1
|
Meng XY, Yang D, Zhang B, Zhang T, Zheng ZC, Zhao Y. Glycolysis-related five-gene signature correlates with prognosis and immune infiltration in gastric cancer. World J Gastrointest Oncol 2024; 16:3097-3117. [PMID: 39072176 PMCID: PMC11271787 DOI: 10.4251/wjgo.v16.i7.3097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common malignancies worldwide. Glycolysis has been demonstrated to be pivotal for the carcinogenesis of GC. AIM To develop a glycolysis-based gene signature for prognostic evaluation in GC patients. METHODS Differentially expressed genes correlated with glycolysis were identified in stomach adenocarcinoma data (STAD). A risk score was established through a univariate Cox and least absolute shrinkage and selection operator analysis. The model was evaluated using the area under the receiver operating characteristic curves. RNA-sequencing data from high- and low-glycolysis groups of STAD patients were analyzed using Cibersort algorithm and Spearman correlation to analyze the interaction of immune cell infiltration and glycolysis. Multiomics characteristics in different glycolysis status were also analyzed. RESULTS A five-gene signature comprising syndecan 2, versican, malic enzyme 1, pyruvate carboxylase and SRY-box transcription factor 9 was constructed. Patients were separated to high- or low-glycolysis groups according to risk scores. Overall survival of patients with high glycolysis was poorer. The sensitivity and specificity of the model in prediction of survival of GC patients were also observed by receiver operating characteristic curves. A nomogram including clinicopathological characteristics and the risk score also showed good prediction for 3- and 5-year overall survival. Gene set variation analysis showed that high-glycolysis patients were related to dysregulation of pancreas beta cells and estrogen late pathways, and low-glycolysis patients were related to Myc targets, oxidative phosphorylation, mechanistic target of rapamycin complex 1 signaling and G2M checkpoint pathways. Tumor-infiltrating immune cells and multiomics analysis suggested that the different glycolysis status was significantly correlated with multiple immune cell infiltration. The patients with high glycolysis had lower tumor mutational burden and neoantigen load, higher incidence of microsatellite instability and lower chemosensitivity. High glycolysis status was often found among patients with grade 2/3 cancer or poor prognosis. CONCLUSION The genetic characteristics revealed by glycolysis could predict the prognosis of GC. High glycolysis significantly affects GC phenotype, but the detailed mechanism needs to be further studied.
Collapse
Affiliation(s)
- Xiang-Yu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Dong Yang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Bao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Tao Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Zhi-Chao Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| | - Yan Zhao
- Department of Gastric Surgery, Cancer Hospital of China Medical University/Liaoning Cancer Hospital & Institute/The Liaoning Provincial Key Laboratory of Interdisciplinary Research on Gastrointestinal Tumor Combining Medicine with Engineering, Shenyang 110042, Liaoning Province, China
| |
Collapse
|
2
|
Rujchanarong D, Spruill L, Sandusky GE, Park Y, Mehta AS, Drake RR, Ford ME, Nakshatri H, Angel PM. Spatial N-glycomics of the normal breast microenvironment reveals fucosylated and high-mannose N-glycan signatures related to BI-RADS density and ancestry. Glycobiology 2024; 34:cwae043. [PMID: 38869882 PMCID: PMC11193881 DOI: 10.1093/glycob/cwae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/25/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024] Open
Abstract
Higher breast cancer mortality rates continue to disproportionally affect black women (BW) compared to white women (WW). This disparity is largely due to differences in tumor aggressiveness that can be related to distinct ancestry-associated breast tumor microenvironments (TMEs). Yet, characterization of the normal microenvironment (NME) in breast tissue and how they associate with breast cancer risk factors remains unknown. N-glycans, a glucose metabolism-linked post-translational modification, has not been characterized in normal breast tissue. We hypothesized that normal female breast tissue with distinct Breast Imaging and Reporting Data Systems (BI-RADS) categories have unique microenvironments based on N-glycan signatures that varies with genetic ancestries. Profiles of N-glycans were characterized in normal breast tissue from BW (n = 20) and WW (n = 20) at risk for breast cancer using matrix assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). A total of 176 N-glycans (32 core-fucosylated and 144 noncore-fucosylated) were identified in the NME. We found that certain core-fucosylated, outer-arm fucosylated and high-mannose N-glycan structures had specific intensity patterns and histological distributions in the breast NME dependent on BI-RADS densities and ancestry. Normal breast tissue from BW, and not WW, with heterogeneously dense breast densities followed high-mannose patterns as seen in invasive ductal and lobular carcinomas. Lastly, lifestyles factors (e.g. age, menopausal status, Gail score, BMI, BI-RADS) differentially associated with fucosylated and high-mannose N-glycans based on ancestry. This study aims to decipher the molecular signatures in the breast NME from distinct ancestries towards improving the overall disparities in breast cancer burden.
Collapse
Affiliation(s)
- Denys Rujchanarong
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Laura Spruill
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 96 Jonathan Lucas St. Ste. 601, MSC 617, Charleston, SC 29425, United States
| | - George E Sandusky
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, 340 West 10th Street Fairbanks Hall, Suite 6200 Indianapolis, IN 46202-3082, United States
| | - Yeonhee Park
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Warf Office Bldg, 610 Walnut St Room 201, Madison, WI 53726, United States
| | - Anand S Mehta
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Richard R Drake
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| | - Marvella E Ford
- Department of Public Health Sciences, Medical University of South Carolina, 35 Cannon Street, Charleston, SC 29425, United States
| | - Harikrishna Nakshatri
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, 635 Barnhill Dr, Indianapolis, IN 46202, United States
- Department of Surgery, Indiana University School of Medicine, 545 Barnhill Dr, Indianapolis, IN 46202, United States
| | - Peggi M Angel
- Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Bruker-MUSC Center of Excellence, Clinical Glycomics, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC 29425, United States
| |
Collapse
|
3
|
Latypova AA, Yaremenko AV, Pechnikova NA, Minin AS, Zubarev IV. Magnetogenetics as a promising tool for controlling cellular signaling pathways. J Nanobiotechnology 2024; 22:327. [PMID: 38858689 PMCID: PMC11163773 DOI: 10.1186/s12951-024-02616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
Magnetogenetics emerges as a transformative approach for modulating cellular signaling pathways through the strategic application of magnetic fields and nanoparticles. This technique leverages the unique properties of magnetic nanoparticles (MNPs) to induce mechanical or thermal stimuli within cells, facilitating the activation of mechano- and thermosensitive proteins without the need for traditional ligand-receptor interactions. Unlike traditional modalities that often require invasive interventions and lack precision in targeting specific cellular functions, magnetogenetics offers a non-invasive alternative with the capacity for deep tissue penetration and the potential for targeting a broad spectrum of cellular processes. This review underscores magnetogenetics' broad applicability, from steering stem cell differentiation to manipulating neuronal activity and immune responses, highlighting its potential in regenerative medicine, neuroscience, and cancer therapy. Furthermore, the review explores the challenges and future directions of magnetogenetics, including the development of genetically programmed magnetic nanoparticles and the integration of magnetic field-sensitive cells for in vivo applications. Magnetogenetics stands at the forefront of cellular manipulation technologies, offering novel insights into cellular signaling and opening new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Anastasiia A Latypova
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia
- Moscow Center for Advanced Studies, Moscow, 123592, Russia
| | - Alexey V Yaremenko
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, 117997, Russia.
| | - Nadezhda A Pechnikova
- Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
- Saint Petersburg Pasteur Institute, Saint Petersburg, 197101, Russia
| | - Artem S Minin
- M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 620108, Russia
| | - Ilya V Zubarev
- Institute of Future Biophysics, Dolgoprudny, 141701, Russia.
| |
Collapse
|
4
|
Poonja S, Forero Pinto A, Lloyd MC, Damaghi M, Rejniak KA. Dynamics of Fibril Collagen Remodeling by Tumor Cells: A Model of Tumor-Associated Collagen Signatures. Cells 2023; 12:2688. [PMID: 38067116 PMCID: PMC10705683 DOI: 10.3390/cells12232688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/01/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Many solid tumors are characterized by a dense extracellular matrix (ECM) composed of various ECM fibril proteins. These proteins provide structural support and a biological context for the residing cells. The reciprocal interactions between growing and migrating tumor cells and the surrounding stroma result in dynamic changes in the ECM architecture and its properties. With the use of advanced imaging techniques, several specific patterns in the collagen surrounding the breast tumor have been identified in both tumor murine models and clinical histology images. These tumor-associated collagen signatures (TACS) include loosely organized fibrils far from the tumor and fibrils aligned either parallel or perpendicular to tumor colonies. They are correlated with tumor behavior, such as benign growth or invasive migration. However, it is not fully understood how one specific fibril pattern can be dynamically remodeled to form another alignment. Here, we present a novel multi-cellular lattice-free (MultiCell-LF) agent-based model of ECM that, in contrast to static histology images, can simulate dynamic changes between TACSs. This model allowed us to identify the rules of cell-ECM physical interplay and feedback that guided the emergence and transition among various TACSs.
Collapse
Affiliation(s)
- Sharan Poonja
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
| | - Ana Forero Pinto
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Cancer Biology PhD Program, University of South Florida, Tampa, FL 33612, USA
| | - Mark C. Lloyd
- Fujifilm Healthcare US, Inc., Lexington, MA 02421, USA;
| | - Mehdi Damaghi
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Katarzyna A. Rejniak
- Integrated Mathematical Oncology Department, H. Lee Moffitt Cancer Center, Research Institute, Tampa, FL 33612, USA
- Department of Oncologic Sciences, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
5
|
Tomasin R, Rodrigues AM, Manucci AC, Bruni-Cardoso A. A molecular landscape of quiescence and proliferation highlights the role of Pten in mammary gland acinogenesis. J Cell Sci 2023; 136:jcs261178. [PMID: 37712332 DOI: 10.1242/jcs.261178] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cell context is key for cell state. Using physiologically relevant models of laminin-rich extracellular matrix (lrECM) induction of mammary epithelial cell quiescence and differentiation, we provide a landscape of the key molecules for the proliferation-quiescence decision, identifying multiple layers of regulation at the mRNA and protein levels. Quiescence occurred despite activity of Fak (also known as PTK2), Src and phosphoinositide 3-kinases (PI3Ks), suggesting the existence of a disconnecting node between upstream and downstream proliferative signalling. Pten, a lipid and protein phosphatase, fulfils this role, because its inhibition increased proliferation and restored signalling via the Akt, mTORC1, mTORC2 and mitogen-activated protein kinase (MAPK) pathways. Pten and laminin levels were positively correlated in developing murine mammary epithelia, and Pten localized apicolaterally in luminal cells in ducts and near the nascent lumen in terminal end buds. Consistently, in three-dimensional acinogenesis models, Pten was required for triggering and sustaining quiescence, polarity and architecture. The multilayered regulatory circuitry that we uncovered provides an explanation for the robustness of quiescence within a growth-suppressive microenvironment, which could nonetheless be disrupted by perturbations in master regulators such as Pten.
Collapse
Affiliation(s)
- Rebeka Tomasin
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Antonio Carlos Manucci
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
6
|
Dang I, Brazzo JA, Bae Y, Assoian RK. Key role for Rac in the early transcriptional response to extracellular matrix stiffness and stiffness-dependent repression of ATF3. J Cell Sci 2023; 136:jcs260636. [PMID: 37737020 PMCID: PMC10617619 DOI: 10.1242/jcs.260636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
The Rho family GTPases Rac and Rho play critical roles in transmitting mechanical information contained within the extracellular matrix (ECM) to the cell. Rac and Rho have well-described roles in regulating stiffness-dependent actin remodeling, proliferation and motility. However, much less is known about the relative roles of these GTPases in stiffness-dependent transcription, particularly at the genome-wide level. Here, we selectively inhibited Rac and Rho in mouse embryonic fibroblasts cultured on deformable substrata and used RNA sequencing to elucidate and compare the contribution of these GTPases to the early transcriptional response to ECM stiffness. Surprisingly, we found that the stiffness-dependent activation of Rac was dominant over Rho in the initial transcriptional response to ECM stiffness. We also identified activating transcription factor 3 (ATF3) as a major target of stiffness- and Rac-mediated signaling and show that ATF3 repression by ECM stiffness helps to explain how the stiffness-dependent activation of Rac results in the induction of cyclin D1.
Collapse
Affiliation(s)
- Irène Dang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A. Brazzo
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Yongho Bae
- Department of Pathology and Anatomical Sciences, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Richard K. Assoian
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
7
|
Huang H, Hou J, Liao Y, Wei F, Xing B. Polyethylene microplastics impede the innate immune response by disrupting the extracellular matrix and signaling transduction. iScience 2023; 26:107390. [PMID: 37554443 PMCID: PMC10405319 DOI: 10.1016/j.isci.2023.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/01/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023] Open
Abstract
Microplastics (MPs) can accumulate in animal organs. Numerous studies have linked MPs with immune system. However, the impact of MPs on immune response remains unclear. This study examined the innate immune response of mice exposed to 5 μm MPs. In the lipopolysaccharide challenge, mice treated with MPs exhibited lower levels of serum immune factors and activated immune cells. MPs disrupted immune-related receptors and cause dysfunction in cell signal transduction within the liver and spleen. Proteomic analysis revealed that MPs impede the activation of serum immune-related signals. In addition, the tissue section imaging exhibited a significant enrichment of MPs in the extracellular matrix (ECM), consistent with the ECM dysfunction and immune receptor suppression. Therefore, our data suggest excessive MPs accumulation in ECM inhibits cell signaling pathways, thereby suppressing the activation of immune responses. We propose the biotoxicity of MPs is partly through the MP disruption of ECM (MPDEM).
Collapse
Affiliation(s)
- Haipeng Huang
- School of Life Science, Tsinghua University, Beijing 100084, China
- Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
| | - Jiaqi Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yilie Liao
- School of Life Science, Tsinghua University, Beijing 100084, China
| | - Fangchao Wei
- School of Life Science, Tsinghua University, Beijing 100084, China
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27708, USA
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
9
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
10
|
Ligresti G, Raslan AA, Hong J, Caporarello N, Confalonieri M, Huang SK. Mesenchymal cells in the Lung: Evolving concepts and their role in fibrosis. Gene 2023; 859:147142. [PMID: 36603696 PMCID: PMC10068350 DOI: 10.1016/j.gene.2022.147142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/18/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Mesenchymal cells in the lung are crucial during development, but also contribute to the pathogenesis of fibrotic disorders, including idiopathic pulmonary fibrosis (IPF), the most common and deadly form of fibrotic interstitial lung diseases. Originally thought to behave as supporting cells for the lung epithelium and endothelium with a singular function of producing basement membrane, mesenchymal cells encompass a variety of cell types, including resident fibroblasts, lipofibroblasts, myofibroblasts, smooth muscle cells, and pericytes, which all occupy different anatomic locations and exhibit diverse homeostatic functions in the lung. During injury, each of these subtypes demonstrate remarkable plasticity and undergo varying capacity to proliferate and differentiate into activated myofibroblasts. Therefore, these cells secrete high levels of extracellular matrix (ECM) proteins and inflammatory cytokines, which contribute to tissue repair, or in pathologic situations, scarring and fibrosis. Whereas epithelial damage is considered the initial trigger that leads to lung injury, lung mesenchymal cells are recognized as the ultimate effector of fibrosis and attempts to better understand the different functions and actions of each mesenchymal cell subtype will lead to a better understanding of why fibrosis develops and how to better target it for future therapy. This review summarizes current findings related to various lung mesenchymal cells as well as signaling pathways, and their contribution to the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Giovanni Ligresti
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US.
| | - Ahmed A Raslan
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Jeongmin Hong
- Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston MA, US
| | - Nunzia Caporarello
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, US
| | - Marco Confalonieri
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Steven K Huang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, US
| |
Collapse
|
11
|
Gao L, Zhu L, Shen C, Hou X, Chen Y, Zou L, Qiang H, Teichmann AT, Fu W, Luo Y. The transdermal cream of Formestane anti-breast cancer by controlling PI3K-Akt pathway and the tumor immune microenvironment. Front Immunol 2023; 14:1041525. [PMID: 37056757 PMCID: PMC10087521 DOI: 10.3389/fimmu.2023.1041525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/08/2023] [Indexed: 03/30/2023] Open
Abstract
BackgroundTreatment of ER+ breast cancer with intramuscular formulation of Formestane (4-OHA) shrinks the tumor within weeks. Since the tedious way of intramuscular administration and side effects are not suited for adjuvant treatment, Formestane was withdrawn from the market. A new transdermal formulation of 4-OHA cream may overcome the defects and retain the effect of shrinking the breast cancer tumor. However, the effects of 4-OHA cream on breast cancer need further confirmatory studies.MethodsIn this work, in vivo, the influence of 4-OHA cream on breast cancer was evaluated using the mode of 7,12-dimethylbenz(a)anthracene (DMBA) induced rat mammary cancer. We explored the common molecule mechanisms of action of 4-OHA cream and its injection formulation on breast cancer through RNA- sequencing-based transcriptome analysis and several biochemical experiments.ResultsThe results showed that the cream substantially reduced the entire quantity, size, and volum of tumors in DMBA-treated rats consistent with 4-OHA injection, and indicated that there were comprehensive signals involved in 4-OHA antitumor activity, such as ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway, and proteoglycans in cancer. In addition, we observed that both 4-OHA formulations could enhance immune infiltration, especially CD8+ T cells, B cells, natural killer cells, and macrophages infiltration, in the DMBA-induced mammary tumor tissues. The antitumor effects of 4-OHA partly depended on these immune cells.Conclusion4-OHA cream could inhibit breast cancer growth as its injection formulation and may provide a new way for neoadjuvant treatment of ER+ breast cancer.
Collapse
Affiliation(s)
- Lanyang Gao
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Lei Zhu
- West China Hospital, Sichuan University, Chengdu, China
| | - Chen Shen
- West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- West China Hospital, Sichuan University, Chengdu, China
| | - Youyou Chen
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Linglin Zou
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Huiyan Qiang
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Alexander T. Teichmann
- Sichuan Provincial Center for Gynaecology and Breast Disease, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
| | - Wenguang Fu
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, China
- *Correspondence: Yao Luo, ; Wenguang Fu,
| | - Yao Luo
- West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Yao Luo, ; Wenguang Fu,
| |
Collapse
|
12
|
Essa A, Essa ES, El-deeb SM, Seleem HEM, Al Sahlawi M, Al-Omair OA, Shehab-Eldeen S. Elevated Serum Vinculin in Patients with HBV/HCV-Associated Liver Cirrhosis and Hepatocellular Carcinoma: A Pilot Study. Biologics 2023; 17:23-32. [PMID: 36969330 PMCID: PMC10035354 DOI: 10.2147/btt.s405500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/04/2023] [Indexed: 03/20/2023]
Abstract
Background The stiffness of the extracellular matrix (ECM) controls many cellular processes, such as migration and differentiation. Cells detect stiffness through adhesion structures termed focal adhesions (FAs). Vinculin, an actin-binding FA protein, plays a pivotal role in FA-mediated mechanotransduction. Aim This study aimed to explore the role of vinculin in the development of HBV/HCV-induced hepatocellular carcinoma (HCC). Methods Vinculin levels in a total number of 100 serum samples from patients with HBV/HCV-induced liver cirrhosis and HCC, as well as healthy controls, were analyzed using an enzyme-linked immunosorbent assay (ELISA). Results In patients with HCC and liver cirrhosis, the serum vinculin levels were significantly greater than in controls (503.8±242.2 and 728.4±1044.8 vs 77.7±36.1 respectively, p<0.001). However, results showed no link between serum vinculin and the clinicopathological features of HCC. Conclusion Patients with HBVor HCV-induced liver cirrhosis and HCC have significantly higher serum levels of vinculin than do controls. This might point to a potential role for vinculin in the development of HCC. More research into how this protein affects the development of HCC at the molecular level could lead to better clinical treatments and the development of new molecular therapies.
Collapse
Affiliation(s)
- Abdallah Essa
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Enas Said Essa
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | - Sara Mahmoud El-deeb
- Clinical Pathology Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
| | | | - Muthana Al Sahlawi
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Omar Ahmed Al-Omair
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Somaia Shehab-Eldeen
- Tropical Medicine Department, Faculty of Medicine, Menoufia University, Shebin Elkom, Egypt
- Internal Medicine Department, College of Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
- Correspondence: Somaia Shehab-Eldeen, Tropical Medicine Department, Faculty of Medicine, Menoufia University, Yassen Abd Al Ghafar Street, Shebin Elkom, Menoufia Governorate, 32511, Egypt, Tel +201117251523, Email
| |
Collapse
|
13
|
The Tumor Microenvironment in Tumorigenesis and Therapy Resistance Revisited. Cancers (Basel) 2023; 15:cancers15020376. [PMID: 36672326 PMCID: PMC9856874 DOI: 10.3390/cancers15020376] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/28/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Tumorigenesis is a complex and dynamic process involving cell-cell and cell-extracellular matrix (ECM) interactions that allow tumor cell growth, drug resistance and metastasis. This review provides an updated summary of the role played by the tumor microenvironment (TME) components and hypoxia in tumorigenesis, and highlight various ways through which tumor cells reprogram normal cells into phenotypes that are pro-tumorigenic, including cancer associated- fibroblasts, -macrophages and -endothelial cells. Tumor cells secrete numerous factors leading to the transformation of a previously anti-tumorigenic environment into a pro-tumorigenic environment. Once formed, solid tumors continue to interact with various stromal cells, including local and infiltrating fibroblasts, macrophages, mesenchymal stem cells, endothelial cells, pericytes, and secreted factors and the ECM within the tumor microenvironment (TME). The TME is key to tumorigenesis, drug response and treatment outcome. Importantly, stromal cells and secreted factors can initially be anti-tumorigenic, but over time promote tumorigenesis and induce therapy resistance. To counter hypoxia, increased angiogenesis leads to the formation of new vascular networks in order to actively promote and sustain tumor growth via the supply of oxygen and nutrients, whilst removing metabolic waste. Angiogenic vascular network formation aid in tumor cell metastatic dissemination. Successful tumor treatment and novel drug development require the identification and therapeutic targeting of pro-tumorigenic components of the TME including cancer-associated- fibroblasts (CAFs) and -macrophages (CAMs), hypoxia, blocking ECM-receptor interactions, in addition to the targeting of tumor cells. The reprogramming of stromal cells and the immune response to be anti-tumorigenic is key to therapeutic success. Lastly, this review highlights potential TME- and hypoxia-centered therapies under investigation.
Collapse
|
14
|
Martín-Otal C, Lasarte-Cia A, Serrano D, Casares N, Conde E, Navarro F, Sánchez-Moreno I, Gorraiz M, Sarrión P, Calvo A, De Andrea CE, Echeveste J, Vilas A, Rodriguez-Madoz JR, San Miguel J, Prosper F, Hervas-Stubbs S, Lasarte JJ, Lozano T. Targeting the extra domain A of fibronectin for cancer therapy with CAR-T cells. J Immunother Cancer 2022; 10:jitc-2021-004479. [PMID: 35918123 PMCID: PMC9351345 DOI: 10.1136/jitc-2021-004479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND One of the main difficulties of adoptive cell therapies with chimeric antigen receptor (CAR)-T cells in solid tumors is the identification of specific target antigens. The tumor microenvironment can present suitable antigens for CAR design, even though they are not expressed by the tumor cells. We have generated a CAR specific for the splice variant extra domain A (EDA) of fibronectin, which is highly expressed in the tumor stroma of many types of tumors but not in healthy tissues. METHODS EDA expression was explored in RNA-seq data from different human tumor types and by immunohistochemistry in paraffin-embedded tumor biopsies. Murine and human anti-EDA CAR-T cells were prepared using recombinant retro/lentiviruses, respectively. The functionality of EDA CAR-T cells was measured in vitro in response to antigen stimulation. The antitumor activity of EDA CAR-T cells was measured in vivo in C57BL/6 mice challenged with PM299L-EDA hepatocarcinoma cell line, in 129Sv mice-bearing F9 teratocarcinoma and in NSG mice injected with the human hepatocarcinoma cell line PLC. RESULTS EDA CAR-T cells recognized and killed EDA-expressing tumor cell lines in vitro and rejected EDA-expressing tumors in immunocompetent mice. Notably, EDA CAR-T cells showed an antitumor effect in mice injected with EDA-negative tumor cells lines when the tumor stroma or the basement membrane of tumor endothelial cells express EDA. Thus, EDA CAR-T administration delayed tumor growth in immunocompetent 129Sv mice challenged with teratocarcinoma cell line F9. EDA CAR-T treatment exerted an antiangiogenic effect and significantly reduced gene signatures associated with epithelial-mesenchymal transition, collagen synthesis, extracellular matrix organization as well as IL-6-STAT5 and KRAS pathways. Importantly, the human version of EDA CAR, that includes the human 41BB and CD3ζ endodomains, exerted strong antitumor activity in NSG mice challenged with the human hepatocarcinoma cell line PLC, which expresses EDA in the tumor stroma and the endothelial vasculature. EDA CAR-T cells exhibited a tropism for EDA-expressing tumor tissue and no toxicity was observed in tumor bearing or in healthy mice. CONCLUSIONS These results suggest that targeting the tumor-specific fibronectin splice variant EDA with CAR-T cells is feasible and offers a therapeutic option that is applicable to different types of cancer.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Aritz Lasarte-Cia
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Diego Serrano
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Noelia Casares
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Enrique Conde
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Flor Navarro
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Marta Gorraiz
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Patricia Sarrión
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Alfonso Calvo
- Programa de Tumores sólidos, Centro de Investigación Médica Aplicada, Pamplona, Spain
| | - Carlos E De Andrea
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - José Echeveste
- Departamento de Patología, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Amaia Vilas
- Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain
| | - Juan Roberto Rodriguez-Madoz
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Jesús San Miguel
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain.,Programa de Hemato-Oncología, Centro de Investigación Médica Aplicada, CIMA, Pamplona, Spain.,Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain,Cancer Center Universidad de Navarra (CCUN), Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervas-Stubbs
- Programa de Inmunología e Inmunoterapia, Centro de Investigación Médica Aplicada, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Juan Jose Lasarte
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| | - Teresa Lozano
- Departamento de Hematología, Clínica Universidad de Navarra, Pamplona, Spain,Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
| |
Collapse
|
15
|
Nairon KG, DePalma TJ, Zent JM, Leight JL, Skardal A. Tumor cell-conditioned media drives collagen remodeling via fibroblast and pericyte activation in an in vitro premetastatic niche model. iScience 2022; 25:104645. [PMID: 35811850 PMCID: PMC9257340 DOI: 10.1016/j.isci.2022.104645] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/21/2022] Open
Abstract
Primary tumors secrete large quantities of cytokines and exosomes into the bloodstream, which are uptaken at downstream sites and induce a pro-fibrotic, pro-inflammatory premetastatic niche. Niche development is associated with later increased metastatic burden, but the cellular and matrix changes in the niche that facilitate metastasis are yet unknown. Furthermore, there is no current standard model to study this phenomenon. Here, biofabricated collagen and hyaluronic acid hydrogel models were employed to identify matrix changes elicited by pericytes and fibroblasts after exposure to colorectal cancer-secreted factors. Focusing on myofibroblast activation and collagen remodeling, we report fibroblast activation and pericyte stunting in response to tumor signaling. In addition, we characterize contributions of both cell types to matrix dysregulation via collagen degradation, deposition, and architectural remodeling. With these findings, we discuss potential impacts on tissue stiffening and vascular leakiness and suggest pathways of interest for future mechanistic studies of metastatic cell-premetastatic niche interactions.
Collapse
Affiliation(s)
- Kylie G. Nairon
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. DePalma
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joshua M. Zent
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jennifer L. Leight
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Aleksander Skardal
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH 43210, USA
- The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
- Center for Cancer Engineering, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
16
|
Martín-Otal C, Navarro F, Casares N, Lasarte-Cía A, Sánchez-Moreno I, Hervás-Stubbs S, Lozano T, Lasarte JJ. Impact of tumor microenvironment on adoptive T cell transfer activity. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:1-31. [PMID: 35798502 DOI: 10.1016/bs.ircmb.2022.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in immunotherapy have revolutionized the treatment of cancer. The use of adoptive cell therapies (ACT) such as those based on tumor infiltrating lymphocytes (TILs) or genetically modified cells (transgenic TCR lymphocytes or CAR-T cells), has shown impressive results in the treatment of several types of cancers. However, cancer cells can exploit mechanisms to escape from immunosurveillance resulting in many patients not responding to these therapies or respond only transiently. The failure of immunotherapy to achieve long-term tumor control is multifactorial. On the one hand, only a limited percentage of the transferred lymphocytes is capable of circulating through the bloodstream, interacting and crossing the tumor endothelium to infiltrate the tumor. Metabolic competition, excessive glucose consumption, the high level of lactic acid secretion and the extracellular pH acidification, the shortage of essential amino acids, the hypoxic conditions or the accumulation of fatty acids in the tumor microenvironment (TME), greatly hinder the anti-tumor activity of the immune cells in ACT therapy strategies. Therefore, there is a new trend in immunotherapy research that seeks to unravel the fundamental biology that underpins the response to therapy and identifies new approaches to better amplify the efficacy of immunotherapies. In this review we address important aspects that may significantly affect the efficacy of ACT, indicating also the therapeutic alternatives that are currently being implemented to overcome these drawbacks.
Collapse
Affiliation(s)
- Celia Martín-Otal
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Flor Navarro
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Noelia Casares
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Aritz Lasarte-Cía
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Inés Sánchez-Moreno
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain
| | - Sandra Hervás-Stubbs
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Teresa Lozano
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain.
| | - Juan José Lasarte
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
| |
Collapse
|
17
|
Zhao N, Yu H, Xi Y, Dong M, Wang Y, Sun C, Zhang J, Xu N, Liu W. MicroRNA-221-5p promotes [Korcheva, 2007 #167] via PI3K/Akt signaling pathway by targeting COL4a5. Toxicon 2022; 212:11-18. [DOI: 10.1016/j.toxicon.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
18
|
Gardiner JC, Cukierman E. Meaningful connections: Interrogating the role of physical fibroblast cell-cell communication in cancer. Adv Cancer Res 2022; 154:141-168. [PMID: 35459467 PMCID: PMC9483832 DOI: 10.1016/bs.acr.2022.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As part of the connective tissue, activated fibroblasts play an important role in development and disease pathogenesis, while quiescent resident fibroblasts are responsible for sustaining tissue homeostasis. Fibroblastic activation is particularly evident in the tumor microenvironment where fibroblasts transition into tumor-supporting cancer-associated fibroblasts (CAFs), with some CAFs maintaining tumor-suppressive functions. While the tumor-supporting features of CAFs and their fibroblast-like precursors predominantly function through paracrine chemical communication (e.g., secretion of cytokine, chemokine, and more), the direct cell-cell communication that occurs between fibroblasts and other cells, and the effect that the remodeled CAF-generated interstitial extracellular matrix has in these types of cellular communications, remain poorly understood. Here, we explore the reported roles fibroblastic cell-cell communication play within the cancer stroma context and highlight insights we can gain from other disciplines.
Collapse
Affiliation(s)
- Jaye C Gardiner
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States
| | - Edna Cukierman
- Cancer Signaling and Epigenetics Program, Marvin and Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Temple Health, Philadelphia, PA, United States.
| |
Collapse
|
19
|
Abstract
Prolactin coordinates with the ovarian steroids to orchestrate mammary development and lactation, culminating in nourishment and an increasingly appreciated array of other benefits for neonates. Its central activities in mammary epithelial growth and differentiation suggest that it plays a role(s) in breast cancer, but it has been challenging to identify its contributions, essential for incorporation into prevention and treatment approaches. Large prospective epidemiologic studies have linked higher prolactin exposure to increased risk, particularly for ER+ breast cancer in postmenopausal women. However, it has been more difficult to determine its actions and clinical consequences in established tumors. Here we review experimental data implicating multiple mechanisms by which prolactin may increase the risk of breast cancer. We then consider the evidence for role(s) of prolactin and its downstream signaling cascades in disease progression and treatment responses, and discuss how new approaches are beginning to illuminate the biology behind the seemingly conflicting epidemiologic and experimental studies of prolactin actions across diverse breast cancers.
Collapse
|
20
|
Xu W, Alpha KM, Zehrbach NM, Turner CE. Paxillin Promotes Breast Tumor Collective Cell Invasion through Maintenance of Adherens Junction Integrity. Mol Biol Cell 2021; 33:ar14. [PMID: 34851720 PMCID: PMC9236150 DOI: 10.1091/mbc.e21-09-0432] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Distant organ metastasis is linked to poor prognosis during cancer progression. The expression level of the focal adhesion adapter protein paxillin varies among different human cancers, but its role in tumor progression is unclear. Herein, we utilize a newly generated PyMT mammary tumor mouse model with conditional paxillin ablation in breast tumor epithelial cells, combined with in vitro 3D tumor organoids invasion analysis and 2D calcium switch assays, to assess the roles for paxillin in breast tumor cell invasion. Paxillin had little effect on primary tumor initiation and growth but is critical for the formation of distant lung metastasis. In paxillin-depleted 3D tumor organoids, collective cell invasion was substantially perturbed. Two-dimensional cell culture revealed paxillin-dependent stabilization of adherens junctions (AJ). Mechanistically, paxillin is required for AJ assembly through facilitating E-cadherin endocytosis and recycling and HDAC6-mediated microtubule acetylation. Furthermore, Rho GTPase activity analysis and rescue experiments with a RhoA activator or Rac1 inhibitor suggest paxillin is potentially regulating the E-cadherin-dependent junction integrity and contractility through control of the balance of RhoA and Rac1 activities. Together, these data highlight new roles for paxillin in the regulation of cell-cell adhesion and collective tumor cell migration to promote the formation of distance organ metastases. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
- Weiyi Xu
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Kyle M Alpha
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Nicholas M Zehrbach
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| | - Christopher E Turner
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, 750 East Adams Street, Syracuse, New York 13210, USA
| |
Collapse
|
21
|
Valdoz JC, Johnson BC, Jacobs DJ, Franks NA, Dodson EL, Sanders C, Cribbs CG, Van Ry PM. The ECM: To Scaffold, or Not to Scaffold, That Is the Question. Int J Mol Sci 2021; 22:12690. [PMID: 34884495 PMCID: PMC8657545 DOI: 10.3390/ijms222312690] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
The extracellular matrix (ECM) has pleiotropic effects, ranging from cell adhesion to cell survival. In tissue engineering, the use of ECM and ECM-like scaffolds has separated the field into two distinct areas-scaffold-based and scaffold-free. Scaffold-free techniques are used in creating reproducible cell aggregates which have massive potential for high-throughput, reproducible drug screening and disease modeling. Though, the lack of ECM prevents certain cells from surviving and proliferating. Thus, tissue engineers use scaffolds to mimic the native ECM and produce organotypic models which show more reliability in disease modeling. However, scaffold-based techniques come at a trade-off of reproducibility and throughput. To bridge the tissue engineering dichotomy, we posit that finding novel ways to incorporate the ECM in scaffold-free cultures can synergize these two disparate techniques.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pam M. Van Ry
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA; (J.C.V.); (B.C.J.); (D.J.J.); (N.A.F.); (E.L.D.); (C.S.); (C.G.C.)
| |
Collapse
|
22
|
Pal A, Haliti P, Dharmadhikari B, Qi W, Patra P. Manipulating Extracellular Matrix Organizations and Parameters to Control Local Cancer Invasion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2566-2576. [PMID: 32324564 DOI: 10.1109/tcbb.2020.2989223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metastasis contributes to over 90 percent of cancer mortalities and may be influenced by the extracellular matrix (ECM). ECM microenvironments differ in matrix organization, cell-matrix adhesions, and fiber rigidity, which may affect cancer migration and, thus, should be investigated. To understand the interactions between cancer cells and the ECM, we simulate local invasion through ECM organizations of varying determinants. Randomly curved organizations of normal ovarian stroma exhibit minimal local invasion. In contrast, wave-like and parallel linear structures in reorganized ECM organizations provide contact guidance, which increases cancer invasiveness. ECM organizations with strong cell-matrix attachments generate cell pseudopodia, which aid in increasing invasion rate, while weaker attachments prevent the cells from attaching to the fibers and forming pseudopodia, limiting local invasion. ECM organizations with rigid fibers elongate the cell body, allowing them to form cell protrusions and spread rapidly. Conversely, soft fibers stimulate cell rounding and limit migration. Optimizing cell-matrix adhesions and fiber rigidity results in below 10 percent local invasion and reinforces the importance of using computational modeling to discover novel approaches to restricting cancer movement.
Collapse
|
23
|
Thompson PA, Huang C, Yang J, Wertheim BC, Roe D, Zhang X, Ding J, Chalasani P, Preece C, Martinez J, Chow HHS, Stopeck AT. Sulindac, a Nonselective NSAID, Reduces Breast Density in Postmenopausal Women with Breast Cancer Treated with Aromatase Inhibitors. Clin Cancer Res 2021; 27:5660-5668. [PMID: 34112707 DOI: 10.1158/1078-0432.ccr-21-0732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 04/26/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the effect of sulindac, a nonselective anti-inflammatory drug (NSAID), for activity to reduce breast density (BD), a risk factor for breast cancer. EXPERIMENTAL DESIGN An open-label phase II study was conducted to test the effect of 12 months' daily sulindac at 150 mg twice daily on change in percent BD in postmenopausal hormone receptor-positive breast cancer patients on aromatase inhibitor (AI) therapy. Change in percent BD in the contralateral, unaffected breast was measured by noncontrast magnetic resonance imaging (MRI) and reported as change in MRI percent BD (MRPD). A nonrandomized patient population on AI therapy (observation group) with comparable baseline BD was also followed for 12 months. Changes in tissue collagen after 6 months of sulindac treatment were explored using second-harmonic generated microscopy in a subset of women in the sulindac group who agreed to repeat breast biopsy. RESULTS In 43 women who completed 1 year of sulindac (86% of those accrued), relative MRPD significantly decreased by 9.8% [95% confidence interval (CI), -14.6 to -4.7] at 12 months, an absolute decrease of -1.4% (95% CI, -2.5 to -0.3). A significant decrease in mean breast tissue collagen fiber straightness (P = 0.032), an investigational biomarker of tissue inflammation, was also observed. MRPD (relative or absolute) did not change in the AI-only observation group (N = 40). CONCLUSIONS This is the first study to indicate that the NSAID sulindac may reduce BD. Additional studies are needed to verify these findings and determine if prostaglandin E2 inhibition by NSAIDs is important for BD or collagen modulation.
Collapse
Affiliation(s)
- Patricia A Thompson
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York. .,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Chuan Huang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Radiology, Stony Brook University, Stony Brook, New York.,Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Jie Yang
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | | | - Denise Roe
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Epidemiology and Biostatistics, University of Arizona, Tucson, Arizona
| | - Xiaoyue Zhang
- Department of Family, Population and Preventive Medicine, Stony Brook University, Stony Brook, New York
| | - Jie Ding
- Department of Psychiatry, Stony Brook University, Stony Brook, New York.,Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - Pavani Chalasani
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Medicine, University of Arizona, Tucson, Arizona
| | - Christina Preece
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Pathology, Stony Brook University, Stony Brook, New York
| | - Jessica Martinez
- University of Arizona Cancer Center, Tucson, Arizona.,Department of Nutritional Sciences, University of Arizona, Tucson, Arizona
| | | | - Alison T Stopeck
- Stony Brook Cancer Center, Stony Brook University, Stony Brook, New York.,Department of Medicine, Stony Brook University, Stony Brook, New York
| |
Collapse
|
24
|
Marine bacterial exopolysaccharide EPS11 inhibits migration and invasion of liver cancer cells by directly targeting collagen I. J Biol Chem 2021; 297:101133. [PMID: 34461092 PMCID: PMC8449266 DOI: 10.1016/j.jbc.2021.101133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/20/2021] [Accepted: 08/26/2021] [Indexed: 02/02/2023] Open
Abstract
Many natural polysaccharides have significant anticancer activity with low toxicity, but the complex chemical structures make in-depth studies of the involved mechanisms extremely difficult. The purpose of this study was to investigate the effect of the marine bacterial exopolysaccharide (exopolysaccharide 11 [EPS11]) on liver cancer metastasis to explore the underlying target protein and molecular mechanism. We found that EPS11 significantly suppressed cell adhesion, migration, and invasion in liver cancer cells. Proteomic analysis showed that EPS11 induced downregulation of proteins related to the extracellular matrix–receptor interaction signaling pathway. In addition, the direct pharmacological target of EPS11 was identified as collagen I using cellular thermal shift assays. Surface plasmon resonance and pull-down assays further confirmed the specific binding of EPS11 to collagen I. Moreover, EPS11 was shown to inhibit tumor metastasis by directly modulating collagen I activity via the β1-integrin–mediated signaling pathway. Collectively, our study demonstrated for the first time that collagen I could be a direct pharmacological target of polysaccharide drugs. Moreover, directly targeting collagen I may be a promising strategy for finding novel carbohydrate-based drugs.
Collapse
|
25
|
Schuler LA, Murdoch FE. Endogenous and Therapeutic Estrogens: Maestro Conductors of the Microenvironment of ER+ Breast Cancers. Cancers (Basel) 2021; 13:3725. [PMID: 34359625 PMCID: PMC8345134 DOI: 10.3390/cancers13153725] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/25/2022] Open
Abstract
Estrogen receptor alpha (ERα) marks heterogeneous breast cancers which display a repertoire of somatic genomic mutations and an immune environment that differs from other breast cancer subtypes. These cancers also exhibit distinct biological behaviors; despite an overall better prognosis than HER2+ or triple negative breast cancers, disseminated dormant cells can lead to disease recurrence decades after the initial diagnosis and treatment. Estrogen is the best studied driver of these cancers, and antagonism or reduction of estrogen activity is the cornerstone of therapeutic approaches. In addition to reducing proliferation of ERα+ cancer cells, these treatments also alter signals to multiple other target cells in the environment, including immune cell subpopulations, cancer-associated fibroblasts, and endothelial cells via several distinct estrogen receptors. In this review, we update progress in our understanding of the stromal cells populating the microenvironments of primary and metastatic ER+ tumors, the effects of estrogen on tumor and stromal cells to modulate immune activity and the extracellular matrix, and net outcomes in experimental and clinical studies. We highlight new approaches that will illuminate the unique biology of these cancers, provide the foundation for developing new treatment and prevention strategies, and reduce mortality of this disease.
Collapse
Affiliation(s)
- Linda A. Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
26
|
Leonel ECR, Ruiz TFR, Bedolo CM, Campos SGP, Taboga SR. Inflammatory repercussions in female steroid responsive glands after perinatal exposure to bisphenol A and 17-β estradiol. Cell Biol Int 2021; 45:2264-2274. [PMID: 34288236 DOI: 10.1002/cbin.11665] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/18/2022]
Abstract
The mammary gland (MG) and female prostate are plastic reproductive organs which are highly responsive to hormones. Thus, endocrine disruptors, such as bisphenol A (BPA) and exogenous estrogens, negatively affect glandular homeostasis. In addition to previously described alterations, changes in inflammatory markers expression also trigger the development of a microenvironment that contributes to tumor progression. The current work aimed to evaluate the inflammatory responses of the MG and prostate gland to BPA (50 µg/kg) and 17-β estradiol (35 µg/kg) exposure during the perinatal window of susceptibility. The results showed that at 6 months of age there was an increase in the number of phospho-STAT3 (P-STAT3) positive cells in the female prostate from animals perinatally exposed to 50 µg/kg BPA daily. In addition, the number of macrophages increased in these animals in comparison with nonexposed animals, as shown by the F4/80 marker. Despite an increase in the incidence of lobuloalveolar and intraductal hyperplasia, the MG did not show any difference in the expression of the four inflammatory markers evaluated: tumor necrosis factor-α, COX-2, P-STAT3, and F4/80. Analysis of both glands from the same animal led to the conclusion that exposure to endocrine disruptors during the perinatal window of susceptibility leads to different inflammatory responses in different reproductive organs. As the prostate is more susceptible to these inflammatory mechanisms, it is reasonable to affirm that possible neoplastic alterations in this organ are related to changes in the inflammatory pattern of the stroma, a characteristic that is not evident in the MG.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.,Department of Histology, Embriology, and Cell Biology, Institute of Biological Sciences (ICB III), Federal University of Goiás (UFG), Goiânia, Goiás, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Carolina Marques Bedolo
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biology, Humanities, and Exact Sciences, Institute of Biosciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
27
|
Fontana F, Marzagalli M, Sommariva M, Gagliano N, Limonta P. In Vitro 3D Cultures to Model the Tumor Microenvironment. Cancers (Basel) 2021; 13:cancers13122970. [PMID: 34199324 PMCID: PMC8231786 DOI: 10.3390/cancers13122970] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Tumor stroma is known to significantly influence cancer initiation and progression. In the last decade, 3D cell cultures have shown potential in modeling the tumor microenvironment. This review summarizes the main features of current 3D models, shedding light on their importance in the study of cancer biology and treatment. Abstract It is now well established that the tumor microenvironment plays a key role in determining cancer growth, metastasis and drug resistance. Thus, it is fundamental to understand how cancer cells interact and communicate with their stroma and how this crosstalk regulates disease initiation and progression. In this setting, 3D cell cultures have gained a lot of interest in the last two decades, due to their ability to better recapitulate the complexity of tumor microenvironment and therefore to bridge the gap between 2D monolayers and animal models. Herein, we present an overview of the 3D systems commonly used for studying tumor–stroma interactions, with a focus on recent advances in cancer modeling and drug discovery and testing.
Collapse
Affiliation(s)
- Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.M.); (P.L.)
- Correspondence: ; Tel.: +39-02-503-18427
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.M.); (P.L.)
| | - Michele Sommariva
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Nicoletta Gagliano
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (M.S.); (N.G.)
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, 20133 Milan, Italy; (M.M.); (P.L.)
| |
Collapse
|
28
|
Persson E, Gregersson P, Gustafsson A, Fitzpatrick P, Rhost S, Ståhlberg A, Landberg G. Patient-derived scaffolds influence secretion profiles in cancer cells mirroring clinical features and breast cancer subtypes. Cell Commun Signal 2021; 19:66. [PMID: 34090457 PMCID: PMC8178857 DOI: 10.1186/s12964-021-00746-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Breast cancer is a common malignancy with varying clinical behaviors and for the more aggressive subtypes, novel and more efficient therapeutic approaches are needed. Qualities of the tumor microenvironment as well as cancer cell secretion have independently been associated with malignant clinical behaviors and a better understanding of the interplay between these two features could potentially reveal novel targetable key events linked to cancer progression. METHODS A newly developed human derived in vivo-like growth system, consisting of decellularized patient-derived scaffolds (PDSs) recellularized with standardized breast cancer cell lines (MCF7 and MDA-MB-231), were used to analyze how 63 individual patient specific microenvironments influenced secretion determined by proximity extension assays including 184 proteins and how these relate to clinical outcome. RESULTS The secretome from cancer cells in PDS cultures varied distinctly from cells grown as standard monolayers and besides a general increase in secretion from PDS cultures, several secreted proteins were only detectable in PDSs. Monolayer cells treated with conditioned media from PDS cultures, further showed increased mammosphere formation demonstrating a cancer stem cell activating function of the PDS culture induced secretion. The detailed secretomic profiles from MCF7s growing on 57 individual PDSs differed markedly but unsupervised clustering generated three separate groups having similar secretion profiles that significantly correlated to different clinical behaviors. The secretomic profile that associated with cancer relapse and high grade breast cancer showed induced secretion of the proteins IL-6, CCL2 and PAI-1, all linked to cancer stem cell activation, metastasis and priming of the pre-metastatic niche. Cancer promoting pathways such as "Suppress tumor immunity" and "Vascular and tissue remodeling" was also linked to this more malignant secretion cluster. CONCLUSION PDSs repopulated with cancer cells can be used to assess how cancer secretion is effected by specific and varying microenvironments. More malignant secretion patterns induced by specific patient based cancer microenvironments could further be identified pinpointing novel therapeutic opportunities targeting micro environmentally induced cancer progression via secretion of potent cytokines. Video abstract.
Collapse
Affiliation(s)
- Emma Persson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Pernilla Gregersson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Anna Gustafsson
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Paul Fitzpatrick
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Sara Rhost
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden
| | - Anders Ståhlberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, 41390, Gothenburg, Sweden.,Department of Clinical Genetics and Genomics, Sahlgrenska University Hostpital, Region Västra Götaland, 41390, Gothenburg, Sweden
| | - Göran Landberg
- Department of Laboratory Medicine, Sahlgrenska Center for Cancer Research, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 1G, 41390, Gothenburg, Sweden.
| |
Collapse
|
29
|
Martinez J, Smith PC. The Dynamic Interaction between Extracellular Matrix Remodeling and Breast Tumor Progression. Cells 2021; 10:1046. [PMID: 33946660 PMCID: PMC8145942 DOI: 10.3390/cells10051046] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022] Open
Abstract
Desmoplastic tumors correspond to a unique tissue structure characterized by the abnormal deposition of extracellular matrix. Breast tumors are a typical example of this type of lesion, a property that allows its palpation and early detection. Fibrillar type I collagen is a major component of tumor desmoplasia and its accumulation is causally linked to tumor cell survival and metastasis. For many years, the desmoplastic phenomenon was considered to be a reaction and response of the host tissue against tumor cells and, accordingly, designated as "desmoplastic reaction". This notion has been challenged in the last decades when desmoplastic tissue was detected in breast tissue in the absence of tumor. This finding suggests that desmoplasia is a preexisting condition that stimulates the development of a malignant phenotype. With this perspective, in the present review, we analyze the role of extracellular matrix remodeling in the development of the desmoplastic response. Importantly, during the discussion, we also analyze the impact of obesity and cell metabolism as critical drivers of tissue remodeling during the development of desmoplasia. New knowledge derived from the dynamic remodeling of the extracellular matrix may lead to novel targets of interest for early diagnosis or therapy in the context of breast tumors.
Collapse
Affiliation(s)
- Jorge Martinez
- Cell Biology Laboratory, INTA, University of Chile, Santiago 7810000, Chile
| | - Patricio C. Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| |
Collapse
|
30
|
Derakhshani A, Rostami Z, Safarpour H, Shadbad MA, Nourbakhsh NS, Argentiero A, Taefehshokr S, Tabrizi NJ, Kooshkaki O, Astamal RV, Singh PK, Taefehshokr N, Alizadeh N, Silvestris N, Baradaran B. From Oncogenic Signaling Pathways to Single-Cell Sequencing of Immune Cells: Changing the Landscape of Cancer Immunotherapy. Molecules 2021; 26:2278. [PMID: 33920054 PMCID: PMC8071039 DOI: 10.3390/molecules26082278] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
Over the past decade, there have been remarkable advances in understanding the signaling pathways involved in cancer development. It is well-established that cancer is caused by the dysregulation of cellular pathways involved in proliferation, cell cycle, apoptosis, cell metabolism, migration, cell polarity, and differentiation. Besides, growing evidence indicates that extracellular matrix signaling, cell surface proteoglycans, and angiogenesis can contribute to cancer development. Given the genetic instability and vast intra-tumoral heterogeneity revealed by the single-cell sequencing of tumoral cells, the current approaches cannot eliminate the mutating cancer cells. Besides, the polyclonal expansion of tumor-infiltrated lymphocytes in response to tumoral neoantigens cannot elicit anti-tumoral immune responses due to the immunosuppressive tumor microenvironment. Nevertheless, the data from the single-cell sequencing of immune cells can provide valuable insights regarding the expression of inhibitory immune checkpoints/related signaling factors in immune cells, which can be used to select immune checkpoint inhibitors and adjust their dosage. Indeed, the integration of the data obtained from the single-cell sequencing of immune cells with immune checkpoint inhibitors can increase the response rate of immune checkpoint inhibitors, decrease the immune-related adverse events, and facilitate tumoral cell elimination. This study aims to review key pathways involved in tumor development and shed light on single-cell sequencing. It also intends to address the shortcomings of immune checkpoint inhibitors, i.e., their varied response rates among cancer patients and increased risk of autoimmunity development, via applying the data from the single-cell sequencing of immune cells.
Collapse
Affiliation(s)
- Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Zeinab Rostami
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Hossein Safarpour
- Cellular & Molecular Research Center, Birjand University of Medical Sciences, Birjand 97178-53577, Iran;
| | - Mahdi Abdoli Shadbad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| | | | | | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Neda Jalili Tabrizi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 97178-53577, Iran; (Z.R.); (O.K.)
| | - Reza Vaezi Astamal
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Pankaj Kumar Singh
- Principal Research Technologist, Department of Radiation Oncology, Mayo Clinic, 4500 San Pablo Rd S, Jacksonville, FL 32224, USA;
| | - Nima Taefehshokr
- Department of Microbiology and Immunology, Center for Human Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada;
| | - Nazila Alizadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 51656-65811, Iran; (A.D.); (M.A.S.); (S.T.); (N.J.T.); (R.V.A.); (N.A.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 51666-14766, Iran
| |
Collapse
|
31
|
Lee HJ, Mun S, Pham DM, Kim P. Extracellular Matrix-Based Hydrogels to Tailoring Tumor Organoids. ACS Biomater Sci Eng 2021; 7:4128-4135. [DOI: 10.1021/acsbiomaterials.0c01801] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Hyun Jin Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Siwon Mun
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Duc M. Pham
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Pilnam Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
- Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| |
Collapse
|
32
|
Lv Y, Wang H, Li G, Zhao B. Three-dimensional decellularized tumor extracellular matrices with different stiffness as bioengineered tumor scaffolds. Bioact Mater 2021; 6:2767-2782. [PMID: 33665508 PMCID: PMC7897907 DOI: 10.1016/j.bioactmat.2021.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 01/25/2021] [Accepted: 02/05/2021] [Indexed: 02/07/2023] Open
Abstract
In the three-dimensional (3D) tumor microenvironment, matrix stiffness is associated with the regulation of tumor cells behaviors. In vitro tumor models with appropriate matrix stiffness are urgently desired. Herein, we prepare 3D decellularized extracellular matrix (DECM) scaffolds with different stiffness to mimic the microenvironment of human breast tumor tissue, especially the matrix stiffness, components and structure of ECM. Furthermore, the effects of matrix stiffness on the drug resistance of human breast cancer cells are explored with these developed scaffolds as case studies. Our results confirm that DECM scaffolds with diverse stiffness can be generated by tumor cells with different lysyl oxidase (LOX) expression levels, while the barely intact structure and major components of the ECM are maintained without cells. This versatile 3D tumor model with suitable stiffness can be used as a bioengineered tumor scaffold to investigate the role of the microenvironment in tumor progression and to screen drugs prior to clinical use to a certain extent. Novel 3D bioengineered tumor scaffolds with different stiffness were developed. Cells with different LOX expression levels were used to generate tumor tissue. DECM scaffold has good cytocompatibility. DECM with high stiffness promotes the resistance of MDA-MB-231 cells to cisplatin. DECM with high stiffness increases the expression of Bcl-2 and ABCB1.
Collapse
Affiliation(s)
- Yonggang Lv
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Hongjun Wang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Gui Li
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| | - Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, PR China.,Key Laboratory of Biorheological Science and Technology, Chongqing University, Ministry of Education, Bioengineering College, Chongqing University, Chongqing, 400044, PR China
| |
Collapse
|
33
|
Wu Y, Jiang L, Zhang L, Liu X, Yan L, Luan T, Rui C, Mao Z, Fan C, Liu Y, Li P, Zeng X. Antifungal Effect of Long Noncoding RNA 9708-1 in the Vulvovaginal Candidiasis Murine Model. Mycopathologia 2021; 186:177-188. [PMID: 33587236 PMCID: PMC8106589 DOI: 10.1007/s11046-021-00530-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/18/2021] [Indexed: 12/14/2022]
Abstract
Vulvovaginal candidiasis (VVC) caused by Candida spp. affects 70–75% of women at least once during their lives. We aim to elucidate the potential mechanism of VVC and investigate the therapeutic effects of long noncoding RNA 9708-1. Female BALB/c mice were randomized to four treatment groups, including the blank control group, VVC control group, vehicle control group and lncRNA 9708-1-overexpressed group. Mice were euthanized on Day 4, Day 7 and Day 14 after treatment. Colony-forming unit (CFU) was measured, and the inflammation was detected by hematoxylin and eosin (H&E). Gene and protein expression levels of lncRNA 9708-1 and FAK were determined by real-time PCR, Western blot and immunohistochemistry. The overexpression of lncRNA 9708-1 significantly decreased the fungal load from Day 4 to 7. H&E staining indicated that the impaired histological profiles were improved in lncRNA 9708-1-overexpressed group. LncRNA 9708-1 led to a significant increase in FAK level of vagina tissue which is expressed mainly in epithelial basal layer. This study suggests that lncRNA 9708-1 played a protective role on murine experimental VVC by upregulating the expression levels of FAK.
Collapse
Affiliation(s)
- Ying Wu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Lisha Jiang
- The Second Affiliated Hospital of Medical University of Anhui, Hefei, 230601, Anhui, People's Republic of China
| | - Lingling Zhang
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Xia Liu
- Jiangsu Taizhou People's Hospital, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Lina Yan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Ting Luan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Can Rui
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Zhiyuan Mao
- Department of Anatomy, Nanjing Medical University, Histology, and Embryology, Nanjing, 210029, Jiangsu, People's Republic of China
| | - Chong Fan
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Yu Liu
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China
| | - Ping Li
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China.
| | - Xin Zeng
- Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, 210004, Jiangsu, People's Republic of China.
| |
Collapse
|
34
|
Buwa N, Mazumdar D, Balasubramanian N. Caveolin1 Tyrosine-14 Phosphorylation: Role in Cellular Responsiveness to Mechanical Cues. J Membr Biol 2020; 253:509-534. [PMID: 33089394 DOI: 10.1007/s00232-020-00143-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
The plasma membrane is a dynamic lipid bilayer that engages with the extracellular microenvironment and intracellular cytoskeleton. Caveolae are distinct plasma membrane invaginations lined by integral membrane proteins Caveolin1, 2, and 3. Caveolae formation and stability is further supported by additional proteins including Cavin1, EHD2, Pacsin2 and ROR1. The lipid composition of caveolar membranes, rich in cholesterol and phosphatidylserine, actively contributes to caveolae formation and function. Post-translational modifications of Cav1, including its phosphorylation of the tyrosine-14 residue (pY14Cav1) are vital to its function in and out of caveolae. Cells that experience significant mechanical stress are seen to have abundant caveolae. They play a vital role in regulating cellular signaling and endocytosis, which could further affect the abundance and distribution of caveolae at the PM, contributing to sensing and/or buffering mechanical stress. Changes in membrane tension in cells responding to multiple mechanical stimuli affects the organization and function of caveolae. These mechanical cues regulate pY14Cav1 levels and function in caveolae and focal adhesions. This review, along with looking at the mechanosensitive nature of caveolae, focuses on the role of pY14Cav1 in regulating cellular mechanotransduction.
Collapse
Affiliation(s)
- Natasha Buwa
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Debasmita Mazumdar
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India
| | - Nagaraj Balasubramanian
- Indian Institute of Science Education and Research, Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, India.
| |
Collapse
|
35
|
Iizuka S, Leon RP, Gribbin KP, Zhang Y, Navarro J, Smith R, Devlin K, Wang LG, Gibbs SL, Korkola J, Nan X, Courtneidge SA. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99:151122. [PMID: 33070041 DOI: 10.1016/j.ejcb.2020.151122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native collagen-I, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.
Collapse
Affiliation(s)
- Shinji Iizuka
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Ronald P Leon
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kyle P Gribbin
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ying Zhang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose Navarro
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Smith
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Kaylyn Devlin
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lei G Wang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Summer L Gibbs
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - James Korkola
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xiaolin Nan
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
36
|
The significance of stromal collagen organization in cancer tissue: An in-depth discussion of literature. Crit Rev Oncol Hematol 2020; 151:102907. [DOI: 10.1016/j.critrevonc.2020.102907] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
|
37
|
Abbaszadegan MR, Mojarrad M, Moghbeli M. Role of extra cellular proteins in gastric cancer progression and metastasis: an update. Genes Environ 2020; 42:18. [PMID: 32467737 PMCID: PMC7227337 DOI: 10.1186/s41021-020-00157-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Gastric cancer (GC) is one of the most common cancers in the world with a high ratio of mortality. Regarding the late diagnosis, there is a high ratio of distant metastasis among GC cases. Despite the recent progresses in therapeutic modalities, there is not still an efficient therapeutic method to increase survival rate of metastatic GC cases. Main body Apart from the various intracellular signaling pathways which are involved in tumor cell migration and metastasis, the local microenvironment is also a critical regulator of tumor cell migration. Indeed, the intracellular signaling pathways also exert their final metastatic roles through regulation of extra cellular matrix (ECM). Therefore, it is required to assess the role of extra cellular components in biology of GC. Conclusion In the present review, we summarize 48 of the significant ECM components including 17 ECM modifying enzymes, seven extracellular angiogenic factors, 13 cell adhesion and cytoskeletal organizers, seven matricellular proteins and growth factors, and four proteoglycans and extra cellular glycoproteins. This review paves the way of determination of a specific extra cellular diagnostic and prognostic panel marker for the GC patients.
Collapse
Affiliation(s)
| | - Majid Mojarrad
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- 2Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
38
|
Lee EJ, Han JC, Park DY, Kee C. A neuroglia-based interpretation of glaucomatous neuroretinal rim thinning in the optic nerve head. Prog Retin Eye Res 2020; 77:100840. [PMID: 31982595 DOI: 10.1016/j.preteyeres.2020.100840] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022]
Abstract
Neuroretinal rim thinning (NRR) is a characteristic glaucomatous optic disc change. However, the precise mechanism of the rim thinning has not been completely elucidated. This review focuses on the structural role of the glioarchitecture in the formation of the glaucomatous NRR thinning. The NRR is a glia-framed structure, with honeycomb geometry and mechanically reinforced astrocyte processes along the transverse plane. When neural damage selectively involves the neuron and spares the glia, the gross structure of the tissue is preserved. The disorganization and loss of the glioarchitecture are the two hallmarks of optic nerve head (ONH) remodeling in glaucoma that leads to the thinning of NRR tissue upon axonal loss. This is in contrast to most non-glaucomatous optic neuropathies with optic disc pallor where hypertrophy of the glioarchitecture is associated with the seemingly absent optic disc cupping. Arteritic anterior ischemic optic neuropathy is an exception where pan-necrosis of ONH tissue leads to NRR thinning. Milder ischemia indicates selective neuronal loss that spares glia in non-arteritic anterior ischemic optic neuropathy. The biological reason is the heterogeneous glial response determined by the site, type, and severity of the injury. The neuroglial interpretation explains how the cellular changes underlie the clinical findings. Updated understandings on glial responses illustrate the mechanical, microenvironmental, and microglial modulation of activated astrocytes in glaucoma. Findings relevant to the possible mechanism of the astrocyte death in advanced glaucoma are also emerging. Ultimately, a better understanding of glaucomatous glial response may lead to glia-targeting neuroprotection in the future.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Jong Chul Han
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Do Young Park
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea
| | - Changwon Kee
- Department of Ophthalmology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-gu, Seoul, 06351, South Korea.
| |
Collapse
|
39
|
Abyaneh HS, Regenold M, McKee TD, Allen C, Gauthier MA. Towards extracellular matrix normalization for improved treatment of solid tumors. Theranostics 2020; 10:1960-1980. [PMID: 32042347 PMCID: PMC6993244 DOI: 10.7150/thno.39995] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
It is currently challenging to eradicate cancer. In the case of solid tumors, the dense and aberrant extracellular matrix (ECM) is a major contributor to the heterogeneous distribution of small molecule drugs and nano-formulations, which makes certain areas of the tumor difficult to treat. As such, much research is devoted to characterizing this matrix and devising strategies to modify its properties as a means to facilitate the improved penetration of drugs and their nano-formulations. This contribution presents the current state of knowledge on the composition of normal ECM and changes to ECM that occur during the pathological progression of cancer. It also includes discussion of strategies designed to modify the composition/properties of the ECM as a means to enhance the penetration and transport of drugs and nano-formulations within solid tumors. Moreover, a discussion of approaches to image the ECM, as well as ways to monitor changes in the ECM as a function of time are presented, as these are important for the implementation of ECM-modifying strategies within therapeutic interventions. Overall, considering the complexity of the ECM, its variability within different tissues, and the multiple pathways by which homeostasis is maintained (both in normal and malignant tissues), the available literature - while promising - suggests that improved monitoring of ECM remodeling in vivo is needed to harness the described strategies to their full potential, and match them with an appropriate chemotherapy regimen.
Collapse
Affiliation(s)
- Hoda Soleymani Abyaneh
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Maximilian Regenold
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Trevor D. McKee
- STTARR Innovation Centre, University Health Network, 101 College Street Room 7-504, Toronto, Ontario M5G 1L7, Canada
| | - Christine Allen
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Marc A. Gauthier
- Institut National de la Recherche Scientifique (INRS), EMT Research Center, 1650 boul. Lionel-Boulet, Varennes, J3X 1S2, Canada
| |
Collapse
|
40
|
Zhang H, Hui D, Fu X. Roles of Fibulin-2 in Carcinogenesis. Med Sci Monit 2020; 26:e918099. [PMID: 31915327 PMCID: PMC6977632 DOI: 10.12659/msm.918099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/25/2019] [Indexed: 01/03/2023] Open
Abstract
Fibulin-2, an extracellular matrix (ECM) protein expressed in normal epithelia, is a kind of fibulin which is associated with basement membranes (BM) and elastic ECM fibers. The role of fibulin-2 has been recognized as an oncogene. The upregulation of fibulin-2 correlates with cancer development and progression. Furthermore, the upregulation of fibulin has been detected in ovarian cancer and stomach adenocarcinoma. However, the downregulation of fibulin has been detected in different intestinal and respiratory tumor cells. Additional studies have revealed that the role of fibulin-2 in carcinogenesis is context dependent and is caused by the interaction of fibulin proteins such as cell surface receptors and other ECM proteins, including integrins and syndecans. The present study summarizes the role of fibulin in carcinogenesis and its underlying molecular mechanism.
Collapse
Affiliation(s)
- Huayue Zhang
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Dengcheng Hui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| | - Xiaoling Fu
- Department of Medical Oncology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, P.R. China
| |
Collapse
|
41
|
Leonel ECR, Campos SGP, Bedolo CMB, Guerra LHA, Vilamaior PSL, Calmon MF, Rahal P, Amorim CA, Taboga SR. Perinatal exposure to bisphenol A impacts in the mammary gland morphology of adult Mongolian gerbils. Exp Mol Pathol 2020; 113:104374. [PMID: 31917966 DOI: 10.1016/j.yexmp.2020.104374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 10/07/2019] [Accepted: 01/04/2020] [Indexed: 12/31/2022]
Abstract
The endocrine disruptive effects caused by bisphenol A (BPA) are well known. Despite this, to date, evaluation of its long term effects is limited, meaning that there is still much to be unveiled in terms of alterations caused by perinatal exposure to BPA. Our aim was to determine if perinatal exposure to two different doses of BPA causes long term morphological and molecular alteration effects in the mammary gland (MG). We evaluated MG from Mongolian gerbil offspring exposed perinatally (during gestation and lactation) to 50 or 5000 μg/kg/day BPA. At 90 days of age the animals were subjected to a single dose of N-nitroso-N-methylurea in order to mimic a carcinogenic environment. At 6 months of age, animals in estrous were euthanized for morphological evaluation of the MGs. The MG architecture presented considerable changes in terms of detached epithelial cells, inflammation, glandular hyperplasia, and collagen fiber deposition. Furthermore, a higher index of epithelial cell proliferation was detected in comparison to the intact control group. In addition, we verified a higher molecular expression of EZH2 in the vehicle treated group, indicating that corn oil applied alone can alter the expression of this epigenetic biomarker. In conclusion, BPA perinatal exposure promotes significant changes in glandular cytoarchitecture and increases glandular epithelium proliferation rate, leading to the retention of stem-like properties. This event could compromise the fate and differentiation potential of mammary epithelium.
Collapse
Affiliation(s)
- Ellen Cristina Rivas Leonel
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Silvana Gisele Pegorin Campos
- Federal University of São João del Rei, Campus Centro Oeste Dona Lindu, Avenida Sebastião Gonçalves Coelho, 400, Bairro Chanadour, 35501-296 Divinópolis, Minas Gerais, Brazil
| | - Carolina Marques Baraldi Bedolo
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Marilia Freitas Calmon
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Paula Rahal
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Christiani Andrade Amorim
- Laboratory of Gynecology, Institute of Experimental and Clinique Research, Université Catholique de Louvain (UCL), Avenue Mounier 52, bte B1.52.02, 1200 Brussels, Belgium
| | - Sebastião Roberto Taboga
- Department of Biology, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), Rua Cristóvão Colombo 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
42
|
Abstract
Background and Objectives: The tumor microenvironment has been widely implicated in tumorigenesis because it harbors tumor cells that interact with surrounding cells through the circulatory and lymphatic systems to influence the development and progression of cancer. In addition, nonmalignant cells in the tumor microenvironment play critical roles in all the stages of carcinogenesis by stimulating and facilitating uncontrolled cell proliferation. Aim: This study aims to explore the concept of the tumor microenvironment by conducting a critical review of previous studies on the topic. Materials and Methods: This review relies on evidence presented in previous studies related to the topic. The articles included in this review were obtained from different medical and health databases. Results and Discussion: The tumor microenvironment has received significant attention in the cancer literature, with a particular focus on its role in tumor development and progression. Previous studies have identified various components of the tumor microenvironment that influence malignant behavior and progression. In addition to malignant cells, adipocytes, fibroblasts, tumor vasculature, lymphocytes, dendritic cells, and cancer-associated fibroblasts are present in the tumor microenvironment. Each of these cell types has unique immunological capabilities that determine whether the tumor will survive and affect neighboring cells. Conclusion: The tumor microenvironment harbors cancer stem cells and other molecules that contribute to tumor development and progression. Consequently, targeting and manipulating the cells and factors in the tumor microenvironment during cancer treatment can help control malignancies and achieve positive health outcomes.
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, University Hospital of the Universities of Giessen and Marburg UKGM, Justus Liebig University Giessen, Giessen, Germany, Feulgenstr. 12, 35392 Giessen, Germany
| |
Collapse
|
43
|
Dong Y, Zheng Q, Wang Z, Lin X, You Y, Wu S, Wang Y, Hu C, Xie X, Chen J, Gao D, Zhao Y, Wu W, Liu Y, Ren Z, Chen R, Cui J. Higher matrix stiffness as an independent initiator triggers epithelial-mesenchymal transition and facilitates HCC metastasis. J Hematol Oncol 2019; 12:112. [PMID: 31703598 PMCID: PMC6839087 DOI: 10.1186/s13045-019-0795-5] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 09/25/2019] [Indexed: 12/13/2022] Open
Abstract
Background Increased liver stiffness exerts a detrimental role in driving hepatocellular carcinoma (HCC) malignancy and progression, and indicates a high risk of unfavorable outcomes. However, it remains largely unknown how liver matrix stiffness as an independent cue triggers epithelial-mesenchymal transition (EMT) and facilitates HCC metastasis. Methods Buffalo rat HCC models with different liver stiffness backgrounds and an in vitro Col I-coated cell culture system with tunable stiffness were used in the study to explore the effects of matrix stiffness on EMT occurrence and its underlying molecular mechanism. Clinical significance of liver stiffness and key molecules required for stiffness-induced EMT were validated in HCC cohorts with different liver stiffness. Results HCC xenografts grown in higher stiffness liver exhibited worse malignant phenotypes and higher lung metastasis rate, suggesting that higher liver stiffness promotes HCC invasion and metastasis. Cell tests in vitro showed that higher matrix stiffness was able to strikingly strengthen malignant phenotypes and independently induce EMT occurrence in HCC cells, and three signaling pathways converging on Snail expression participated in stiffness-mediated effect on EMT including integrin-mediated S100A11 membrane translocation, eIF4E phosphorylation, and TGF β1 autocrine. Additionally, the key molecules required for stiffness-induced EMT were highly expressed in tumor tissues of HCC patients with higher liver stiffness and correlated with poor tumor differentiation and higher recurrence. Conclusions Higher matrix stiffness as an initiator triggers epithelial-mesenchymal transition (EMT) in HCC cells independently, and three signaling pathways converging on Snail expression contribute to this pathological process. This work highlights a significant role of biomechanical signal in triggering EMT and facilitating HCC invasion and metastasis.
Collapse
Affiliation(s)
- Yinying Dong
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Qiongdan Zheng
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiahui Lin
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yang You
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Sifan Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yaohui Wang
- Department of Radiology, Shanghai Cancer Center, Fudan University, Shanghai, 200032, People's Republic of China
| | - Chao Hu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Xiaoying Xie
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Jie Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yan Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Yinkun Liu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Zhenggang Ren
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China
| | - Rongxin Chen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University & Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, 136 Yi Xue Yuan Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
44
|
Jallow F, O'Leary KA, Rugowski DE, Guerrero JF, Ponik SM, Schuler LA. Dynamic interactions between the extracellular matrix and estrogen activity in progression of ER+ breast cancer. Oncogene 2019; 38:6913-6925. [PMID: 31406251 PMCID: PMC6814534 DOI: 10.1038/s41388-019-0941-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Metastatic, anti-estrogen resistant estrogen receptor α positive (ER+) breast cancer is the leading cause of breast cancer deaths in U.S. women. While studies have demonstrated the importance of the stromal tumor microenvironment in cancer progression and therapeutic responses, effects on the responses of ER+ cancers to estrogen and anti-estrogens are poorly understood, particularly in the complex in vivo environment. In this study, we used an estrogen responsive syngeneic mouse model to interrogate how a COL1A1-enriched fibrotic ECM modulates integrated hormonal responses in cancer progression. We orthotopically transplanted the ER+ TC11 cell line into wild-type (WT) or collagen-dense (Col1a1tm1Jae/+, mCol1a1) syngeneic FVB/N female mice. Once tumors were established, recipients were supplemented with 17β-estradiol (E2), tamoxifen, or left untreated. Although the dense/stiff environment in mCol1a1 recipients did not alter the rate of E2-induced proliferation of the primary tumor, it fostered the agonist activity of tamoxifen to increase proliferation and AP-1 activity. Manipulation of estrogen activity did not alter the incidence of lung lesions in either WT or mCol1a1 hosts. However, the mCol1a1 environment enabled tamoxifen-stimulated growth of pulmonary metastases and further fueled estrogen-driven growth. Moreover, E2 remodeled peritumoral ECM architecture in WT animals, modifying alignment of collagen fibers and altering synthesis of ECM components associated with increased alignment and stiffness, and increasing FN1 and POSTN expression in the pulmonary metastatic niche. These studies demonstrate dynamic interactions between ECM properties and estrogen activity in progression of ER+ breast cancer, and support the need for therapeutics that target both ER and the tumor microenvironment.
Collapse
Affiliation(s)
- Fatou Jallow
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA.,Endocrinology-Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Kathleen A O'Leary
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Debra E Rugowski
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Jorge F Guerrero
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| | - Suzanne M Ponik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA.,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Linda A Schuler
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA. .,University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
45
|
Jia Z, Zhu J, Zhuo Y, Li R, Qu H, Wang S, Wang M, Lu J, Chater JM, Ma R, Liu ZZ, Cai Z, Wu Y, Jiang F, He H, Zhong WD, Wu CL. Offsetting Expression Profiles of Prognostic Markers in Prostate Tumor vs. Its Microenvironment. Front Oncol 2019; 9:539. [PMID: 31316912 PMCID: PMC6611437 DOI: 10.3389/fonc.2019.00539] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/03/2019] [Indexed: 12/12/2022] Open
Abstract
Diagnosis of the presence of tumors and subsequent prognosis based on tumor microenvironment becomes more clinically practical because tumor-adjacent tissues are easy to collect and they are more genetically homogeneous. The purpose of this study was to identify new prognostic markers in prostate stroma that are near the tumor. We have demonstrated the prognostic features of FGFR1, FRS2, S6K1, LDHB, MYPT1, and P-LDHA in prostate tumors using tissue microarrays (TMAs) which consist of 241 patient samples from Massachusetts General Hospital (MGH). In this study, we investigated these six markers in the tumor microenvironment using an Aperio Imagescope system in the same TMAs. The joint prognostic power of markers was further evaluated and classified using a new algorithm named Weighted Dichotomizing. The classifier was verified via rigorous 10-fold cross validation. Statistical analysis of the protein expression indicated that in tumor-adjacent stroma FGFR1 and MYPT1 were significantly correlated with patient outcomes and LDHB showed the outcome-association tendency. More interestingly, these correlations were completely opposite regarding tumor tissue as previously reported. The results suggest that prognostic testing should utilize either tumor-enriched tissue or stroma with distinct signature profiles rather than using mixture of both tissue types. The new classifier based on stroma tissue has potential value in the clinical management of prostate cancer patients.
Collapse
Affiliation(s)
- Zhenyu Jia
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jianguo Zhu
- Department of Urology, Guizhou Provincial People's Hospital, Guangzhou, China
| | - Yangjia Zhuo
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Ruidong Li
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Han Qu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Shibo Wang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Meiyue Wang
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jianming Lu
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.,Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - John M Chater
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Renyuan Ma
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States.,Department of Mathematics, Bowdoin College, Brunswick, ME, United States
| | - Ze-Zhen Liu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Zhiduan Cai
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yongding Wu
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Funeng Jiang
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Huichan He
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wei-De Zhong
- Department of Urology, Guangdong Key Laboratory of Clinical Molecular Medicine and Diagnostics, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Chin-Lee Wu
- Department of Pathology and Urology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
46
|
Hauptmann N, Lian Q, Ludolph J, Rothe H, Hildebrand G, Liefeith K. Biomimetic Designer Scaffolds Made of D,L-Lactide- ɛ-Caprolactone Polymers by 2-Photon Polymerization. TISSUE ENGINEERING. PART B, REVIEWS 2019; 25:167-186. [PMID: 30632460 PMCID: PMC6589497 DOI: 10.1089/ten.teb.2018.0284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/01/2019] [Indexed: 11/21/2022]
Abstract
IMPACT STATEMENT In tissue engineering (TE), the establishment of cell targeting materials, which mimic the conditions of the physiological extracellular matrix (ECM), seems to be a mission impossible without advanced materials and fabrication techniques. With this in mind we established a toolbox based on (D,L)-lactide-ɛ-caprolactone methacrylate (LCM) copolymers in combination with a nano-micromaskless lithography technique, the two-photon polymerization (2-PP) to mimic the hierarchical structured and complex milieu of the natural ECM. To demonstrate the versatility of this toolbox, we choose two completely different application scenarios in bone and tumor TE to show the high potential of this concept in therapeutic and diagnostic application.
Collapse
Affiliation(s)
- Nicole Hauptmann
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Qilin Lian
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Johanna Ludolph
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Holger Rothe
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Gerhard Hildebrand
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| | - Klaus Liefeith
- Department of Biomaterials, Institute for Bioprocessing and Analytical Measurement Techniques e.V. (iba), Rosenhof, Heilbad Heiligenstadt, Germany
| |
Collapse
|
47
|
Sawicki LA, Ovadia EM, Pradhan L, Cowart JE, Ross KE, Wu CH, Kloxin AM. Tunable synthetic extracellular matrices to investigate breast cancer response to biophysical and biochemical cues. APL Bioeng 2019; 3:016101. [PMID: 31069334 PMCID: PMC6481819 DOI: 10.1063/1.5064596] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/15/2019] [Indexed: 01/28/2023] Open
Abstract
The extracellular matrix (ECM) is thought to play a critical role in the progression of breast cancer. In this work, we have designed a photopolymerizable, biomimetic synthetic matrix for the controlled, 3D culture of breast cancer cells and, in combination with imaging and bioinformatics tools, utilized this system to investigate the breast cancer cell response to different matrix cues. Specifically, hydrogel-based matrices of different densities and modified with receptor-binding peptides derived from ECM proteins [fibronectin/vitronectin (RGDS), collagen (GFOGER), and laminin (IKVAV)] were synthesized to mimic key aspects of the ECM of different soft tissue sites. To assess the breast cancer cell response, the morphology and growth of breast cancer cells (MDA-MB-231 and T47D) were monitored in three dimensions over time, and differences in their transcriptome were assayed using next generation sequencing. We observed increased growth in response to GFOGER and RGDS, whether individually or in combination with IKVAV, where binding of integrin β1 was key. Importantly, in matrices with GFOGER, increased growth was observed with increasing matrix density for MDA-MB-231s. Further, transcriptomic analyses revealed increased gene expression and enrichment of biological processes associated with cell-matrix interactions, proliferation, and motility in matrices rich in GFOGER relative to IKVAV. In sum, a new approach for investigating breast cancer cell-matrix interactions was established with insights into how microenvironments rich in collagen promote breast cancer growth, a hallmark of disease progression in vivo, with opportunities for future investigations that harness the multidimensional property control afforded by this photopolymerizable system.
Collapse
Affiliation(s)
- Lisa A. Sawicki
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Elisa M. Ovadia
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Lina Pradhan
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Julie E. Cowart
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | - Karen E. Ross
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Cathy H. Wu
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware 19711, USA
| | | |
Collapse
|
48
|
Wu J, Crowe DL. Molecular and cellular basis of mammary gland fibrosis and cancer risk. Int J Cancer 2018; 144:2239-2253. [PMID: 30450584 DOI: 10.1002/ijc.32000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 10/16/2018] [Accepted: 11/07/2018] [Indexed: 11/06/2022]
Abstract
Mammary gland luminal cells are maintained by the proliferation of ER- luminal progenitor (LP) cells. Human breast LP cells exhibit telomere DNA damage, which is associated with mammographic density and increased cancer risk. Telomeric repeat factor 2 (TRF2) protects telomeres from DNA damage response. TRF2 expression is reduced in human breast cancers. We deleted TRF2 expression in mammary gland epithelium. Mammary glands lacking TRF2 expression exhibited increased telomere DNA damage response, histopathological and functional degeneration, and prominent ductal fibrosis. TRF2-deficient mammary tumors exhibited rapid onset and increased proliferation. Tumor derived LP cells failed to form tumors after transplantation. The MSC population was highly tumorigenic and maintained telomeres via the ALT mechanism. Telomere DNA damage response in mammary tumors resulted in p53 dependent ER+ cellular differentiation and sensitivity to anti-estrogen therapy. Our results provide a new in vivo model of mammographic density, stem cell differentiation, cancer risk, and therapeutic sensitivity.
Collapse
Affiliation(s)
- Jianchun Wu
- Cancer Biology Program, University of Illinois Cancer Center, Chicago, IL
| | - David L Crowe
- Cancer Biology Program, University of Illinois Cancer Center, Chicago, IL
| |
Collapse
|
49
|
The Interaction between Laminin-332 and α3β1 Integrin Determines Differentiation and Maintenance of CAFs, and Supports Invasion of Pancreatic Duct Adenocarcinoma Cells. Cancers (Basel) 2018; 11:cancers11010014. [PMID: 30583482 PMCID: PMC6356648 DOI: 10.3390/cancers11010014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Ranking among the most lethal tumour entities, pancreatic duct adenocarcinoma cells invade neighbouring tissue resulting in high incidence of metastasis. They are supported by tumour stroma fibroblasts which have undergone differentiation into cancer-associated fibroblasts (CAFs). Stiffness of cell substratum, cytokines, such as transforming growth factor-β (TGF-β), and stromal matrix proteins, such as laminin-332, are factors which promote CAF differentiation. In a spheroid culture system, differentiation of CAFs was analysed for laminin-332 production, laminin-binding integrin repertoire, adhesion and migration behaviour, and, in heterospheroids, for their interplay with the pancreatic duct adenocarcinoma AsPC-I cells. Our data reveal that CAFs produce laminin-332 thus contributing to its ectopic deposition within the tumour stroma. Moreover, CAF differentiation correlates with an increased expression of α3β1 integrin, the principal laminin-332-receptor. Beyond its role as novel CAF marker protein, integrin α3β1 crucially determines differentiation and maintenance of the CAF phenotype, as knock-out of the integrin α3 subunit reversed the CAF differentiated state. AsPC-I cells co-cultured in heterospheroids with integrin α3-deficient CAFs invaded less than from heterospheroids with wild-type CAFs. This study highlights the role of integrin α3β1 integrin-laminin-332 interaction of CAFs which promotes and sustains differentiation of CAFs and promotes carcinoma invasion.
Collapse
|
50
|
Bimodal sensing of guidance cues in mechanically distinct microenvironments. Nat Commun 2018; 9:4891. [PMID: 30459308 PMCID: PMC6244288 DOI: 10.1038/s41467-018-07290-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/16/2018] [Indexed: 01/03/2023] Open
Abstract
Contact guidance due to extracellular matrix architecture is a key regulator of carcinoma invasion and metastasis, yet our understanding of how cells sense guidance cues is limited. Here, using a platform with variable stiffness that facilitates uniaxial or biaxial matrix cues, or competing E-cadherin adhesions, we demonstrate distinct mechanoresponsive behavior. Through disruption of traction forces, we observe a profound phenotypic shift towards a mode of dendritic protrusion and identify bimodal processes that govern guidance sensing. In contractile cells, guidance sensing is strongly dependent on formins and FAK signaling and can be perturbed by disrupting microtubule dynamics, while low traction conditions initiate fluidic-like dendritic protrusions that are dependent on Arp2/3. Concomitant disruption of these bimodal mechanisms completely abrogates the contact guidance response. Thus, guidance sensing in carcinoma cells depends on both environment architecture and mechanical properties and targeting the bimodal responses may provide a rational strategy for disrupting metastatic behavior. Invasive cells respond to contact guidance cues during migration. Here, using micro- and nanopatterning with different ligands and varying stiffness, the authors find that cells can make cellular protrusions through both contractility-dependent and contractility-independent means.
Collapse
|