquivel-Velázquez
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| | | | - Karen E. Nava-Castro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Cuernavaca, Morelos, México
| | - Julieta Ivonne Castro
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Cuernavaca, Morelos, México
| | - Jorge Morales-Montor
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, México
| |
Collapse
|
25
|
Both canonical and non-canonical Wnt signaling independently promote stem cell growth in mammospheres. PLoS One 2014; 9:e101800. [PMID: 25019931 PMCID: PMC4096729 DOI: 10.1371/journal.pone.0101800] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/11/2014] [Indexed: 02/06/2023] Open
Abstract
The characterization of mammary stem cells, and signals that regulate their behavior, is of central importance in understanding developmental changes in the mammary gland and possibly for targeting stem-like cells in breast cancer. The canonical Wnt/β-catenin pathway is a signaling mechanism associated with maintenance of self-renewing stem cells in many tissues, including mammary epithelium, and can be oncogenic when deregulated. Wnt1 and Wnt3a are examples of ligands that activate the canonical pathway. Other Wnt ligands, such as Wnt5a, typically signal via non-canonical, β-catenin-independent, pathways that in some cases can antagonize canonical signaling. Since the role of non-canonical Wnt signaling in stem cell regulation is not well characterized, we set out to investigate this using mammosphere formation assays that reflect and quantify stem cell properties. Ex vivo mammosphere cultures were established from both wild-type and Wnt1 transgenic mice and were analyzed in response to manipulation of both canonical and non-canonical Wnt signaling. An increased level of mammosphere formation was observed in cultures derived from MMTV-Wnt1 versus wild-type animals, and this was blocked by treatment with Dkk1, a selective inhibitor of canonical Wnt signaling. Consistent with this, we found that a single dose of recombinant Wnt3a was sufficient to increase mammosphere formation in wild-type cultures. Surprisingly, we found that Wnt5a also increased mammosphere formation in these assays. We confirmed that this was not caused by an increase in canonical Wnt/β-catenin signaling but was instead mediated by non-canonical Wnt signals requiring the receptor tyrosine kinase Ror2 and activity of the Jun N-terminal kinase, JNK. We conclude that both canonical and non-canonical Wnt signals have positive effects promoting stem cell activity in mammosphere assays and that they do so via independent signaling mechanisms.
Collapse
|
26
|
Zhu N, Qin L, Luo Z, Guo Q, Yang L, Liao D. Challenging role of Wnt5a and its signaling pathway in cancer metastasis (Review). Exp Ther Med 2014; 8:3-8. [PMID: 24944588 PMCID: PMC4061222 DOI: 10.3892/etm.2014.1676] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/26/2014] [Indexed: 11/06/2022] Open
Abstract
Wnt5a is a noncanonical signaling member of the wingless-related/mouse mammary tumor virus integration family, which is involved in a wide range of cellular processes, particularly in cancer development and metastasis. Accumulating evidence indicates that Wnt5a exhibits paradoxical effects in various types of cancer metastasis. Therefore, the Wnt5a signaling cascade in cancer metastasis appears to be complex and may depend on binding receptors, downstream effectors, exogenous inhibitors and tumor microenvironments, as well as the extracellular matrix, particularly cell/tissue-tropic contexts. The aim of the present study was to summarize the previous findings on the roles of Wnt5a and the potential mechanisms in various types of cancer metastasis. Furthermore, it is reasonable to hypothesize that Wnt5a and the involved signaling pathways may become molecular targets in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Neng Zhu
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China ; Department of Urology, Second Affiliated Hospital of South China University, Hengyang, Hunan 421001, P.R. China
| | - Li Qin
- Institute of Pharmacy and Pharmacology, University of South China, Hengyang, Hunan 421001, P.R. China ; School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Zhigang Luo
- Department of Urology, Second Affiliated Hospital of South China University, Hengyang, Hunan 421001, P.R. China
| | - Qiong Guo
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Luoyan Yang
- Department of Urology, Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Duanfang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
27
|
Prognostic significance of the Wnt pathway in squamous cell laryngeal cancer. Oral Oncol 2014; 50:298-305. [PMID: 24461629 DOI: 10.1016/j.oraloncology.2014.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 11/20/2022]
Abstract
OBJECTIVES We sought to determine the prognostic significance of the Wnt signaling pathway in operable squamous cell carcinoma of the larynx. MATERIALS AND METHODS In an annotated cohort of 289 operable laryngeal cancers we evaluated the prognostic impact of E-cadherin, P-cadherin and β-catenin protein expression with immunohistochemistry, as well as the mRNA expression of 7 key effectors of the Wnt pathway including secreted frizzled-related protein 4 (SFRP4), SNAI2 (SLUG) and WNT5A with qPCR (relative quantification [RQ]). RESULTS Using median immunoreactive scores as a pre-defined cut-off, patients whose tumors overexpressed both cytoplasmic E-cadherin and β-catenin experienced longer median OS as compared to those whose tumors overexpressed β-catenin only (median OS 124 vs. 72 months, p=0.0301) and patients whose tumors overexpressed both cytoplasmic and membranous E-cadherin experienced longer DFS as compared to those whose tumors overexpressed cytoplasmic E-cadherin only (median 118 vs. 91 months, p=0.0106). Upon hierarchical clustering of SFRP4, SNAI2 and WNT5A RQ values, profiles including co-expression of all 3 genes but also profiles with under-expression of SNAI2 and WNT5A were associated with worse outcome as compared to profiles not related to the Wnt pathway. In multivariate analysis, clustering was an independent predictor for DFS (p=0.0221) and OS (p=0.0077). CONCLUSION We identified gene expression profiles and IHC patterns associated with aberrant Wnt signaling conferring aggressive clinical behavior in operable squamous cell carcinoma of the larynx. Prospective validation of these results will determine whether targeting the Wnt pathway merits investigation in this disease.
Collapse
|
28
|
Kawakubo T, Yasukochi A, Toyama T, Takahashi S, Okamoto K, Tsukuba T, Nakamura S, Ozaki Y, Nishigaki K, Yamashita H, Yamamoto K. Repression of cathepsin E expression increases the risk of mammary carcinogenesis and links to poor prognosis in breast cancer. Carcinogenesis 2013; 35:714-26. [PMID: 24242330 DOI: 10.1093/carcin/bgt373] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Despite advances in detection and treatment for breast cancer (BC), recurrence and death rates remain unacceptably high. Therefore, more convenient diagnostic and prognostic methods still required to optimize treatments among the patients. Here, we report the clinical significance of the serum cathepsin E (CatE) activity as a novel prognostic marker for BC. Correlation analysis between the serum levels of CatE expression and clinicopathological parameters revealed that the activity levels, but not the protein levels, were negatively associated with the stages and progression of BC. Univariate and multivariate analyses demonstrated that the serum CatE activity was significantly correlated with favorable prognostic outcomes of the patients. The functional link of CatE expression to BC progression was further corroborated by in vivo and in vitro studies with mice exhibiting different levels of CatE expression. Multiparous CatE (-) (/) (-) mice spontaneously developed mammary tumors concomitant with morphological transformation and altered growth characteristics of the mammary glands. These alterations were associated in part with the induction of epithelial-mesenchymal transition and the activation of β-catenin-dependent pathway in mammary cells. Loss of CatE strongly induced the translocation and accumulation of Wnt5a in the nuclei, thereby leading to the aberrant trafficking, maturation and secretion of Wnt5a and the impaired signaling. The interaction of CatE and Wnt5a was verified by proximity ligation assay and by knockdown or restoration of CatE expression in the mammary cells. Consequently, our data demonstrate that CatE contributes to normal growth and development of mammary glands through proper trafficking and secretion of Wnt5a.
Collapse
Affiliation(s)
- Tomoyo Kawakubo
- Proteolysis Research Laboratory, Graduate School of Pharmaceutical Sciences and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X, Zhu M. Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer 2013; 13:496. [PMID: 24156409 PMCID: PMC4077028 DOI: 10.1186/1471-2407-13-496] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 10/23/2013] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal cancers worldwide. The aim of this study was to determine the expression pattern, clinical significance, and biological functions of Wnt5a in pancreatic cancer. METHODS Immunohistochemistry was performed to examine Wnt5a expression in 134 surgically resected pancreatic adenocarcinoma and adjacent normal pancreatic tissues. Associations of Wnt5a expression with clinicopathological factors and cancer-specific survival were analyzed. The effects of Wnt5a overexpression or silencing on the invasiveness and epithelial-to-mesenchymal transition (EMT) of pancreatic cancer cells were studied. Silencing of β-catenin by small interfering RNA was done to determine its role in the Wnt5a-mediated tumor phenotype. RESULTS The percentage of Wnt5a positive expression showed a bell-shaped pattern in pancreatic cancer tissues, peaking in well-differentiated carcinomas. The median cancer-specific survival was comparable between patients with positive versus negative expression of Wnt5a. Overexpression of Wnt5a promoted the migration and invasion of pancreatic cancer cells, whereas Wnt5a depletion had an inhibitory effect. In an orthotopic pancreatic cancer mouse model, Wnt5a overexpression resulted in increased invasiveness and metastasis, coupled with induction of EMT in tumor cells. Treatment with recombinant Wnt5a elevated the nuclear β-catenin level in pancreatic cancer cells, without altering the Ror2 expression. Targeted reduction of β-catenin antagonized exogenous Wnt5a-induced EMT and invasiveness in pancreatic cancer cells. CONCLUSION Upregulation of Wnt5a promotes EMT and metastasis in pancreatic cancer models, which involves activation of β-catenin-dependent canonical Wnt signaling. These findings warrant further investigation of the clinical relevance of Wnt5 upregulation in pancreatic cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minghua Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
30
|
SNAI1-mediated epithelial-mesenchymal transition confers chemoresistance and cellular plasticity by regulating genes involved in cell death and stem cell maintenance. PLoS One 2013; 8:e66558. [PMID: 23799116 PMCID: PMC3684605 DOI: 10.1371/journal.pone.0066558] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 05/08/2013] [Indexed: 02/08/2023] Open
Abstract
Tumor cells at the tumor margin lose epithelial properties and acquire features of mesenchymal cells, a process called epithelial-to-mesenchymal transition (EMT). Recently, features of EMT were shown to be linked to cells with tumor-founding capability, so-called cancer stem cells (CSCs). Inducers of the EMT include several transcription factors, such as Snail (SNAI1) and Slug (SNAI2), as well as the secreted transforming growth factor (TGFß). In the present study, we found that EMT induction in MCF10A cells by stably expressing SNAI1 contributed to drug resistance and acquisition of stem/progenitor-like character as shown by increased cell population for surface marker CD44(+)/CD24(-) and mammosphere forming capacity. Using a microarray approach, we demonstrate that SNAI1 overexpression results in a dramatic change in signaling pathways involved in the regulation of cell death and stem cell maintenance. We showed that NF-κB/MAPK signaling pathways are highly activated in MCF10A-SNAI1 cells by IL1ß stimulation, leading to the robust induction in IL6 and IL8. Furthermore, MCF10A-SNAI1 cells showed enhanced TCF/ß-catenin activity responding to the exogenous Wnt3a treatment. However, EMT-induced stem/progenitor cell activation process is tightly regulated in non-transformed MCF10A cells, as WNT5A and TGFB2 are strongly upregulated in MCF10A-SNAI1 cells antagonizing canonical Wnt pathway. In summary, our data provide new molecular findings how EMT contributes to the enhanced chemoresistance and the acquisition of stem/progenitor-like character by regulating signaling pathways.
Collapse
|
31
|
Abstract
Fibroblast growth factors (FGFs) are involved in a variety of cellular processes, such as stemness, proliferation, anti-apoptosis, drug resistance, and angiogenesis. Here, FGF signaling network, cancer genetics/genomics of FGF receptors (FGFRs), and FGFR-targeted therapeutics will be reviewed. FGF signaling to RAS-MAPK branch and canonical WNT signaling cascade mutually regulate transcription programming. FGF signaling to PI3K-AKT branch and Hedgehog, Notch, TGFβ, and noncanonical WNT signaling cascades regulate epithelial-to-mesenchymal transition (EMT) and invasion. Gene amplification of FGFR1 occurs in lung cancer and estrogen receptor (ER)-positive breast cancer, and that of FGFR2 in diffuse-type gastric cancer and triple-negative breast cancer. Chromosomal translocation of FGFR1 occurs in the 8p11 myeloproliferative syndrome and alveolar rhabdomyosarcoma, as with FGFR3 in multiple myeloma and peripheral T-cell lymphoma. FGFR1 and FGFR3 genes are fused to neighboring TACC1 and TACC3 genes, respectively, due to interstitial deletions in glioblastoma multiforme. Missense mutations of FGFR2 are found in endometrial uterine cancer and melanoma, and similar FGFR3 mutations in invasive bladder tumors, and FGFR4 mutations in rhabdomyosarcoma. Dovitinib, Ki23057, ponatinib, and AZD4547 are orally bioavailable FGFR inhibitors, which have demonstrated striking effects in preclinical model experiments. Dovitinib, ponatinib, and AZD4547 are currently in clinical trial as anticancer drugs. Because there are multiple mechanisms of actions for FGFR inhibitors to overcome drug resistance, FGFR-targeted therapy is a promising strategy for the treatment of refractory cancer. Whole exome/transcriptome sequencing will be introduced to the clinical laboratory as the companion diagnostic platform facilitating patient selection for FGFR-targeted therapeutics in the era of personalized medicine.
Collapse
Affiliation(s)
- Masaru Katoh
- Division of Integrative Omics and Bioinformatics, National Cancer Center, 5-1-1 Tsukiji, Chuo Ward, Tokyo, 104-0045, Japan
| | | |
Collapse
|
32
|
Jiang W, Crossman DK, Mitchell EH, Sohn P, Crowley MR, Serra R. WNT5A inhibits metastasis and alters splicing of Cd44 in breast cancer cells. PLoS One 2013; 8:e58329. [PMID: 23484019 PMCID: PMC3590134 DOI: 10.1371/journal.pone.0058329] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 02/01/2013] [Indexed: 11/18/2022] Open
Abstract
Wnt5a is a non-canonical signaling Wnt. Low expression of WNT5A is correlated with poor prognosis in breast cancer patients. The highly invasive breast cancer cell lines, MDA-MB-231 and 4T1, express very low levels of WNT5A. To determine if enhanced expression of WNT5A would affect metastatic behavior, we generated WNT5A expressing cells from the 4T1 and MDA-MB-231 parental cell lines. WNT5A expressing cells demonstrated cobblestone morphology and reduced in vitro migration relative to controls. Cell growth was not altered. Metastasis to the lung via tail vein injection was reduced in the 4T1-WNT5A expressing cells relative to 4T1-vector controls. To determine the mechanism of WNT5A action on metastasis, we performed microarray and whole-transcriptome sequence analysis (RNA-seq) to compare gene expression in 4T1-WNT5A and 4T1-vector cells. Analysis indicated highly significant alterations in expression of genes associated with cellular movement. Down-regulation of a subset of these genes, Mmp13, Nos2, Il1a, Cxcl2, and Lamb3, in WNT5A expressing cells was verified by semi-quantitative RT-PCR. Significant differences in transcript splicing were also detected in cell movement associated genes including Cd44. Cd44 is an adhesion molecule with a complex genome structure. Variable exon usage is associated with metastatic phenotype. Alternative spicing of Cd44 in WNT5A expressing cells was confirmed using RT-PCR. We conclude that WNT5A inhibits metastasis through down-regulation of multiple cell movement pathways by regulating transcript levels and splicing of key genes like Cd44.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David K. Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Elizabeth H. Mitchell
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Philip Sohn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael R. Crowley
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Rosa Serra
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
33
|
Hsu RJ, Ho JY, Cha TL, Yu DS, Wu CL, Huang WP, Chu P, Chen YH, Chen JT, Yu CP. WNT10A plays an oncogenic role in renal cell carcinoma by activating WNT/β-catenin pathway. PLoS One 2012; 7:e47649. [PMID: 23094073 PMCID: PMC3477117 DOI: 10.1371/journal.pone.0047649] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022] Open
Abstract
Renal cell carcinoma (RCC) is a malignancy with poor prognosis. WNT/β-catenin signaling dysregulation, especially β-catenin overactivation and WNT antagonist silencing, is associated with RCC carcinogenesis and progression. However, the role of WNT ligands in RCC has not yet been determined. We screened 19 WNT ligands from normal kidney and RCC cell lines and tissues and found that WNT10A was significantly increased in RCC cell lines and tissues as compared to that in normal controls. The clinical significance of increase in WNT10A was evaluated by performing an immunohistochemical association study in a 19-year follow-up cohort comprising 284 RCC and 267 benign renal disease (BRD) patients. The results of this study showed that WNT10A was dramatically upregulated in RCC tissues as compared to that in BRD tissues. This result suggests that WNT10A, nuclear β-catenin, and nuclear cyclin D1 act as independent risk factors for RCC carcinogenesis and progression, with accumulative risk effects. Molecular validation of cell line models with gain- or loss-of-function designs showed that forced WNT10A expression induced RCC cell proliferation and aggressiveness, including higher chemoresistance, cell migration, invasiveness, and cell transformation, due to the activation of β-catenin-dependent signaling. Conversely, WNT10A siRNA knockdown decreased cell proliferation and aggressiveness of RCC cells. In conclusion, we showed that WNT10A acts as an autocrine oncogene both in RCC carcinogenesis and progression by activating WNT/β-catenin signaling.
Collapse
Affiliation(s)
- Ren-Jun Hsu
- Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jar-Yi Ho
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Tai-Lung Cha
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Divisions of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Dah-Shyong Yu
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Divisions of Urology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chieh-Lin Wu
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Ping Huang
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Pauling Chu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ying-Hsin Chen
- Department of Emergency Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jiann-Torng Chen
- Department of Ophthalmology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Ping Yu
- Biobank Management Center of Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institute of Pathology and Parasitology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- Graduate Institutes of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
34
|
Alexander CM, Goel S, Fakhraldeen SA, Kim S. Wnt signaling in mammary glands: plastic cell fates and combinatorial signaling. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a008037. [PMID: 22661590 DOI: 10.1101/cshperspect.a008037] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mouse mammary gland is an outstanding developmental model that exemplifies the activities of many of the effector pathways known to organize mammalian morphogenesis; furthermore, there are well-characterized methods for the specific genetic manipulation of various mammary epithelial cell components. Among these signaling pathways, Wnt signaling has been shown to generate plasticity of fate determination, expanding the genetic programs available to cells in the mammary lineage. It is responsible first for the appearance of the mammary fate in embryonic ectoderm and then for maintaining bi-potential basal stem cells in adult mammary ductal trees. Recent technical developments have led to the separate analysis of various mammary epithelial cell subpopulations, spurring the investigation of Wnt-dependent interactions. Although Wnt signaling was shown to be oncogenic for mouse mammary epithelium even before being identified as the principle oncogenic driver for gut epithelium, conclusive data implicating this pathway as a tumor driver for breast cancer lag behind, and we examine potential reasons.
Collapse
Affiliation(s)
- Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706-1599, USA.
| | | | | | | |
Collapse
|
35
|
Anitha P, Priyadarsini RV, Kavitha K, Thiyagarajan P, Nagini S. Ellagic acid coordinately attenuates Wnt/β-catenin and NF-κB signaling pathways to induce intrinsic apoptosis in an animal model of oral oncogenesis. Eur J Nutr 2011; 52:75-84. [PMID: 22160170 DOI: 10.1007/s00394-011-0288-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023]
Abstract
PURPOSE Constitutive activation of the Wnt signaling pathway and its downstream effectors plays a key role in neoplastic transformation. The objective of this study was to investigate the effect of ellagic acid, a plant-derived polyphenol on Wnt/β-catenin signaling and its downstream circuits- NF-κB and mitochondrial apoptosis in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model. METHODS Hamsters were divided into six groups. The right buccal pouches of animals in groups 1-4 were painted with 0.5% DMBA three times a week for 14 weeks. Animals in groups 2-4 received in addition basal diet containing ellagic acid at a concentration of 0.1, 0.2, and 0.4% in the diet. Group 5 animals were given 0.4% ellagic acid alone. Group 6 animals served as control. The expression of the members of Wnt and NF-κB signaling and intrinsic apoptosis was evaluated by western blot analysis. RESULTS Dietary supplementation of 0.4% ellagic acid suppressed the development of HBP carcinomas by preventing the constitutive activation of Wnt pathway through the downregulation of Fz, Dvl-2, GSK-3β and nuclear translocation of β-catenin. Abrogation of Wnt signaling by ellagic acid was also associated with inactivation of NF-κB and modulation of key components of the mitochondrial apoptotic network. CONCLUSIONS Our findings suggest a functional crosstalk between Wnt and NF-κB signaling pathways in HBP carcinomas that is blocked by ellagic acid supplementation. Dietary ellagic acid that targets the Wnt/β-catenin pathway as well as its downstream signaling mediators is a unique candidate for cancer chemoprevention.
Collapse
Affiliation(s)
- Prabukumar Anitha
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Chidambaram, Tamil Nadu, 608 002, India
| | | | | | | | | |
Collapse
|
36
|
Simultaneous analysis of tumor and stromal gene expression profiles from xenograft models. Breast Cancer Res Treat 2011; 131:321-4. [PMID: 21947683 DOI: 10.1007/s10549-011-1784-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 09/14/2011] [Indexed: 10/17/2022]
Abstract
Identifying the gene expression alterations that occur in both the tumor and stroma is essential to understanding tumor biology. We have developed a dual-species microarray analysis method that allows the dissection of both tumor and stromal gene expression profiles from xenograft models, based on limited interspecies cross-hybridization on Illumina gene expression beadchips. This methodology allows for simultaneous genome-wide analysis of gene expression profiles of both tumor cells and the associated stromal tissue.
Collapse
|