1
|
Zhao Y, Li W, Xu J, Bao L, Wu K, Shan R, Hu X, Fu Y, Zhao C. Endogenous retroviruses modulate the susceptibility of mice to Staphylococcus aureus-induced mastitis by activating cGAS-STING signaling. Int Immunopharmacol 2024; 142:113171. [PMID: 39312862 DOI: 10.1016/j.intimp.2024.113171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/25/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
Recently studies showed that cow mastitis seriously affected the economic benefit of dairy industry and pathogen infection including S. aureus is the main cause of mastitis. However, there is still a lack of safe and effective treatment for S. aureus-induced mastitis due to its complex pathogenesis. Endogenous retroviruses (ERVs) have long been symbiotic with mammals, and most ERVs still have the ability to produces complementary DNA (cDNA) by reverse transcription, whose induction by commensal or pathogens can regulate host immunity and inflammatory responses through the cGAS-STING pathway. However, whether and how ERVs participate in the pathogenesis of S. aureus-induced mastitis still unclear. In this study, we found that S. aureus treatment increased the levels of ERVs and IFN-β. Inhibition the transcription of ERVs by emtricitabine alleviated S. aureus-induced mammary injury, reduced mammary bacterial burden, and inhibited the production of mammary proinflammatory factors including TNF-α, IL-1β and MPO activity. Moreover, inhibition of ERVs restored the function of blood-milk barrier caused by S. aureus. Next, we showed that S. aureus infection activated mammary cGAS-STING signaling pathway, which was mediated by ERVs, as evidenced by emtricitabine inhibited S. aureus-induced activation of the cGAS-STING pathway. Interestingly, inhibition of cGAS-STING by Ru.521 and H151 respectively, significantly alleviated S. aureus-induced mammary injury and inflammatory responses, which was associated with the inhibition of NF-κB and NLRP3 signaling pathways. In conclusion, our study revealed that ERVs regulate the development of S. aureus-induced mastitis in mice through NF-κB- and NLRP3-mediated inflammatory responses via the activation of cGAS-STING pathway, suggesting that targeting ERVs-cGAS-STING axis may be a potential approach for the treatment of S. aureus-induced mastitis.
Collapse
Affiliation(s)
- Yihong Zhao
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Wenjia Li
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun 130031, Jilin Province, China
| | - Jiawen Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Ruping Shan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China
| | - Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin Province, China.
| |
Collapse
|
2
|
Xu H, Wu X, Yang Z, Shi X, Guo A, Hu C. N 6-methyladenosine-modified lncRNA in Staphylococcus aureus-injured bovine mammary epithelial cells. Arch Microbiol 2024; 206:431. [PMID: 39395056 DOI: 10.1007/s00203-024-04156-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/22/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Staphylococcus aureus-induced mastitis is a serious disease in dairy bovine, with no currently effective treatment. Antibiotics demonstrate certain therapeutic potency in dairy husbandry; they generate drug-resistant bacteria, thereby harming public health. LncRNAs and m6A have been verified as potential targets in infectious diseases and have powerful regulatory capabilities. However, the biological regulation of lncRNAs with m6A modification in mastitis needs further investigation. This study aims to determine the m6A-modified lncRNAs in bovine mammary epithelial cells and their diversity during S. aureus induction. Heat-inactivated S. aureus was used to develop the cell injury model, and we subsequently found low cell viability and different m6A modification levels. Our analysis of m6A-modified lncRNA profiles through MeRIP-seq revealed significant differences in 140 peaks within 130 lncRNAs when cells were injured by S. aureus. Furthermore, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that these differential m6A-modified lncRNAs were mainly enriched in the WNT pathway, and their functions were associated with amino acid metabolism, lipid translocation, and metalloproteinase activity. Here, we report for the first time lncRNAs with m6A modification in regulating S. aureus infection, revealing potential mechanisms and targets of infectious diseases, such as mastitis, from an epigenetics perspective.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuan Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiming Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinhuai Shi
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Dalwadi P, Nathani N, Chauhan K, Mansuri J, Koringa P, Bhatt V, Kunjadiya AP. Whole-genome sequencing of bacteria accountable for lactational mastitis in humans combined with an examination of their antibiotic resistance profiles. Braz J Microbiol 2024:10.1007/s42770-024-01519-3. [PMID: 39320640 DOI: 10.1007/s42770-024-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/08/2024] [Indexed: 09/26/2024] Open
Abstract
Lactational mastitis, a common condition affecting nursing mothers, is characterized by mammary gland inflammation during lactation. This inflammatory response typically occurs due to bacterial infection. The discomfort and pain associated with lactational mastitis can significantly impact a mother's ability to breastfeed comfortably and may lead to the cessation of breastfeeding altogether if left untreated. Antibiotics are commonly prescribed to target the bacteria causing the infection and alleviate symptoms, aiming to treat the infection. Nevertheless, a notable worry linked to antibiotic use is the emergence of antibiotic resistance, compounded by the possible persistence of antibiotics in milk. Additionally, lactational mastitis is characterized by its polymicrobial nature. In this study, bacteria were isolated from infected breast milk samples and whole-genome sequencing was performed on eleven isolates to accurately identify the bacteria and assess their antibiotic resistance profiles. Using Galaxy tools and the ResFinder database, we identified Bacillus paraanthracis, Bacillus altitudinis, Staphylococcus aureus, Bacillus cereus, Escherichia coli, Alcaligenes faecalis, and Bacillus licheniformis, along with antibiotic-resistant genes like fosB1, cat86, erm (D), blaZ, and mdf (A). ABRicate aided in antimicrobial resistance (AMR) gene analysis, and CARD visualized their distribution. Our study demonstrates that the severity of infection is directly proportional to an increase in somatic cell count (SCC). This research sheds light on microbial diversity in lactational mastitis milk and provides crucial insights into antibiotic-resistance genes. Utilizing bioinformatics tools, such as those employed in this study, can inform the design of effective treatment strategies for lactational mastitis infections.
Collapse
Affiliation(s)
- Priyanka Dalwadi
- P. G. Department of Applied and Interdisciplinary Sciences, Sardar Patel University, V. V. Nagar, Gujarat, 388 120, India
| | - Neelam Nathani
- School of Applied Sciences & Technology, Gujarat Technological University, Ahmedabad, 382 424, Gujarat, India
| | - Kshipra Chauhan
- School of Applied Sciences & Technology, Gujarat Technological University, Ahmedabad, 382 424, Gujarat, India
| | - Jasmine Mansuri
- P. G. Department of Applied and Interdisciplinary Sciences, Sardar Patel University, V. V. Nagar, Gujarat, 388 120, India
| | - Prakash Koringa
- Department of Animal Biotechnology, College of Veterinary Science and Animal Husbandry, Kamdhenu University, Anand, 388 001, Gujarat, India
| | - Vaibhav Bhatt
- School of Applied Sciences & Technology, Gujarat Technological University, Ahmedabad, 382 424, Gujarat, India
| | - Anju P Kunjadiya
- P. G. Department of Applied and Interdisciplinary Sciences, Sardar Patel University, V. V. Nagar, Gujarat, 388 120, India.
| |
Collapse
|
4
|
Elghazaly EM, Torky HA, Tawfik RG. Effect of silver nanoparticles and REP-PCR typing of Staphylococcus aureus isolated from various sources. Sci Rep 2024; 14:21997. [PMID: 39313528 PMCID: PMC11420343 DOI: 10.1038/s41598-024-71781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
This is the primary study at Matrouh Governorate to unveil antibiotic resistance, biofilm formation, silver nanoparticles (Ag-NPs) effect using electron microscopy, and REP-PCR analysis of Staphylococcus aureus strains isolated from COVID-19 patients, contaminated food, and Morel's diseased sheep and goats. A total of 15 S. aureus strains were isolated; five from each of the COVID-19 patients, Morel's diseased sheep and goats, and contaminated food. All strains were considered multidrug-resistant (MDR). All strains showed the presence of biofilm. Morphological changes in the cell surface of the bacterium were evidenced, and penetration with the rupture of some bacterial cells. Based on REP-PCR analysis, 4 clusters (C1-C4) with dissimilarity between clusters C1 and C2 8% and between C3 and C4 15%. Cluster I included 3 strains from contaminated food with a similarity of 97%, and Cluster II included 2 strains from contaminated food and 2 from COVID-19-infected patients with a similarity of 96% (confirming the zoonotic nature of this pathogen). Cluster III contained 4 strains isolated from Morel's diseased sheep & goats with a similarity ratio of 99% in comparison the 4th cluster contained 3 strains isolated from COVID-patients and one from Morel's diseased sheep & goats with a similarity ratio of 92%.
Collapse
Affiliation(s)
- Eman M Elghazaly
- Microbiology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Helmy A Torky
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Gomaa Tawfik
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
5
|
Hutu I, Lungu BC, Spataru II, Torda I, Iancu T, Barrow PA, Mircu C. Microbiological and Molecular Investigation of Antimicrobial Resistance in Staphylococcus aureus Isolates from Western Romanian Dairy Farms: An Epidemiological Approach. Animals (Basel) 2024; 14:2266. [PMID: 39123792 PMCID: PMC11311086 DOI: 10.3390/ani14152266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
Antimicrobial therapy is the most frequently used medical intervention for bovine mastitis in the dairy industry. This study aims to monitor the extent of the antimicrobial resistance (AMR) problem in Staphylococcus aureus in the dairy industry in Western Romania. Twenty farms were selected by random sampling in a transverse epidemiological study conducted across four counties in Western Romania and divided into livestock units. This study assessed the association between the resistance genes to phenotypic expression of resistance and susceptibility. Isolates of S. aureus were identified and q-PCR reactions were used to detect antibiotic resistance genes. One hundred and fifty bovine and 20 human samples were positive for S. aureus. Twenty five percent of bovine isolates (30/120) and none(0/30) of the human isolates were methicillin-resistant S. aureus (MRSA). All isolates were susceptible to fosfomycin, ciprofloxacin, netilmicin, and resistant to ampicillin and penicillin. S. aureus isolates regarded as phenotypically resistant (R) were influenced by the origin of the samples (human versus bovine, χ2 = 36.510, p = 0.013), whether they were methicillin-resistant S. aureus (χ2 = 108.891, p < 0.000), the county (χ2 = 103.282, p < 0.000) and farm of isolation (χ2 = 740.841, p < 0.000), but not by the size of the farm (χ2 = 65.036, p = 0.306). The multiple antibiotic resistance index was calculated for each sample as the number regarded as phenotypically resistant (R)/total antibiotics tested (MARI = 0.590 ± 0.023) was significantly higher (p < 0.000) inmethicillin-resistant S. aureus (0.898 ± 0.019) than non-methicillin-resistant S. aureus (0.524 ± 0.024) isolates. For the antibiotics tested, the total penetrance (P%) of the resistance genes was 59%, 83% for blaZ, 56% for cfr, 50% for erm(B), 53% for erm(C), 57% for mecA and 32% for tet(K). Penetrance can be used as a parameter for guidance towards a more accurate targeting of chemotherapy. P% in S. aureus was strongly positively correlated with the multiple antibiotic resistance index (r = +0.878, p < 0.000) with the potential to use the same limit value as an antibiotic management decision criterion. Considering cow mastitis, the penetrance value combined with the multiple antibiotic resistance index suggests that penetrance could serve as a useful parameter for more precise targeting of chemotherapy for S. aureus.
Collapse
Affiliation(s)
- Ioan Hutu
- “Horia Cernescu” Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania; (I.H.); (B.C.L.); (I.I.S.); (I.T.); (C.M.)
| | - Bianca Cornelia Lungu
- “Horia Cernescu” Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania; (I.H.); (B.C.L.); (I.I.S.); (I.T.); (C.M.)
| | - Ioana Irina Spataru
- “Horia Cernescu” Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania; (I.H.); (B.C.L.); (I.I.S.); (I.T.); (C.M.)
| | - Iuliu Torda
- “Horia Cernescu” Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania; (I.H.); (B.C.L.); (I.I.S.); (I.T.); (C.M.)
| | - Tiberiu Iancu
- Faculty of Agricultural Management, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania
| | - Paul Andrew Barrow
- “Horia Cernescu” Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania; (I.H.); (B.C.L.); (I.I.S.); (I.T.); (C.M.)
- School of Veterinary Medicine, University of Surrey, Daphne Jackson Rd., Guildford GU2 7AL, UK
| | - Calin Mircu
- “Horia Cernescu” Research Unit, Faculty of Veterinary Medicine, University of Life Sciences “Regele Mihai I”, Calea Aradului 119, 300645 Timisoara, Romania; (I.H.); (B.C.L.); (I.I.S.); (I.T.); (C.M.)
| |
Collapse
|
6
|
Wörmann ME, Pech J, Reich F, Tenhagen BA, Wichmann-Schauer H, Lienen T. Growth of methicillin-resistant Staphylococcus aureus during raw milk soft cheese-production and the inhibitory effect of starter cultures. Food Microbiol 2024; 119:104451. [PMID: 38225052 DOI: 10.1016/j.fm.2023.104451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024]
Abstract
The consumption of raw milk or raw milk products might be a potential risk factor for the transmission of methicillin-resistant Staphylococcus aureus (MRSA). Therefore, we studied MRSA growth during raw milk soft cheese-production. Furthermore, we investigated the inhibitory effect of four starter cultures (Lactococcus lactis, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Lactobacillus helveticus) on the growth of MRSA in a spot-agar-assay and in raw milk co-culture following a cheesemaking temperature profile. During the initial phases of raw milk cheese-production, MRSA counts increased by 2 log units. In the ripening phase, MRSA counts only dropped slightly and remained high up to the end of the storage. Comparable MRSA counts were found in the rind and core and strain-specific differences in survival were observed. In the spot-agar-assay, all four starter cultures showed strong or intermediate inhibition of MRSA growth. In contrast, in raw milk, only Lactococcus lactis strongly inhibited MRSA, whereas all other starter cultures only had minor inhibitory effects on MRSA growth. Our results indicate that MRSA follow a similar growth pattern as described for other S. aureus during raw milk soft cheese-production and illustrate the potential use of appropriate starter cultures to inhibit MRSA growth during the production of raw milk cheese.
Collapse
Affiliation(s)
- M E Wörmann
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| | - J Pech
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - F Reich
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - B-A Tenhagen
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - H Wichmann-Schauer
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - T Lienen
- German Federal Institute for Risk Assessment (BfR), Department Biological Safety, Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.
| |
Collapse
|
7
|
Lin YC, Lee YL, Chen YH, Tsao SM, Wang WY. Puerperal mastitis caused by limited community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) clones. Front Med (Lausanne) 2024; 11:1378207. [PMID: 38707192 PMCID: PMC11066212 DOI: 10.3389/fmed.2024.1378207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/02/2024] [Indexed: 05/07/2024] Open
Abstract
Objective To outline the epidemiology of puerperal mastitis caused by methicillin-resistant Staphylococcus aureus (MRSA) and evaluate the effect of an infection control bundle on its incidence. Methods A surge in MRSA puerperal mastitis was noted in a community hospital in September 2009. MRSA samples from mastitis cases and the environment underwent typing using multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec), gene encoding surface protein A (spa), accessory gene regulator (agr), and pulsed-field gel electrophoresis (PFGE). The phenotypic characteristics, including superantigen toxin profiles, gene encoding Panton-Valentine leucocidin (pvl), and minimal inhibitory concentration (MIC) against vancomycin, were ascertained. Subsequently, an infection control bundle emphasizing contact precautions was introduced, and mastitis incidence rates pre- and post-intervention were compared. Results The majority of cases occurred within 6 weeks post-delivery in first-time mothers. Of the 42 S. aureus isolates (27 from mastitis and 15 from colonized staff and environmental sources), 25 (92.6%) clinical and 3 (20%) colonized MRSA were identified as ST59-SCCmecVT-spa t437-agr group I with a vancomycin MIC of 1 mg/L, pvl-positive, and predominantly with a consistent toxin profile (seb-selk-selr). PFGE revealed 13 patterns; pulsotype B exhibited clonal relatedness between two clinical and three colonized MRSA samples. Post-intervention, the incidence of both mastitis and MRSA mastitis notably decreased from 13.01 to 1.78 and from 3.70 to 0.99 episodes per 100 deliveries, respectively. Conclusion Distinct community-associated MRSA (CA-MRSA) clones were detected among puerperal mastitis patients and colonized staff. The outbreak was effectively controlled following the implementation of a targeted infection control bundle.
Collapse
Affiliation(s)
- Yu-Cheng Lin
- Department of Internal Medicine, Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Yu-Lin Lee
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsin Chen
- Department of Nephrology, Taichung Tzu Chi Hospital, Taichung, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Department of Artificial Intelligence and Data Science, National Chung Hsing University, Taichung, Taiwan
| | - Shih-Ming Tsao
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Wei-Yao Wang
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
8
|
Park JM, Kim JH, Kim G, Sim HJ, Ahn SM, Choi KS, Kwon HJ. Rapid Antibacterial Activity Assessment of Chimeric Lysins. Int J Mol Sci 2024; 25:2430. [PMID: 38397110 PMCID: PMC10888538 DOI: 10.3390/ijms25042430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/16/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
Various chimeric lysins have been developed as efficacious antibiotics against multidrug-resistant bacteria, but direct comparisons of their antibacterial activities have been difficult due to the preparation of multiple recombinant chimeric lysins. Previously, we reported an Escherichia coli cell-free expression method to better screen chimeric lysins against Staphylococcus aureus, but we still needed to increase the amounts of expressed proteins enough to be able to detect them non-isotopically for quantity comparisons. In this study, we improved the previous cell-free expression system by adding a previously reported artificial T7 terminator and reversing the different nucleotides between the T7 promoter and start codon to those of the T7 phage. The new method increased the expressed amount of chimeric lysins enough for us to detect them using Western blotting. Therefore, the qualitative comparison of activity between different chimeric lysins has become possible via the adjustment of the number of variables between samples without protein purification. We applied this method to select more active chimeric lysins derived from our previously reported chimeric lysin (ALS2). Finally, we compared the antibacterial activities of our selected chimeric lysins with reported chimeric lysins (ClyC and ClyO) and lysostaphin and determined the rank orders of antibacterial activities on different Staphylococcus aureus strains in our experimental conditions.
Collapse
Affiliation(s)
- Jin-Mi Park
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Jun-Hyun Kim
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| | - Gun Kim
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hun-Ju Sim
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Pharmacology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Sun-Min Ahn
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
| | - Kang-Seuk Choi
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyuk-Joon Kwon
- Laboratory of Poultry Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; (J.-M.P.); (J.-H.K.); (S.-M.A.)
- College of Veterinary Medicine and BK21 for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; (G.K.); (H.-J.S.)
- GeNiner Inc., Seoul 08826, Republic of Korea
| |
Collapse
|
9
|
Didouh N, Khadidja M, Campos C, Sampaio-Maia B, Boumediene MB, Araujo R. Assessment of biofilm, enzyme production and antibiotic susceptibility of bacteria from milk pre- and post-pasteurization pipelines in Algeria. Int J Food Microbiol 2023; 407:110389. [PMID: 37708608 DOI: 10.1016/j.ijfoodmicro.2023.110389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/16/2023]
Abstract
Bacterial biofilm is a major concern of dairy industry due to its association with milk contamination and its derived products. Algerian pasteurized milk shelf-life does not exceed one day, which may reflect the high level of contamination of this product and presence of extracellular enzymes such as lipases and proteases. This work aimed to investigate the microbial biodiversity in milk-processing surfaces of a dairy plant in Algeria. Therefore, stainless steel cylinders were placed in piping system of the dairy system before and after pasteurization of the milk, being removed after 7 days, for biofilm maturation and microorganism isolation and identification by mass spectrometry. Fifty-nine Gram-positive isolates were identified, namely Bacillus altitudinis, Bacillus cereus, Bacillus pumilus, Bacillus subtilis, Bacillus weithenstephanensis, Enterococcus casseliflavus, Enterococcus faecium, and Staphylococcus epidermidis. In addition, twenty-four Gram-negative isolates were identified, namely Acinetobacter schindleri Enterobacter cloacae, Enterobacter xiangfangensis, Leclercia adecarboxylata, and Raoultella ornithinolytica. Bacterial isolates showed ability for production of extracellular enzymes, being 49 % capable of both proteolytic and lipolytic activities. Milk isolates were tested for the ability to form biofilms on stainless steel. The cell numbers recovered on plate count agar plates from stainless steel biofilms ranged from 3.52 to 6.92 log10 CFU/cm2, being the maximum number detected for Enterococcus casseliflavus. Bacterial isolates showed intermediate and/or resistant profiles to multiple antibiotics. Resistance to amoxicillin, cefoxitin and/or erythromycin was commonly found among the bacterial isolates.
Collapse
Affiliation(s)
- Nassima Didouh
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - Medjahdi Khadidja
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria; Université Hassiba Benbouali Chlef, Algeria
| | - Carla Campos
- Instituto Português de Oncologia (IPO) do Porto Francisco Gentil, Porto, Portugal
| | - Benedita Sampaio-Maia
- Nephrology & Infectious Diseases R&D Group, INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal; Faculdade de Medicina Dentária, Universidade do Porto, Porto, Portugal
| | - Moussa Boudjemaa Boumediene
- Université Abou Bekr Belkaid Tlemcen, Algeria; Laboratoire de Microbiologie Appliqué à l'Agroalimentaire au Biomédical et à l'Environnement, 13000 Tlemcen, Algeria
| | - Ricardo Araujo
- Nephrology & Infectious Diseases R&D Group, INEB - Instituto de Engenharia Biomédica, i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
10
|
Wörmann ME, Bhatte A, Wichmann-Schauer H, Tenhagen BA, Lienen T. Heat Inactivation of Methicillin-Resistant Staphylococcus aureus Strains from German Dairy farms in Colostrum and Raw Milk. Animals (Basel) 2023; 13:3549. [PMID: 38003166 PMCID: PMC10668672 DOI: 10.3390/ani13223549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) may cause difficult-to-treat infections in dairy cattle. One possible route of MRSA transmission into calves is via the feeding of contaminated waste milk. We tested the heat resistance of 17 MRSA strains isolated from German dairy farms in colostrum and raw milk in a laboratory approach. Heating colostrum or raw milk at 60 °C for 30 min eliminated all viable MRSA in the milk, provided the MRSA inoculation rate is low (103 cfu mL-1). In contrast, raw milk highly inoculated with MRSA (106 cfu mL-1) required a holding time of at least 30 min at 70 °C to fully eliminate MRSA from it. However, quantitative analysis showed that a heat treatment for 10 min at 60 °C already significantly reduced the number of viable MRSA in highly inoculated raw milk. Heating colostrum and raw milk above 60 °C may destroy immunoglobulins which are crucial for the calf's health. Therefore, we suggest that colostrum and raw milk that is to be fed to calves on MRSA-positive dairy farms is heated at 60 °C for at least 10 min to reduce the likelihood of transmitting MRSA. In addition, the 60 °C heat-treated colostrum/raw milk should be fed to the calves as soon as possible to avoid re-growth of viable MRSA.
Collapse
Affiliation(s)
- Mirka E Wörmann
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Ashwini Bhatte
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Heidi Wichmann-Schauer
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Tobias Lienen
- Department of Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| |
Collapse
|
11
|
Vujinović S, Graber HU, Vićić I, Vejnović B, Stevanović O, Krnjaić D, Milivojević D, Katić V. Genotypes and virulence factors in Staphylococcus aureus isolated from dairy cows with subclinical mastitis in Serbia. Comp Immunol Microbiol Infect Dis 2023; 101:102056. [PMID: 37678080 DOI: 10.1016/j.cimid.2023.102056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/14/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
This study aimed to determine the prevalence of Staphylococcus aureus subclinical mastitis and to genotype the S. aureus isolates using the 16S-23S rRNA intergenic spacer (RS-PCR) method. In addition, the genes responsible for adherence, biofilm formation, host evasion, tissue necrosis, methicillin resistance, and enterotoxin production of S. aureus were investigated. The overall prevalence of S. aureus subclinical mastitis in lactating cows was 5.4% (95% confidence interval, CI=4.7-6.1%). An increased risk of S. aureus intramammary infection was observed on small family farms (odds ratio, OR=4.2, 95% CI=2.6-6.6, P < 0.001) and medium-sized farms (OR=3.5, 95% CI=2.2-5.7, P < 0.001). The RS-PCR analysis revealed 44 genotypes and genotype variants, of which 15 new genotypes and five new variants were detected within small and medium-sized farms. S. aureus isolates of new genotypes and genotype variants carried the clfA gene responsible for adherence at a lower frequency (64.8%) and enterotoxin-producing genes sea (20.4%), seb (14.8%) and sec (14.8%) at a higher frequency than the other known genotypes (P < 0.001), and were confirmed to carry the sej and sep genes. The spa gene was detected in all S. aureus isolates, whereas none harbored bap, ser, or tsst-1 genes. Methicillin-resistant strains of S. aureus (MRSA) were also detected, with a higher prevalence (19.2%) on large farms with more than 50 cows (P < 0.001). Using molecular techniques as diagnostic tools provides a better understanding of intramammary staphylococcal infections' occurrence, spread, and eradication.
Collapse
Affiliation(s)
- Slobodan Vujinović
- Veterinary Specialized Institute "Šabac", Vojvode Putnika 54, 15000 Šabac, Serbia
| | - Hans Ulrich Graber
- Agroscope, Research Division, Food Microbial Systems, Schwarzenburgstrasse 161, 3003 Bern, Switzerland
| | - Ivan Vićić
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia.
| | - Branislav Vejnović
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
| | - Oliver Stevanović
- PI Veterinary Institute Dr Vaso Butozan Banja Luka, Branka Radicevića 18, 78000 Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - Dejan Krnjaić
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
| | - Dušan Milivojević
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11000 Belgrade, Serbia
| | - Vera Katić
- University of Belgrade, Faculty of Veterinary Medicine, Bulevar oslobodjenja 18, 11000 Belgrade, Serbia
| |
Collapse
|
12
|
Abd El-Hamid MI, El-Tarabili RM, Bahnass MM, Alshahrani MA, Saif A, Alwutayd KM, Safhi FA, Mansour AT, Alblwi NAN, Ghoneim MM, Elmaaty AA, Al-harthi HF, Bendary MM. Partnering essential oils with antibiotics: proven therapies against bovine Staphylococcus aureus mastitis. Front Cell Infect Microbiol 2023; 13:1265027. [PMID: 37790910 PMCID: PMC10542579 DOI: 10.3389/fcimb.2023.1265027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction There is an urgent need to develop therapeutic options for biofilm-producing Staphylococcus aureus (S. aureus). Therefore, the renewed interest in essential oils (EOs), especially carvacrol, linalool and eugenol, has attracted the attention of our research group. Methods Multidrug resistance and multivirulence profiles in addition to biofilm production of S. aureus strains isolated from cows with mastitis were evaluated using both phenotypic and genotypic methods. The antimicrobial and antibiofilm activities of EOs were tested using both in vitro and molecular docking studies. Moreover, the interactions between commonly used antibiotics and the tested EOs were detected using the checkerboard method. Results We found that all our isolates (n= 37) were biofilm methicillin resistant S. aureus (MRSA) producers and 40.5% were vancomycin resistant S. aureus (VRSA). Unfortunately, 73 and 43.2% of the recovered MRSA isolates showed multidrug resistant (MDR) and multivirulence patterns, respectively. The antimicrobial activities of the tested EOs matched with the phenotypic evaluation of the antibiofilm activities and molecular docking studies. Linalool showed the highest antimicrobial and antibiofilm activities, followed by carvacrol and eugenol EOs. Fortunately, synergistic interactions between the investigated EOs and methicillin or vancomycin were detected with fractional inhibitory concentration index (FICI) values ≤ 0.5. Moreover, the antimicrobial resistance patterns of 13 isolates changed to sensitive phenotypes after treatment with any of the investigated EOs. Treatment failure of bovine mastitis with resistant S. aureus can be avoided by combining the investigated EOs with available antimicrobial drugs. Conclusion We hope that our findings can be translated into a formulation of new pharmaceutical dosage forms against biofilm-producing S. aureus pathogens.
Collapse
Affiliation(s)
- Marwa I. Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Reham M. El-Tarabili
- Department of Bacteriology, Immunology and Mycology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mosa M. Bahnass
- Department of Animal Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
- Department of Clinical Laboratory Sciences, Applied Medical Sciences College, Najran University, Najran, Saudi Arabia
| | | | - Ahmed Saif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Khairiah Mubarak Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Fatmah Ahmed Safhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | | | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, Al Maarefa University, Riyadh, Saudi Arabia
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Helal F. Al-harthi
- Biology Department, Turabah University College, Taif University, Taif, Saudi Arabia
| | - Mahmoud M. Bendary
- Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| |
Collapse
|
13
|
Venugopal N, Tewari R, Ganaie FA, Mitra S, Shome R, Shome BR. Prevalence and epidemiological characteristics of methicillin-resistant Staphylococcus aureus isolated from cattle in Bangalore India as a part of the One Health approach. Access Microbiol 2023; 5:000627.v3. [PMID: 37841096 PMCID: PMC10569652 DOI: 10.1099/acmi.0.000627.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023] Open
Abstract
In India, limited studies are available on the epidemiological aspects of methicillin-resistant Staphylococcus aureus (MRSA) infections in both animal and human settings. Herein, we investigated the prevalence, antimicrobial resistance profile and molecular characteristics of MRSA isolates recovered from cattle using the One Health approach. Out of 66 mecA-positive staphylococci, species-specific multiplex PCR detected 24 % (n=16) of isolates as MRSA. Maximum antibiotic resistance was seen against cloxacillin (94 %, n=15) and least for enrofloxacin and cephalothin (each 13 %, n=2). Overall, 13 % (n=2) of MRSA isolates were multidrug-resistant. Molecular characterization by SCCmec typing identified 88 % (n=14) of MRSA isolates as type V. Twelve isolates (75 %) belonged to novel spa-type t17242, of which 67 % (n=8) belonged to agr type I. MLST analysis revealed ST 1687 (50 %, n=8) as the most predominant sequence type. Circulation of different MRSA clones among the cattle populace offers a risk of transmission to humans through direct contact, food chain or environmental contamination. Thus, continuous monitoring of MRSA strains is imperative for early diagnosis and for establishing effective treatment strategies to restrain the disease burden caused by MRSA infections.
Collapse
Affiliation(s)
- Nimita Venugopal
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
- Present address: Department of Microbiology, M.S.Ramaiah College of Arts, Science, and Commerce, Bangalore, India
| | - Rituparna Tewari
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
- Present address: Centre for Cellular and Molecular Platforms, UAS-GKVK Campus, Bangalore, India
| | - Feroze A. Ganaie
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
- Present address: Department of Medicine, Division of Pulmonary, Allergy, and Critical care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Susweta Mitra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
- Present address: School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Bibek R. Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| |
Collapse
|
14
|
Danev N, Harman RM, Oliveira L, Huntimer L, Van de Walle GR. Bovine milk-derived cells express transcriptome markers of pluripotency and secrete bioactive factors with regenerative and antimicrobial activity. Sci Rep 2023; 13:12600. [PMID: 37537239 PMCID: PMC10400535 DOI: 10.1038/s41598-023-39833-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023] Open
Abstract
The bovine mammary stem/progenitor cell secretome stimulates regeneration in vitro and contains proteins associated with antimicrobial defense. This has led to the exploration of the secretome as a biologic treatment for mastitis, a costly inflammation of the udder commonly caused by bacteria. This study reports on a population of bovine mammary stem/progenitor cells isolated non-invasively from milk (MiDCs). MiDCs were characterized by immunophenotyping, mammosphere formation assays, and single cell RNA sequencing. They displayed epithelial morphology, exhibited markers of mammary stem/progenitor cells, and formed mammospheres, like mammary gland tissue-isolated stem/progenitor cells. Single cell RNA sequencing revealed two sub-populations of MiDCs: epithelial cells and macrophages. Functionally, the MiDC secretome increased fibroblast migration, promoted angiogenesis of endothelial cells, and inhibited the growth of mastitis-associated bacteria, including antibiotic-resistant strains, in vitro. These qualities of MiDCs render them a source of stem cells and stem cell products that may be used to treat diseases affecting the dairy industry, including mastitis.
Collapse
Affiliation(s)
- Nikola Danev
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA
| | - Leane Oliveira
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Lucas Huntimer
- Elanco Animal Health, 2500 Innovation Way, Indianapolis, IN, 46241, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 235 Hungerford Hill Road, Ithaca, NY, 14853, USA.
| |
Collapse
|
15
|
Sharifi A, Sobhani K, Mahmoudi P. A systematic review and meta-analysis revealed a high-level antibiotic resistance of bovine mastitis Staphylococcus aureus in Iran. Res Vet Sci 2023; 161:23-30. [PMID: 37302281 DOI: 10.1016/j.rvsc.2023.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023]
Abstract
Staphylococcus aureus (S. aureus) is a frequent and major etiological agent of bacterial bovine mastitis, leading to high economic losses. This pathogen readily becomes resistant to many antibiotics, resulting in persistent noncurable intramammary infection (IMI) in animals and the development of multidrug-resistant (MDR) strains. The objectives of this study were to evaluate the prevalence of antimicrobial resistance (AMR) of S. aureus strains causing bovine mastitis in Iran according to published data from 2000 to 2021. As there is still a dearth of information on the AMR of S. aureus from Iranian bovine mastitis, the primary focus and subgroup analysis of the present study was performed on Iranian isolates. A systematic review was done according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Based on the initial search, 1006 article were identified. According to inclusion and exclusion criteria and removing duplications, 55 English articles and 13 Persian articles (a total of 68 articles) were finally analyzed. The highest overall prevalence of resistance was reported against penicillin G (p-estimate = 0.568 for all isolates, and p-estimate = 0.838 for Iranian isolates), followed by ampicillin (p-estimate = 0.554, and p-estimate = 0.670 for all isolates and Iranian isolates, respectively) and amoxicillin (p-estimate = 0.391, and p-estimate = 0.695 for all isolates and Iranian isolates, respectively). Besides, the lowest prevalence of resistant isolates was related to trimethoprim-sulfamethoxazole (p-estimate = 0.108 and 0.118 for all isolates and Iranian isolates, respectively) and gentamycin (p-estimate = 0.163 and 0.190, for all isolates and Iranian isolates, respectively). Our analysis showed that the Iranian isolates were more resistant to all antibiotics than those of all isolates. This difference was significant in the case of penicillin G, ampicillin, and erythromycin at 5%. To the best of our knowledge, except for ampicillin, AMR has increased over time for all the studied antibiotics in Iranian isolates. This increased rate was significant for penicillin G, amoxicillin, and tetracycline (p < 0.1). No differences in AMR were detected regarding the mastitis types (clinical vs. subclinical mastitis) for almost evaluated antibiotics. In conclusion, the prevalence of AMR S. aureus isolated from IMI was high particularly for bovine mastitis used antibiotics like penicillin G and ampicillin. Additionally, according to the increasing rate of AMR S. aureus in recent years in Iran, control strategies should be reinforced to avoid the spread of this pathogen and drug resistance.
Collapse
Affiliation(s)
- Aram Sharifi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran.
| | - Keyvan Sobhani
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| | - Peyman Mahmoudi
- Department of Animal Science, Faculty of Agriculture, University of Kurdistan, P.O. Box 416, Sanandaj, Kurdistan, Iran
| |
Collapse
|
16
|
Altissimi C, Noé-Nordberg C, Ranucci D, Paulsen P. Presence of Foodborne Bacteria in Wild Boar and Wild Boar Meat-A Literature Survey for the Period 2012-2022. Foods 2023; 12:foods12081689. [PMID: 37107481 PMCID: PMC10137515 DOI: 10.3390/foods12081689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The wild boar is an abundant game species with high reproduction rates. The management of the wild boar population by hunting contributes to the meat supply and can help to avoid a spillover of transmissible animal diseases to domestic pigs, thus compromising food security. By the same token, wild boar can carry foodborne zoonotic pathogens, impacting food safety. We reviewed literature from 2012-2022 on biological hazards, which are considered in European Union legislation and in international standards on animal health. We identified 15 viral, 10 bacterial, and 5 parasitic agents and selected those nine bacteria that are zoonotic and can be transmitted to humans via food. The prevalence of Campylobacter, Listeria monocytogenes, Salmonella, Shiga toxin-producing E. coli, and Yersinia enterocolitica on muscle surfaces or in muscle tissues of wild boar varied from 0 to ca. 70%. One experimental study reported the transmission and survival of Mycobacterium on wild boar meat. Brucella, Coxiella burnetii, Listeria monocytogenes, and Mycobacteria have been isolated from the liver and spleen. For Brucella, studies stressed the occupational exposure risk, but no indication of meat-borne transmission was evident. Furthermore, the transmission of C. burnetii is most likely via vectors (i.e., ticks). In the absence of more detailed data for the European Union, it is advisable to focus on the efficacy of current game meat inspection and food safety management systems.
Collapse
Affiliation(s)
- Caterina Altissimi
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | | | - David Ranucci
- Department of Veterinary Medicine, University of Perugia, Via San Costanzo 4, 06121 Perugia, Italy
| | - Peter Paulsen
- Unit of Food Hygiene and Technology, Institute of Food Safety, Food Technology and Veterinary Public Health, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| |
Collapse
|
17
|
Molecular Characterization of Methicillin-Resistant Staphylococci from the Dairy Value Chain in Two Indian States. Pathogens 2023; 12:pathogens12020344. [PMID: 36839616 PMCID: PMC9965176 DOI: 10.3390/pathogens12020344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/22/2023] Open
Abstract
Bovine milk and milk products may contain pathogens, antimicrobial resistant bacteria, and antibiotic residues that could harm consumers. We analyzed 282 gram-positive isolates from milk samples from dairy farmers and vendors in Haryana and Assam, India, to assess the prevalence of methicillin-resistant staphylococci using microbiological tests, antibiotic susceptibility testing, and genotyping by PCR. The prevalence of genotypic methicillin resistance in isolates from raw milk samples was 5% [95% confidence interval, CI (3-8)], with 7% [CI (3-10)] in Haryana, in contrast to 2% [CI (0.2-6)] in Assam. The prevalence was the same in isolates from milk samples collected from farmers [5% (n = 6), CI (2-11)] and vendors [5% (n = 7), CI (2-10)]. Methicillin resistance was also observed in 15% of the isolates from pasteurized milk [(n = 3), CI (3-38)]. Two staphylococci harboring a novel mecC gene were identified for the first time in Indian dairy products. The only SCCmec type identified was Type V. The staphylococci with the mecA (n = 11) gene in raw milk were commonly resistant to oxacillin [92%, CI (59-100)] and cefoxitin [74%, CI (39-94)], while the isolates with mecC (n = 2) were resistant to oxacillin (100%) only. All the staphylococci with the mecA (n = 3) gene in pasteurized milk were resistant to both oxacillin and cefoxitin. Our results provided evidence that methicillin-resistant staphylococci occur in dairy products in India with potential public health implications. The state with more intensive dairy systems (Haryana) had higher levels of methicillin-resistant bacteria in milk.
Collapse
|
18
|
Gut microbiota-mediated secondary bile acid alleviates Staphylococcus aureus-induced mastitis through the TGR5-cAMP-PKA-NF-κB/NLRP3 pathways in mice. NPJ Biofilms Microbiomes 2023; 9:8. [PMID: 36755021 PMCID: PMC9908919 DOI: 10.1038/s41522-023-00374-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 01/17/2023] [Indexed: 02/10/2023] Open
Abstract
Although emerging evidence shows that gut microbiota-mediated metabolic changes regulate intestinal pathogen invasions, little is known about whether and how gut microbiota-mediated metabolites affect pathogen infection in the distal organs. In this study, untargeted metabolomics was performed to identify the metabolic changes in a subacute ruminal acidosis (SARA)-associated mastitis model, a mastitis model with increased susceptibility to Staphylococcus aureus (S. aureus). The results showed that cows with SARA had reduced cholic acid (CA) and deoxycholic acid (DCA) levels compared to healthy cows. Treatment of mice with DCA, but not CA, alleviated S. aureus-induced mastitis by improving inflammation and the blood-milk barrier integrity in mice. DCA inhibited the activation of NF-κB and NLRP3 signatures caused by S. aureus in the mouse mammary epithelial cells, which was involved in the activation of TGR5. DCA-mediated TGR5 activation inhibited the NF-κB and NLRP3 pathways and mastitis caused by S. aureus via activating cAMP and PKA. Moreover, gut-dysbiotic mice had impaired TGR5 activation and aggravated S. aureus-induced mastitis, while restoring TGR5 activation by spore-forming bacteria reversed these changes. Furthermore, supplementation of mice with secondary bile acids producer Clostridium scindens also activated TGR5 and alleviated S. aureus-induced mastitis in mice. These results suggest that impaired secondary bile acid production by gut dysbiosis facilitates the development of S. aureus-induced mastitis and highlight a potential strategy for the intervention of distal infection by regulating gut microbial metabolism.
Collapse
|
19
|
Kobayashi K, Omatsu N, Han L, Shan-Ni L, Nishimura T. Early effects of lipoteichoic acid from Staphylococcus aureus on milk production-related signaling pathways in mouse mammary epithelial cells. Exp Cell Res 2022; 420:113352. [PMID: 36108712 DOI: 10.1016/j.yexcr.2022.113352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/04/2022]
Abstract
Staphylococcus aureus causes subclinical mastitis; lipoteichoic acid (LTA) from S. aureus causes mastitis-like adverse effects on milk production by mammary epithelial cells (MECs). Here, we investigated the early effects of LTA from S. aureus on mouse MECs using a culture model, in which MECs produced milk components and formed less permeable tight junctions (TJs). In MECs of this model, Toll-like receptor 2 (receptor for LTA), was localized on the apical membrane, similar to MECs in lactating mammary glands. LTA weakened the TJ barrier within 1 h, concurrently with localization changes of claudin 4. LTA treatment for 24 h increased αS1-casein and decreased β-casein levels. In MECs exposed to LTA, the activation level of signal transducer and activator of transcription 5 (major transcriptional factor for milk production) was low. LTA activated signaling pathways related to cell survival (extracellular signal-regulated kinase, heat shock protein 27, and Akt) and inflammation (p38, c-Jun N-terminal kinase, and nuclear factor κB). Thus, LTA caused abnormalities in casein production and weakened the TJs by affecting multiple signaling pathways in MECs. LTA-induced changes in signaling pathways were not uniform in all MECs. Such complex and semi-negative actions of LTA may contribute to subclinical mastitis caused by S. aureus.
Collapse
Affiliation(s)
- Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Naoki Omatsu
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Liang Han
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Lu Shan-Ni
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
20
|
Marin M, Rizzotto F, Léguillier V, Péchoux C, Borezee-Durant E, Vidic J. Naked-eye detection of Staphylococcus aureus in powdered milk and infant formula using gold nanoparticles. J Microbiol Methods 2022; 201:106578. [PMID: 36108985 DOI: 10.1016/j.mimet.2022.106578] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 12/27/2022]
Abstract
Nonspecific binding of proteins from complex food matrices is a significant challenge associated with a biosensor using gold nanoparticles (AuNPs). To overcome this, we developed an efficient EDTA chelating treatment to denature milk proteins and prevent their adsorption on AuNPs. The use of EDTA to solubilize proteins enabled a sensitive label-free apta-sensor platform for colorimetric detection of Staphylococcus aureus in milk and infant formula. In the assay, S. aureus depleted aptamers from the test solution, and the reduction of aptamers enabled aggregation of AuNPs upon salt addition, a process characterized by a color change from red to purple. Under optimized conditions, S. aureus could be visually detected within 30 min with the detection limit of 7.5 × 104 CFU/mL and 8.4 × 104 CFU/mL in milk and infant formula, respectively. The EDTA treatment provides new opportunities for monitoring milk contamination and may prove valuable for biosensor point-of-need applications.
Collapse
Affiliation(s)
- Marco Marin
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Francesco Rizzotto
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Vincent Léguillier
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | | | - Elise Borezee-Durant
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France
| | - Jasmina Vidic
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
21
|
Dendani Chadi Z, Dib L, Zeroual F, Benakhla A. Usefulness of molecular typing methods for epidemiological and evolutionary studies of Staphylococcus aureus isolated from bovine intramammary infections. Saudi J Biol Sci 2022; 29:103338. [PMID: 35813112 PMCID: PMC9257419 DOI: 10.1016/j.sjbs.2022.103338] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 05/10/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
In cattle, Staphylococcus aureus is a major pathogen of increasing importance due to its association with intramammary infections (IMIs), which are a primary cause of antibiotic use on farms and thus of the rise in antibiotic resistance. Methicillin-resistant S. aureus (MRSA), which are frequently isolated from cases of bovine mastitis, represent a public health problem worldwide. Understanding the epidemiology and the evolution of these strains relies on typing methods. Such methods were phenotypic at first, but more recently, molecular methods have been increasingly utilized. Multiple-locus variable number tandem repeat analysis (MLVA), a high-throughput molecular method for determining genetic diversity and the emergence of host- or udder-adapted clones, appears to be the most useful PCR-based method. Despite the difficulties present in reproducibility, interlaboratory reliability, and hard work, it is agreed that pulsed-field gel electrophoresis (PFGE) remains the gold standard, particularly for short-term surveillance. Multilocus sequence typing (MLST) is a good typing method for long-term and global epidemiological investigations, but it is not suitable for outbreak investigations. Staphylococcal protein A (spa) typing is the most widely used method today for first-line typing in the study of molecular evolution, and outbreaks investigations. Staphylococcal cassette chromosome mec (SCCmec) typing has gained popularity for the evolutionary analysis of MRSA strains. Whole-genome sequencing (WGS) and DNA microarrays that represent relatively new DNA-based technologies, provide more information for tracking antibioresistant and virulent outbreak strains. They offer a higher discriminatory power, but are not suitable for routine use in clinical veterinary medicine at this time. Descriptions of the evolution of these methods, their advantages, and limitations are given in this review.
Collapse
Affiliation(s)
- Zoubida Dendani Chadi
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| | - Loubna Dib
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| | - Fayçal Zeroual
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| | - Ahmed Benakhla
- Department of Veterinary Medicine, Faculty of Natural Science and Life, University of Chadli Bendjedid, P.O. Box 73, El Tarf 36000, Algeria
| |
Collapse
|
22
|
Belhout C, Elgroud R, Butaye P. Methicillin-Resistant Staphylococcus aureus (MRSA) and Other Methicillin-Resistant Staphylococci and Mammaliicoccus (MRNaS) Associated with Animals and Food Products in Arab Countries: A Review. Vet Sci 2022; 9:vetsci9070317. [PMID: 35878334 PMCID: PMC9320237 DOI: 10.3390/vetsci9070317] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Staphylococci are present in the microbiota of both humans and animal species, being recognized as the most important opportunistic pathogens. Antimicrobial resistance (AMR) has become a global public health issue presenting a significant risk because it severely limits treatment options. Methicillin resistance in staphylococci (MRS) poses a specific problem as it may cause serious human and animal infections, eventually resulting in death. The increasing observation of MRS in different animal species has raised the concern of their impact on animal health and the potential of zoonotic transmission. The availability of comprehensive data on the ecology and distribution of MRS in animals and food products worldwide is necessary to understand their relevance in the “One Health” domain. However, there is a gap in information in terms of MRS and the Arab countries. Therefore, our study aimed to provide an overview of the situation of MRS in these countries by reviewing the available data on livestock and animal products and making recommendations for the future. Abstract The prevalence of methicillin resistance in staphylococci has been increasing globally and is currently one of the major public health concerns. In particular, treating infections caused by staphylococci with acquired antimicrobial resistance is problematic, as their treatment is more difficult. The resistance is found both in human and animal staphylococcal strains. Methicillin-resistant staphylococci (MRS) have also been increasingly reported in wildlife. In Arab countries, MRS has been detected in food producing animals and food products; however, the risk this poses is somewhat unclear, and still a significant lack of information on the trend and distribution of these pathogens in these countries, which have a specific ecosystem (desert) and traditions (Muslim culture). In this manuscript, we aim to provide an overview of the prevalence and the major MRS clonal lineages circulating in these specific countries and compare to them other situations with different ecosystems and cultures.
Collapse
Affiliation(s)
- Chahrazed Belhout
- HASAQ Laboratory, High National Veterinary School, Issad Abbes Avenue, Oued Smar, El Harrach, Algiers 16270, Algeria
- Correspondence:
| | - Rachid Elgroud
- Institute of Veterinary Sciences, University Frères Mentouri Constantine 1, Constantine 25017, Algeria;
| | - Patrick Butaye
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium;
| |
Collapse
|
23
|
Xu H, Lin C, Li T, Zhu Y, Yang J, Chen S, Chen J, Chen X, Chen Y, Guo A, Hu C. N 6-Methyladenosine-Modified circRNA in the Bovine Mammary Epithelial Cells Injured by Staphylococcus aureus and Escherichia coli. Front Immunol 2022; 13:873330. [PMID: 35444650 PMCID: PMC9014013 DOI: 10.3389/fimmu.2022.873330] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/28/2022] Open
Abstract
Mastitis is a common disease that hinders the development of dairy industry and animal husbandry. It leads to the abuse of antibiotics and the emergence of super drug-resistant bacteria, and poses a great threat to human food health and safety. Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) are the most common pathogens of mastitis in dairy cows and usually cause subclinical or clinical mastitis. CircRNAs and N6-methyladenosine (m6A) play important roles in immunological diseases. However, the mechanisms by which m6A modifies circRNA in bovine mammary epithelial cells remain poorly understood. The aim of our study was to investigate m6A-modified circRNAs in bovine mammary epithelial cells (MAC-T cells) injured by S. aureus and E. coli. The profile of m6A-modified circRNA showed a total of 1,599 m6A peaks within 1,035 circRNAs in the control group, 35 peaks within 32 circRNAs in the S. aureus group, and 1,016 peaks within 728 circRNAs in the E. coli group. Compared with the control group, 67 peaks within 63 circRNAs were significantly different in the S. aureus group, and 192 peaks within 137 circRNAs were significantly different in the E. coli group. Furthermore, we found the source genes of these differentially m6A-modified circRNAs in the S. aureus and E. coli groups with similar functions according to GO and KEGG analyses, which were mainly associated with cell injury, such as inflammation, apoptosis, and autophagy. CircRNA–miRNA–mRNA interaction networks predicted the potential circRNA regulation mechanism in S. aureus- and E. coli-induced cell injury. We found that the mRNAs in the networks, such as BCL2, MIF, and TNFAIP8L2, greatly participated in the MAPK, WNT, and inflammation pathways. This is the first report on m6A-modified circRNA regulation of cells under S. aureus and E. coli treatment, and sheds new light on potential mechanisms and targets from the perspective of epigenetic modification in mastitis and other inflammatory diseases.
Collapse
Affiliation(s)
- Haojun Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Changjie Lin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Ting Li
- The Center for Animal Disease Control and Prevention in Wuhan, Wuhan Bureau of Agriculture and Rural Bureau Affairs, Wuhan, China
| | - Yifan Zhu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinghan Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Sijie Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Jianguo Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Roshan M, Parmanand, Arora D, Behera M, Vats A, Gautam D, Deb R, Parkunan T, De S. Virulence and enterotoxin gene profile of methicillin-resistant Staphylococcus aureus isolates from bovine mastitis. Comp Immunol Microbiol Infect Dis 2021; 80:101724. [PMID: 34826723 DOI: 10.1016/j.cimid.2021.101724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 12/31/2022]
Abstract
Bovine mastitis is a major infectious disease affecting dairy animals resulting in enormous economic losses, prolonged antibiotic treatment, reduced milk yield and death of livestock. Emergence of Methicillin-resistant Staphylococcus aureus (MRSA) among bovine mastitis is matter of concern for animal health and dairy industry. The present study was conducted to detect the distribution of virulence and enterotoxin genes among MRSA isolates from bovine mastitis. Out of 500 milk samples, 126 isolates were identified as Staphylococcus and from these only 56 were S. aureus. S.aureus were resistant to cefoxitin (75%), ceftazidime (75%), amoxicillin (71.4%), cefodaxime (67.8%), cefepime (66.1%), oxacillin (64.3%), norfloxacin (60.7%) and gentamicin (58.9%). Only 42 isolates were identified as MRSA strains among staphylococci isolates. MRSA were harbouring virulence genes; mecA (100%), coa (100%) and nuc (100%). The other virulence factors such as hlg (80.9%, 34/42), pvl (47.6%, 20/42) and spa (92.8%, 39/42) were also reported. Molecular characterisation of enterotoxin genes revealed that out of 42 tested isolates 11 were found negative (26%) for any enterotoxin gene whereas 7 (16.6%), 6 (14.3%), 18 (42.8%), 1 (2.3%), 26 (61.9%),27(64.2%),3 (7.1%) were found positive for sea, seb, sec, sed, seg, sei, and seq enterotoxin respectively.
Collapse
Affiliation(s)
- Mayank Roshan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Parmanand
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devan Arora
- Referral Veterinary Diagnostic and Extension Centre (Uchani Campus), Lala Lajpat Rai University of Veterinary & Animal Sciences, Hisar, Haryana, India
| | - Manisha Behera
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Ashutosh Vats
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Guwahati, Assam, India
| | - Thulasiraman Parkunan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India; Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary and Animal Sciences, Institute of Agricultural Sciences, Rajiv Gandhi South Campus, Banaras Hindu University, Mirzapur, Uttar Pradesh, India
| | - Sachinandan De
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Centre, Animal Genomics Lab, Karnal 132001, Haryana, India.
| |
Collapse
|
25
|
Anti- Staphylococcus aureus Single-Chain Fragment Variables Play a Protective Anti-Inflammatory Role In Vitro and In Vivo. Vaccines (Basel) 2021; 9:vaccines9111300. [PMID: 34835231 PMCID: PMC8618225 DOI: 10.3390/vaccines9111300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus is a causative agent of bovine mastitis, capable of causing significant economic losses to the dairy industry worldwide. This study focuses on obtaining single-chain fragment variables (scFvs) against the virulence factors of S. aureus and evaluates the protective effect of scFvs on bovine mammary epithelial (MAC-T) cells and mice mammary gland tissues infected by S. aureus. After five rounds of bio-panning, four scFvs targeting four virulence factors of S. aureus were obtained. The complementarity-determining regions (CDRs) of these scFvs exhibited significant diversities, especially CDR3 of the VH domain. In vitro, each of scFvs was capable of inhibiting S. aureus growth and reducing the damage of MAC-T cells infected by S. aureus. Preincubation of MAC-T cells with scFvs could significantly attenuate the effect of apoptosis and necrosis compared with the negative control group. In vivo, the qPCR and ELISA results demonstrated that scFvs reduced the transcription and expression of Tumor Necrosis Factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8, and IL-18. Histopathology and myeloperoxidase (MPO) results showed that scFvs ameliorated the histopathological damages and reduced the inflammatory cells infiltration. The overall results demonstrated the positive anti-inflammatory effect of scFvs, revealing the potential role of scFvs in the prevention and treatment of S. aureus infections.
Collapse
|
26
|
Niedziela DA, Cormican P, Foucras G, Leonard FC, Keane OM. Bovine milk somatic cell transcriptomic response to Staphylococcus aureus is dependent on strain genotype. BMC Genomics 2021; 22:796. [PMID: 34740333 PMCID: PMC8571842 DOI: 10.1186/s12864-021-08135-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 10/28/2021] [Indexed: 01/07/2023] Open
Abstract
Background Mastitis is an economically important disease of dairy cows with Staphylococcus aureus a major cause worldwide. Challenge of Holstein-Friesian cows demonstrated that S. aureus strain MOK124, which belongs to Clonal Complex (CC)151, caused clinical mastitis, while strain MOK023, belonging to CC97, caused mild or subclinical mastitis. The aim of this study was to elucidate the molecular mechanisms of the host immune response utilising a transcriptomic approach. Milk somatic cells were collected from cows infected with either S. aureus MOK023 or MOK124 at 0, 24, 48, 72 and 168 h post-infection (hpi) and analysed for differentially expressed (DE) genes in response to each strain. Results In response to MOK023, 1278, 2278, 1986 and 1750 DE genes were found at 24, 48, 72 and 168 hpi, respectively, while 2293, 1979, 1428 and 1544 DE genes were found in response to MOK124 at those time points. Genes involved in milk production (CSN1, CSN10, CSN1S2, CSN2, a-LACTA and PRLR) were downregulated in response to both strains, with a more pronounced decrease in the MOK124 group. Immune response pathways such as NF-κB and TNF signalling were overrepresented in response to both strains at 24 hpi. These immune pathways continued to be overrepresented in the MOK023 group at 48 and 72 hpi, while the Hippo signalling, extracellular matrix interaction (ECM) and tight junction pathways were overrepresented in the MOK124 group between 48 and 168 hpi. Cellular composition analysis demonstrated that a neutrophil response was predominant in response to MOK124, while M1 macrophages were the main milk cell type post-infection in the MOK023 group. Conclusions A switch from immune response pathways to pathways involved in maintaining the integrity of the epithelial cell layer was observed in the MOK124 group from 48 hpi, which coincided with the occurrence of clinical signs in the infected animals. The higher proportion of M1 macrophages in the MOK023 group and lack of substantial neutrophil recruitment in response to MOK023 may indicate immune evasion by this strain. The results of this study highlight that the somatic cell transcriptomic response to S. aureus is dependent on the genotype of the infecting strain. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08135-7.
Collapse
Affiliation(s)
- Dagmara A Niedziela
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Paul Cormican
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Gilles Foucras
- IHAP, Université de Toulouse, ENVT, INRAE, UMR1225, F-31076, Toulouse, France
| | - Finola C Leonard
- School of Veterinary Medicine, University College Dublin, Dublin 4, Ireland
| | - Orla M Keane
- Animal and Bioscience Department, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| |
Collapse
|
27
|
Abed AH, Hegazy EF, Omar SA, Abd El-Baky RM, El-Beih AA, Al-Emam A, Menshawy AMS, Khalifa E. Carvacrol Essential Oil: A Natural Antibiotic against Zoonotic Multidrug-Resistant Staphylococcus Species Isolated from Diseased Livestock and Humans. Antibiotics (Basel) 2021; 10:1328. [PMID: 34827266 PMCID: PMC8614821 DOI: 10.3390/antibiotics10111328] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/09/2023] Open
Abstract
Staphylococcus species cause diseases in animals and humans. The prevalence and antimicrobial profiles of Staphylococcus spp. in animals and human samples in the Minya Governorate, Egypt, were determined, and resistance- and virulence-associated genes were observed in multidrug-resistant (MDR) isolates. Moreover, the antibacterial effect of carvacrol essential oil (EO) on the MDR isolates was studied. A total of 216 samples were aseptically collected from subclinically mastitic cow's milk (n = 100), sheep abscesses (n = 25) and humans (n = 91). Out of 216 samples, a total of 154 single Staphylococcus species (71.3%) were isolated. The most frequent bacterial isolates were S. aureus (43%), followed by S. schleiferi (25%), S. intermedius (12%), S. xylosus (12%), S. haemolyticus (4.5%), S. epidermidis (2%) and S. aurecularis (1%). Haemolytic activity and biofilm production were detected in 77 and 47% of isolates, respectively. Antimicrobial susceptibility testing showed a high degree of resistance to the most commonly used antimicrobials in human and veterinary practices. The mecA, vanA, vanC1 and ermC resistance genes were detected in 93, 42, 83 and 13% of isolates, respectively. Moreover, hla, icaA and icaD virulence genes were detected in 50, 75 and 78% of isolates, respectively. Carvacrol effectively inhibited the growth of all tested isolates at concentrations of 0.1, 0.05 and 0.04% while a concentration of 0.03% inhibited 75% of isolates. Interestingly, some phenotypic changes were observed upon treatment with a carvacrol oil concentration of 0.03%. All the treated MDR Staphylococcus isolates changed from multidrug resistant to either susceptible or intermediately susceptible to 2-3 antimicrobials more than parental bacterial isolates. Real-time PCR was applied for the detection of the differential expression of mecA and vanC1 genes before and after treatment with carvacrol which revealed a mild reduction in both genes' expression after treatment. Staphylococcus spp. Containing MDR genes are more likely to spread between humans and animals. From these results, carvacrol EO is a promising natural alternative to conventional antimicrobials for pathogens impacting human health and agriculture due to its potential antimicrobial effect on MDR pathogens; even in sub-lethal doses, carvacrol EO can affect their phenotypic properties and genes' expression.
Collapse
Affiliation(s)
- Ahmed H. Abed
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Esraa F. Hegazy
- Bacteriology, Mycology and Immunology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Sherif A. Omar
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Cairo 12211, Egypt;
| | - Rehab M. Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt;
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Ahmed A. El-Beih
- Chemistry of Natural & Microbial Products Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia;
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Ahmed M. S. Menshawy
- Department of Veterinary Medicine (Infectious Diseases), Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt; or
| | - Eman Khalifa
- Department of Microbiology, Faculty of Veterinary Medicine, Matrouh University, Matrouh 51511, Egypt;
| |
Collapse
|
28
|
Karzis J, Petzer IM, Naidoo V, Donkin EF. The spread and antimicrobial resistance of Staphylococcus aureus in South African dairy herds - A review. Onderstepoort J Vet Res 2021; 88:e1-e10. [PMID: 34797108 PMCID: PMC8603139 DOI: 10.4102/ojvr.v88i1.1937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/09/2022] Open
Abstract
Staphylococcus aureus is internationally recognised as a principal agent of mastitis and the foremost reason for economic loss in the dairy industry. The limited data available on organism-specific antibiotic resistance surveillance in dairy cattle have stimulated the need for such a review article. The objective of this study was to review relevant literature on antimicrobial resistance of mastitis-causing staphylococci isolated from dairy cows in South Africa compared to other countries. Factors relating to the incidence of mastitis and treatment strategies in terms of the One Health concept and food security were included. The Web of Science (all databases) and relevant websites were used, and articles not written in English were excluded. The incidence of mastitis varied between South Africa and other countries. Antimicrobial resistance patterns caused by S. aureus also varied in regions within Southern Africa and those of other countries although some similarities were shown. Antimicrobial resistance differed between S. aureus bacteria that were maltose positive and negative (an emerging pathogen). The results highlighted the importance of the availability of organism-specific surveillance data of the incidence of mastitis and antibiotic resistance for specific countries and within similar climatic conditions. Accurate knowledge about whether a specific pathogen is resistant to an antibiotic within a certain climate, country, area or farm should reduce the incidence of unnecessary or incorrect treatment with antibiotics. This should enable dairy farmers to deal with these organisms in a more effective manner. Therefore such research should be ongoing.
Collapse
Affiliation(s)
- Joanne Karzis
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria.
| | | | | | | |
Collapse
|
29
|
Mbindyo CM, Gitao GC, Plummer PJ, Kulohoma BW, Mulei CM, Bett R. Antimicrobial Resistance Profiles and Genes of Staphylococci Isolated from Mastitic Cow's Milk in Kenya. Antibiotics (Basel) 2021; 10:antibiotics10070772. [PMID: 34202836 PMCID: PMC8300721 DOI: 10.3390/antibiotics10070772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 11/24/2022] Open
Abstract
Increasing numbers of potentially zoonotic multidrug-resistant (MDR) staphylococci strains, associated with mastitis in dairy cows, are being reported globally and threaten disease management in both animal and human health. However, the prevalence and antimicrobial resistance profiles of these strains, including methicillin-resistant staphylococci (MRS), in Kenya is not well known. This study investigated the drug resistance profiles and genes carried by 183 staphylococci isolates from 142 dairy cows representing 93 farms recovered from mastitis milk of dairy cows in two selected counties in Kenya. Staphylococci isolates were characterized by phenotypic characteristics, polymerase chain reaction (PCR) amplification, partial sequencing and susceptibility testing for 10 antimicrobial drugs. Detection of seven resistance genes to the various antimicrobial drugs was conducted using PCR. Overall, phenotypic resistance among the staphylococci ranged between 66.1% for ampicillin and 3.5% for fluoroquinolones. Twenty-five percent (25%) of S. aureus and 10.8% of the coagulase-negative staphylococci (CoNS) isolates, were methicillin-resistant staphylococci phenotypically (defined as resistance to cefoxitin disk diffusion). The most common genes found in S. aureus and CoNS were blaZ and strB at 44.3% and 26%, and 78% and 50%, respectively. MDR was observed in 29.67% and 16.3% of S. aureus and CoNS, respectively. These findings pose a threat to bovine mastitis treatment and management as well as human health.
Collapse
Affiliation(s)
- Christine M. Mbindyo
- Department of Veterinary Pathology, Microbiology and Parasitology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
- Correspondence: or
| | - George C. Gitao
- Department of Veterinary Pathology, Microbiology and Parasitology, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| | - Paul Joseph Plummer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA;
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA
- National Institute for Antimicrobial Resistance Research and Education, Ames, IA 50010, USA
| | - Benard W. Kulohoma
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi P.O. Box 30197-00100, Kenya;
| | - Charles M. Mulei
- Department of Clinical Studies, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| | - Rawlynce Bett
- Department of Animal Production, College of Agriculture and Veterinary Sciences, University of Nairobi, Nairobi P.O. Box 29053-00625, Kenya;
| |
Collapse
|
30
|
Lienen T, Schnitt A, Cuny C, Maurischat S, Tenhagen BA. Phylogenetic Tracking of LA-MRSA ST398 Intra-Farm Transmission among Animals, Humans and the Environment on German Dairy Farms. Microorganisms 2021; 9:microorganisms9061119. [PMID: 34064246 PMCID: PMC8224388 DOI: 10.3390/microorganisms9061119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 11/22/2022] Open
Abstract
Methicillin-resistant Staphylococcusaureus (MRSA) are a major threat to human and animal health, causing difficult-to-treat infections. The aim of our study was to evaluate the intra-farm transmission of livestock-associated (LA) MRSA sequence type (ST) 398 isolates on German dairy farms. A total of 115 LA-MRSA ST398 isolates originating from animals, humans and the environment of six dairy farms were analyzed by whole-genome sequencing and core genome multilocus sequence typing. Phylogenetic clusters of high allelic similarity were detected on all dairy farms, suggesting a MRSA transmission across the different niches. On one farm, closely related isolates from quarter milk samples (QMS), suckers of calf feeders and nasal cavities of calves indicate that MRSA may be transferred by feeding contaminated milk to calves. Detection of related MRSA isolates in QMS and teat cups (4/6 farms) or QMS and human samples (3/4 farms) pointed out a transmission of MRSA between cows during the milking process and a potential zoonotic risk. In conclusion, LA-MRSA ST398 isolates may spread between animals, humans and the environment on dairy farms. Milking time hygiene and other internal biosecurity measures on farms and pre-treatment of milk before feeding it to calves may reduce the risk of MRSA transmission.
Collapse
Affiliation(s)
- Tobias Lienen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
- Correspondence: (T.L.); (B.-A.T.)
| | - Arne Schnitt
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
| | - Christiane Cuny
- Department Infectious Diseases, Robert-Koch Institute (RKI), 38855 Wernigerode, Germany;
| | - Sven Maurischat
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany; (A.S.); (S.M.)
- Correspondence: (T.L.); (B.-A.T.)
| |
Collapse
|
31
|
Taniguchi T, Latt KM, Tarigan E, Yano F, Sato H, Minamino T, Misawa N. A 1-Year Investigation of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Isolated from Bovine Mastitis at a Large-Scale Dairy Farm in Japan. Microb Drug Resist 2021; 27:1450-1454. [PMID: 33900856 DOI: 10.1089/mdr.2020.0481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In a large-scale dairy farm, it is important to take countermeasure of prevention against mastitis of dairy cows, and it is especially important to establish hygiene and risk management to prevent the emergence and spread of antibiotic-resistant bacteria. In this study, we have performed bacteriological testing of clinical and subclinical mastitis and investigation of antimicrobial resistance bacteria in a large-scale farm for 1 year. The bacteria isolated most frequently from 1,549 samples of 952 cow, including cows with recurring mastitis were Staphylococcus non-aureus (SNA) (27.6%), followed by Escherichia coli (18.9%), Klebsiella pneumoniae (12.3%). Although Staphylococcus aureus was isolated at 7.7% from milk sample, no methicillin-resistant S. aureus was found. The incidence of extended-spectrum β-lactamase (ESBL)-producing E. coli was 1.4% and ESBL-producing K. pneumoniae was 1.4% of all samples, even though third- and fourth-generation cephalosporins were not used for antimicrobial treatment of mastitis in this farm. Although these genotypes of ESBL-producing E. coli and K. pneumoniae were mainly composed of CTX-M-15 and TEM-1 and CTX-M-2 and TEM-116, respectively, there was no spread and persist of predominant clonal type. Appropriate farm management, such as segregation and culling of infected animals and monitors of trends in antimicrobial resistance among mastitis pathogens, may have contributed these results.
Collapse
Affiliation(s)
- Takako Taniguchi
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Khin Maung Latt
- Laboratory of Veterinary Public Health, Department of Veterinary Science, University of Miyazaki, Miyazaki, Japan
| | - Elpita Tarigan
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Fusae Yano
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan
| | - Hiroyuki Sato
- Laboratory of Veterinary Clinical Radiology, Department of Veterinary Medical Science, Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | | | - Naoaki Misawa
- Division of Research & Inspection for Infectious Diseases, Center for Animal Disease Control, University of Miyazaki, Miyazaki, Japan.,Laboratory of Veterinary Public Health, Department of Veterinary Science, University of Miyazaki, Miyazaki, Japan
| |
Collapse
|
32
|
Multi Locus Sequence Typing and spa Typing of Staphylococcus Aureus Isolated from the Milk of Cows with Subclinical Mastitis in Croatia. Microorganisms 2021; 9:microorganisms9040725. [PMID: 33807376 PMCID: PMC8066051 DOI: 10.3390/microorganisms9040725] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The bacterial species S. aureus is the most common causative agent of mastitis in cows in most countries with a dairy industry. The prevalence of infection caused by S. aureus ranges from 2% to more than 50%, and it causes 10–12% of all cases of clinical mastitis. Aim: The objective was to analyze 237 strains of S. aureus isolated from the milk of cows with subclinical mastitis regarding the spa, mecA, mecC and pvl genes and to perform spa and multi-locus sequence typing (MLST). Methods: Sequencing amplified gene sequences was conducted at Macrogen Europe. Ridom StaphType and BioNumerics software was used to analyze obtained sequences of spa and seven housekeeping genes. Results: The spa fragment was present in 204 (86.1%) of strains, while mecA and mecC gene were detected in 10 strains, and the pvl gene was not detected. Spa typing successfully analyzed 153 tested isolates (64.3%), confirming 53 spa types, four of which were new types. The most frequent spa type was t2678 (14%). MLST typed 198 (83.5%) tested strains and defined 32 different allele profiles, of which three were new. The most frequent allele profile was ST133 (20.7%). Six groups (G) and 15 singletons were defined. Conclusion: Taking the number of confirmed spa types and sequence types (STs) into account, it can be concluded that the strains of S. aureus isolated from the milk of cows with subclinical mastitis form a heterogenous group. To check the possible zoonotic potential of isolates it would be necessary to test the persons and other livestock on the farms.
Collapse
|
33
|
Lienen T, Schnitt A, Hammerl JA, Maurischat S, Tenhagen BA. Genomic Distinctions of LA-MRSA ST398 on Dairy Farms From Different German Federal States With a Low Risk of Severe Human Infections. Front Microbiol 2021; 11:575321. [PMID: 33488532 PMCID: PMC7820121 DOI: 10.3389/fmicb.2020.575321] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) have been found on German dairy farms and may be the cause of difficult-to-treat bovine mastitis. Considering the one health approach, MRSA might be transmitted from animals to humans raising the risk for severe infections. On 17 German dairy farms with a history of MRSA detection, MRSA strains were isolated from quarter milk, bulk tank milk, and swab samples of calves, heifers, pigs, and the environment. A selection of 33 isolates was analyzed using whole-genome sequencing and antimicrobial resistance testing. All detected MRSA strains were attributed to the livestock-associated sequence type 398. Methicillin-resistance was associated with the mecA gene in the staphylococcal cassette chromosome (SCC)mec types IVa (7/33) or V (26/33). The MRSA strains across the German federal states showed large allelic differences indicating independent development and distribution. On one farm, a clonal MRSA isolate was widely spread among different animals and the milking equipment. Moreover, MRSA transmission between two dairy farms in one federal state seems to be likely. In depth studies indicated that the resistance gene prediction and phenotypic resistance are in good agreement. Twenty eight strains were determined to exhibit a non-wildtype phenotype (resistant) against up to seven antimicrobial substances with an overall resistance to β-lactams and tetracycline. Ten different phenotypic antimicrobial resistance patterns were found among the MRSA strains. The strains harbored a wide virulence gene repertoire, of which some of them are related to bovine mastitis. However, the isolates lacked typical human infection associated factors such as the immune evasion cluster genes, staphylococcal enterotoxin genes, or Panton-Valentine leukocidin genes leading to the assumption for a low risk for severe human infections and foodborne diseases.
Collapse
Affiliation(s)
- Tobias Lienen
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Arne Schnitt
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jens Andre Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sven Maurischat
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
34
|
Schnitt A, Lienen T, Wichmann-Schauer H, Cuny C, Tenhagen BA. The occurrence and distribution of livestock-associated methicillin-resistant Staphylococcus aureus ST398 on German dairy farms. J Dairy Sci 2020; 103:11806-11819. [PMID: 33041041 DOI: 10.3168/jds.2020-18958] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/28/2020] [Indexed: 11/19/2022]
Abstract
The objective of this study was to investigate the occurrence and distribution of methicillin-resistant Staphylococcus aureus (MRSA) on 20 German dairy farms. Farms were selected based on previous MRSA reports from phenotypic susceptibility testing of mastitis pathogens. Samples were collected from predefined groups of cows, young stock, farm personnel, and the environment. A high MRSA-positive test rate was detected in swab samples from milk-fed calves (22.7%; 46/203). In postweaning calves, the MRSA-positive test rate was 9.1% (17/187). From prefresh heifers, both nasal swabs and udder cleft swabs were collected if possible. Including both sample types, the MRSA-positive test rate in prefresh heifers was 13.0% (26/200). The positive test rate was 8.9% (17/191) in nasal swabs and 6.5% (11/170) in udder cleft swabs. In quarter milk samples (QMS), the MRSA-positive test rate was 2.9% (67/2347), and on cow level, 7.9% (47/597) of the dairy cows were affected. Among all cows included in this study, the geometric mean of somatic cell counts was higher in QMS that carried MRSA (345,000 cells/mL) in comparison to all QMS (114,000 cells/mL). No differences in parity or the affected mammary quarter position on the udder were observed among the 47 infected cows. Methicillin-resistant S. aureus was also detected in boot swab samples (dust), teat liners, and in suckers from automatic calf feeders. All isolates belonged to livestock-associated sequence type 398 and most common staphylococcal protein A (spa)-types were t011 and t034. Most isolates harbored the staphylococcal cassette chromosome mec (SCCmec)-type V, with the exception of some isolates with SCCmec-type IVa on 1 farm. Similar MRSA genotypes in samples from humans and dairy cows underline the possible zoonotic and reverse-zoonotic transmission of livestock-associated MRSA strains from dairy farms. Similar MRSA genotypes in pig and cattle barns were detected on only 1 of 5 farms that kept both cattle and pigs. Similar MRSA spa-types were detected in samples from different sources (dairy cows, young stock, environment, and humans), suggesting a possible contagious transmission on some of the farms. Sporadically, up to 3 different MRSA spa-types were detected in QMS from the respective farms. On MRSA-affected farms, improper milking hygiene procedures and elevated bulk-tank milk somatic cell counts (>250,000 cells/mL) were observed. The occurrence of livestock-associated MRSA ST398 in different samples from dairy farms, and especially in young calves, should be considered for future MRSA-monitoring programs and biosecurity guidelines.
Collapse
Affiliation(s)
- A Schnitt
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, 10589 Berlin, Germany
| | - T Lienen
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, 10589 Berlin, Germany
| | - H Wichmann-Schauer
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, 10589 Berlin, Germany
| | - C Cuny
- Robert Koch Institute (RKI), 38855 Wernigerode, Germany
| | - B-A Tenhagen
- German Federal Institute for Risk Assessment (BfR), Department of Biological Safety, 10589 Berlin, Germany.
| |
Collapse
|
35
|
Genomic Analysis of Bovine Staphylococcus aureus Isolates from Milk To Elucidate Diversity and Determine the Distributions of Antimicrobial and Virulence Genes and Their Association with Mastitis. mSystems 2020; 5:5/4/e00063-20. [PMID: 32636332 PMCID: PMC7343304 DOI: 10.1128/msystems.00063-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus causes persistent clinical and subclinical bovine intramammary infections (IMI) worldwide. However, there is a lack of comprehensive information regarding genetic diversity, the presence of antimicrobial resistance (AMR), and virulence genes for S. aureus in bovine milk in Canada. Here, we performed whole-genome sequencing (WGS) of 119 Canadian bovine milk S. aureus isolates and determined they belonged to 8 sequence types (ST151, ST352, ST351, ST2187, ST2270, ST126, ST133, and ST8), 5 clonal complexes (CC151, CC97, CC126, CC133, and CC8), and 18 distinct Spa types. Pan-, core, and accessory genomes were composed of 6,340, 1,279, and 2,431 genes, respectively. Based on phenotypic screening for AMR, resistance was common against beta-lactams (19% of isolates) and sulfonamides (7% of isolates), whereas resistance against pirlimycin, tetracycline, ceftiofur, and erythromycin and to the combination of penicillin and novobiocin was uncommon (3, 3, 3, 2, and 2% of all isolates, respectively). We also determined distributions of 191 virulence factors (VFs) in 119 S. aureus isolates after classifying them into 5 functional categories (adherence [n = 28], exoenzymes [n = 21], immune evasion [n = 20], iron metabolism [n = 29], and toxins [n = 93]). Additionally, we calculated the pathogenic potential of distinct CCs and STs and determined that CC151 (ST151 and ST351) had the highest pathogenic potential (calculated by subtracting core-VFs from total VFs), followed by CC97 (ST352 and ST2187) and CC126 (ST126 and ST2270), potentially linked to their higher prevalence in bovine IMI worldwide. However, there was no statistically significant link between the presence of VF genes and mastitis.IMPORTANCE Staphylococcus aureus is a major cause of bovine intramammary infections, leading to significant economic losses to dairy industry in Canada and worldwide. There is a lack of knowledge regarding genetic diversity, the presence of antimicrobial resistance (AMR), and virulence genes for S. aureus isolated from bovine milk in Canada. Based on whole-genome sequencing and genomic analysis, we have determined the phylogeny and diversity of S. aureus in bovine milk and concluded that it had a large accessory genome, limited distribution of AMR genes, variable VF gene profiles and sequence types (ST), and clonal complex (CC)-specific pathogenic potentials. Comprehensive information on the population structure, as well as the virulence and resistance characteristics of S. aureus from bovine milk, will allow for source attribution, risk assessment, and improved therapeutic approaches in cattle.
Collapse
|
36
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
37
|
Angelopoulou A, Warda AK, O'Connor PM, Stockdale SR, Shkoporov AN, Field D, Draper LA, Stanton C, Hill C, Ross RP. Diverse Bacteriocins Produced by Strains From the Human Milk Microbiota. Front Microbiol 2020; 11:788. [PMID: 32508758 PMCID: PMC7248182 DOI: 10.3389/fmicb.2020.00788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
Microbial colonization of the infant gut is a convoluted process dependent on numerous contributing factors, including age, mode of delivery and diet among others that has lifelong implication for human health. Breast milk also contains a microbiome which acts as a source of colonizing bacteria for the infant. Here, we demonstrate that human milk harbors a wide diversity of bacteriocin-producing strains with the potential to compete among the developing gut microbiota of the infant. We screened 37 human milk samples and found isolates with antimicrobial activity and distinct cross-immunity profiles. From these isolates, we detected 73 putative gene clusters for bacteriocins of all known sub-classes, including 16 novel prepeptides. More specifically, we detected two novel lantibiotics, four sactibiotics and three class IIa bacteriocins with an unusual modification of the pediocin box that is composed of YDNGI instead of the highly conserved motif YGNGV. Moreover, we identified a novel class IIb bacteriocin, four novel class IIc and two class IId bacteriocins. In conclusion, human milk contains a variety of bacteriocin-producing strains which may provide them a competitive advantage in the colonization of the infant gut and suggests that the milk microbiota is a source of antimicrobial potential.
Collapse
Affiliation(s)
- Angeliki Angelopoulou
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Alicja K Warda
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Paula M O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | | | | | - Des Field
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| | - Colin Hill
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - R Paul Ross
- School of Microbiology, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland.,Teagasc Food Research Centre, Moorepark, Fermoy, Ireland
| |
Collapse
|
38
|
Harada K, Irie S, Ohnishi M, Kataoka Y. Assessment of the Usefulness of Cefapirin and Cefalonium Disks for Susceptibility Testing of Staphylococcus aureus Isolates from Bovine Mastitis. Antibiotics (Basel) 2020; 9:antibiotics9040197. [PMID: 32326215 PMCID: PMC7235829 DOI: 10.3390/antibiotics9040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/01/2022] Open
Abstract
Cefapirin (CEP) and cefalonium (CNM) are first-generation cephalosporins widely used to treat bovine mastitis caused by Gram-positive bacteria including staphylococci. However, disks for susceptibility testing of those drugs in causative bacteria are not available. This study evaluated the efficacy of 10 µg and 30 µg pilot disks of CEP (CEP10 and CEP30) and CNM (CNM10 and CNM30) against 130 Staphylococcusaureus isolates from bovine mastitis. Scattergrams of minimum inhibitory concentrations (MICs) and zone diameters (ZDs) illustrated significant correlations between the MICs and ZDs of CEP10 (r = −0.912), CEP30 (r = −0.933), CNM10 (r = −0.847), and CNM30 (r = −0.807). The analysis by Normalized Resistance Interpretation indicated that the epidemiolocal cut-off value (ECV) of MIC for both cefapirin and cefalonium is ≤ 0.5 µg/mL, and the ECV of ZD for CEP10, CEP30, CNM10, and CNM30 were ≥ 22 mm, ≥ 25 mm, ≥ 22 mm, and ≥ 29 mm, respectively. We believe that both 10 μg and 30 μg CEP and CNM susceptibility disks will be helpful for guiding the appropriate use of these antibiotics for bovine mastitis. Further studies toward the establishment of clinical breakpoint of CEP and CNM would be needed for their routine use.
Collapse
Affiliation(s)
- Kazuki Harada
- Department of Veterinary Internal Medicine, Tottori University, Tottori 680-8553, Japan
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (S.I.); (Y.K.)
- Correspondence: ; Tel.: +81-857-31-5432
| | - Shieri Irie
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (S.I.); (Y.K.)
| | - Mamoru Ohnishi
- Ohnishi Laboratory of Veterinary Microbiology, Hokkaido 086-1106, Japan;
| | - Yasushi Kataoka
- Laboratory of Veterinary Microbiology, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan; (S.I.); (Y.K.)
| |
Collapse
|
39
|
Bolte J, Zhang Y, Wente N, Mahmmod YS, Svennesen L, Krömker V. Comparison of phenotypic and genotypic antimicrobial resistance patterns associated with Staphylococcus aureus mastitis in German and Danish dairy cows. J Dairy Sci 2020; 103:3554-3564. [PMID: 32089308 DOI: 10.3168/jds.2019-17765] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 11/19/2022]
Abstract
Staphylococcus aureus is one of the most common pathogens associated with bovine mastitis in Germany and Denmark. Successful therapy is strongly linked to the susceptibility of the pathogen to the administered antimicrobial. An increase in resistant pathogens in human and veterinary medicine has become a concern worldwide and hampers therapy due to reduced susceptibility. In the present study, susceptibility testing was performed for 85 and 93 S. aureus isolates originating from mastitis cases on 12 German and 8 Danish dairy farms, respectively. Phenotypic examination was performed by detection of minimal inhibitory concentration (MIC) values using the broth microdilution method, followed by genotypic investigations of the blaZ and mecA resistance genes via PCR. The tested antimicrobials were the most frequently used β-lactams in German and Danish dairy farms, including cefquinome, cefoperazone, cephapirin, penicillin, oxacillin, cloxacillin, amoxicillin-clavulanic acid, and cephalexin-kanamycin. Special attention was paid to varying therapy concepts because, in Germany, third- and fourth-generation cephalosporins have been predominantly used in mastitis therapy, whereas in Denmark, restrictive use of penicillin is followed by a general avoidance of cephalosporins. Differences in MIC values were mainly based on determined MIC90 values (MIC at which 90% of isolates are inhibited). In general, Danish S. aureus isolates were inhibited at comparatively lower MIC90 values than S. aureus isolated from German dairy farms for most β-lactams. No differences were observed regarding cefquinome, because both German and Danish isolates exhibited MIC50 and MIC90 values of 0.5 and 1 µg/mL, respectively. In contrast, the MIC90 for penicillin against German and Danish S. aureus were 0.5 and ≤0.06 µg/mL, respectively. Resistance genes (blaZ, mecA) were only detected in German S. aureus isolates on 3 dairy farms in Germany. A total of 5 isolates tested positive for both blaZ and mecA, whereas 1 isolate carried the blaZ resistance gene only. A direct correlation between frequently used antimicrobials and reduced susceptibility could not be determined based on results of the present study. In addition to further research to determine factors associated with resistance development, we emphasize the urgent need for internationally standardized clinical breakpoints to assess resistance situations more accurately.
Collapse
Affiliation(s)
- Josef Bolte
- Department of Microbiology, University of Applied Sciences and Arts, 30453 Hannover, Germany
| | - Yanchao Zhang
- Department of Microbiology, University of Applied Sciences and Arts, 30453 Hannover, Germany
| | - Nicole Wente
- Department of Microbiology, University of Applied Sciences and Arts, 30453 Hannover, Germany
| | - Yasser S Mahmmod
- Centre de Recerca en Sanitat Animal (CReSA, IRTA), Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Veterinary Sciences Division, Al Ain Men's College, Higher Colleges of Technology, 17155- Al Ain, Abu Dhabi, United Arab Emirates; Infectious Diseases Division, Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, 44511-Sharkia, Egypt
| | - Line Svennesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Volker Krömker
- Department of Microbiology, University of Applied Sciences and Arts, 30453 Hannover, Germany; Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
40
|
Heaton CJ, Gerbig GR, Sensius LD, Patel V, Smith TC. Staphylococcus aureus Epidemiology in Wildlife: A Systematic Review. Antibiotics (Basel) 2020; 9:E89. [PMID: 32085586 PMCID: PMC7168057 DOI: 10.3390/antibiotics9020089] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 01/05/2023] Open
Abstract
Staphylococcus aureus is a common bacterial colonizer of humans and a variety of animal species. Many strains have zoonotic potential, moving between humans and animals, including livestock, pets, and wildlife. We examined publications reporting on S. aureus presence in a variety of wildlife species in order to more cohesively review distribution of strains and antibiotic resistance in wildlife. Fifty-one studies were included in the final qualitative synthesis. The most common types documented included ST398, ST425, ST1, ST133, ST130, and ST15. A mix of methicillin-resistant and methicillin-susceptible strains were noted. A number of molecular types were identified that were likely to be found in wildlife species, including those that are commonly found in humans or other animal species (including livestock). Additional research should include follow-up in geographic areas that are under-sampled in this study, which is dominated by European studies.
Collapse
Affiliation(s)
| | | | | | | | - Tara C. Smith
- Kent State University, College of Public Health, Kent, OH 44240, USA; (C.J.H.); (G.R.G.); (L.D.S.); (V.P.)
| |
Collapse
|
41
|
Neradova K, Jakubu V, Pomorska K, Zemlickova H. Methicillin-resistant Staphylococcus aureus in veterinary professionals in 2017 in the Czech Republic. BMC Vet Res 2020; 16:4. [PMID: 31906922 PMCID: PMC6945690 DOI: 10.1186/s12917-019-2223-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Background Cases of colonization or infection caused by Methicillin-resistant Staphylococcus aureus (MRSA) are frequently reported in people who work with animals, including veterinary personnel. The aim of this study was to determine the prevalence of MRSA colonization among veterinary professionals. A total of 134 nasal swabs from healthy attendees of a veterinary conference held in the Czech Republic were tested for presence of MRSA. The stains were further genotypically and phenotypically characterized. Results Nine isolated MRSA strains were characterized with sequence type (ST), spa type (t) and Staphylococcal Cassette Chromosome mec type. Five different genotypes were described, including ST398-t011-IV (n = 5), ST398-t2330-IV (n = 1), ST398-t034-V (n = 1), ST225-t003-II (n = 1) and ST4894-t011-IV (n = 1). The carriage of the animal MRSA strain was confirmed in 8 cases, characteristics of one strain corresponded to the possible nosocomial origin. Among animal strains were described three spa types (t011, t034, t2330) belonging into one dominating clonal complex spa-CC11. Conclusion According to our results, the prevalence of nasal carriage of MRSA in veterinary personnel is 6.72%. Although we described an increase compared to the results of previous study (year 2008), the prevalence in the Czech Republic is still remaining lower than reported from neighboring countries. Our results also indicate that healthcare - associated MRSA strains are still not spread among animals.
Collapse
Affiliation(s)
- Katerina Neradova
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.
| | - Vladislav Jakubu
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.,National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Katarina Pomorska
- National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| | - Helena Zemlickova
- Department of Clinical Microbiology, Faculty of Medicine and University Hospital, Charles University, Hradec Kralove, Czech Republic.,National Reference Laboratory for Antibiotics, National Institute of Public Health, Prague, Czech Republic
| |
Collapse
|
42
|
MUSHTAQ MOHSINA, AGRAWAL RAJESH, BHAT MOHDALTAF, SINGH RAJIV, PANDE NISHI. Antibiotic resistance gene typing in Staphylococcus aureus isolated from bovine mastitis. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2019. [DOI: 10.56093/ijans.v89i11.95857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The study was conducted to determine the antimicrobial resistance pattern of Staphylococcus aureus isolates from bovine mastitis. Milk samples (160) collected aseptically from mastitis affected cows at organized dairy farms in and around Jammu were subjected to microbial culture for the isolation and identification of S. aureus using Baird Parker Agar. Presumptive S. aureus isolates (52) were subjected to molecular confirmation through identification of species specific (nuc) gene. In vitro antimicrobial resistance pattern of the isolates against a panel of 13 selected antibiotics, using disc diffusion technique, revealed that the isolates were mostly sensitive to enrofloxacin followed by vancomycin, ciprofloxacin, tetracycline, chloramphenicol, streptomycin, ceftriaxone, erythromycin and gentamicin whereas maximum resistance was shown towards penicillin G followed by ampicillin, amoxyclav, methicillin, gentamicin, streptomycin, erythromycin, tetracycline and ceftriaxone. Methicillin resistance (MRSA) was recorded in 32.69% S. aureus isolates out of which 41.17% isolates carried mecA gene. Among the gentamicin and tetracycline resistant S. aureus isolates, 61.53% isolates carried aacA-aphD gene and 80% isolates carried tetK gene, respectively. Multidrug resistance (MDR) was observed in 71.15% S. aureus and 82.35% MRSA isolates. In conclusion, S. aureus showed maximum sensitivity to enrofloxacin thereby suggesting the use of this drug for effective treatment of mastitis but the development of resistance against this drug cannot be ruled out in the near future, hence, there is a need for accurate diagnosis of mastitis along with the correct selection of antibiotics to prevent bovine mastitis.
Collapse
|
43
|
Jia K, Fang T, Wang X, Liu Y, Sun W, Wang Y, Ding T, Wang J, Li C, Xu D, Qiu J, Liu Q, Dong Q. Antibiotic Resistance Patterns of Staphylococcus aureus Isolates from Retail Foods in Mainland China: A Meta-Analysis. Foodborne Pathog Dis 2019; 17:296-307. [PMID: 31800332 DOI: 10.1089/fpd.2019.2686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Foodborne Staphylococcus aureus, including methicillin-resistant S. aureus (MRSA), is increasingly threatening human health. Pooled prevalence rates of S. aureus contamination have been extensively studied in retail food products in mainland China, but data regarding antibiotic resistance rates of S. aureus remain scattered. This study was designed to collect researches published between 2007 and 2017 in mainland China and to evaluate the antibiotic resistance of S. aureus from retail foods using a meta-analytic approach. We systematically searched the China National Knowledge Infrastructure (CNKI) and Web of Science databases to identify peer-reviewed literature. A number of multilevel random-effects models were fitted to estimate mean occurrence rates of antibiotic-resistant S. aureus, and subgroup analyses were performed to compare antibiotic resistance rates of S. aureus throughout the years and among the methods to determine the antimicrobial susceptibility. Among the considered antibiotics, S. aureus showed the highest resistance rate to penicillin G (87%, 95% confidence interval [CI] 83-90%), followed by ampicillin (72%, 95% CI 62-81%) and erythromycin (41%, 95% CI 36-46%). MRSA showed the highest resistance rate to ampicillin (98%, 95% CI 89-100%), followed by oxacillin (97%, 95% CI 80-100%) and penicillin G (96%, 95% CI 89-99%). Multidrug resistance (MDR) of S. aureus was most frequently observed to three antibiotics (17%, 95% CI 12-22%), and MRSA showed the highest resistance rate to four antibiotics (24%, 95% CI 5-67%). Subgroup analyses results proved that sources of heterogeneity among studies were neither publication year nor detection method. In conclusion, the meta-analysis showed that β-lactam antibiotics resistance of S. aureus and MRSA strains isolated from retail foods remained the most serious, and MDR of S. aureus and MRSA were also observed. Therefore, it is important to monitor the antibiotic resistance of S. aureus and MRSA in food chain, and food safety measures should be taken to reduce the transmission of this bacterium from foods to human beings.
Collapse
Affiliation(s)
- Kai Jia
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Taisong Fang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiang Wang
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yangtai Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wanxia Sun
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yeru Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jun Wang
- College of Food Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Changcheng Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongpo Xu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingxuan Qiu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qing Liu
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Qingli Dong
- School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
44
|
Yang F, Zhang S, Shang X, Li H, Zhang H, Cui D, Wang X, Wang L, Yan Z, Sun Y. Short communication: Detection and molecular characterization of methicillin-resistant Staphylococcus aureus isolated from subclinical bovine mastitis cases in China. J Dairy Sci 2019; 103:840-845. [PMID: 31733844 DOI: 10.3168/jds.2019-16317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/30/2019] [Indexed: 12/21/2022]
Abstract
This study investigated the antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus (MRSA) isolated from cases of subclinical bovine mastitis in China, as well as resistance mechanisms and virulence genes encoding adhesins and toxins. We determined antimicrobial susceptibility using the disk diffusion method, and analyzed resistance, adhesin, and toxin genes using PCR. We confirmed MRSA in 73 of 498 (14.7%) Staph. aureus isolates recovered from subclinical mastitic milk samples. All isolates were positive for mecA. The MRSA isolates showed high resistance to penicillin (100.0%), gentamicin (100.0%), and tetracycline (98.6%). All MRSA isolates harbored resistance genes blaZ (penicillin), aacA/aphD (gentamicin), and tetM (alone or in combination with tetK, tetracycline). Moreover, all isolates carried the adhesin genes fnbpA, clfA, clfB, cna, sdrE, and map/eap, and most carried sdrC (98.6%), sdrD (95.9%), bbp (94.5%), and ebpS (80.8%). The toxin genes seh, hla, and hld were present in all isolates, and most isolates carried sea (71.2%), seg (84.9%), sei (82.2%), lukE-lukD (97.3%), and hlg (72.6%). These findings of high-level resistance to antimicrobials commonly used in dairy cattle should lead to calls for antibiogram analysis before antimicrobial therapy. The high frequency of adhesin and toxin genes in MRSA indicates their potential virulence in bovine mastitis in China.
Collapse
Affiliation(s)
- Feng Yang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China.
| | - Shidong Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Xiaofei Shang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Hongsheng Li
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Hang Zhang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Dongan Cui
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Xurong Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Ling Wang
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Zuoting Yan
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China
| | - Yan Sun
- Engineering and Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Science, Lanzhou 730050, PR China.
| |
Collapse
|
45
|
Abdi RD, Dunlap JR, Gillespie BE, Ensermu DB, Almeida RA, Kerro Dego O. Comparison of Staphylococcus aureus surface protein extraction methods and immunogenicity. Heliyon 2019; 5:e02528. [PMID: 31687478 PMCID: PMC6820086 DOI: 10.1016/j.heliyon.2019.e02528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 07/05/2019] [Accepted: 09/24/2019] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus is the major contagious bovine mastitis pathogen and has no effective vaccine. Strain variation and limited knowledge of common immunogenic antigen/s are among major constraints for developing effective vaccines. S. aureus cell surface proteins that are exposed to the host immune system constitute good vaccine candidates. The objective of this study was to compare two novel S. aureus surface protein extraction methods with biotinylation method and evaluate immune-reactivity of extracted proteins. Surface proteins were extracted from nine genetically distinct S. aureus strains from cases of bovine mastitis. After extraction, bacterial cell integrity was examined by Gram staining and electron microscopy to determine if extraction methods caused damage to cells that may release non-surface proteins. The extracted proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and evaluated for immune-reactivity using western blot. Results showed that all three extraction methods provided multiple protein bands on SDS-PAGE. Western blot result showed several immunoreactive surface proteins, in which some proteins strongly (well-resolved, thick, dark, and intense band) reacted across the nine strains tested. The three methods are valid for the extraction of surface proteins and hexadecane, and cholic acid methods are more feasible than biotinylation since both are easier, cheaper, and have minor effects on the bacterial cell. Strongly immune-reactive surface proteins may serve as potential candidates for a vaccine to control S. aureus mastitis in dairy cows.
Collapse
Affiliation(s)
- Reta Duguma Abdi
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY11548, United States
| | - John R. Dunlap
- Joint Institute for Advanced Materials (JIAM) Microscopy Center and Advanced Microscopy and Imaging Center, The University of Tennessee, Knoxville, TN, 37996, United States
| | - Barbara E. Gillespie
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Desta Beyene Ensermu
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Raul Antonio Almeida
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN37966, United States
- Corresponding author.
| |
Collapse
|
46
|
Chen Y, Wang Y, Yang M, Guo MY. Allicin Inhibited Staphylococcus aureus -Induced Mastitis by Reducing Lipid Raft Stability via LxRα in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10863-10870. [PMID: 31507180 DOI: 10.1021/acs.jafc.9b04378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mastitis, inflammation of the mammary gland, occurs in both humans and animals. Staphylococcus aureus is the most common infectious bacterial pathogen associated with mastitis. We investigated the effects of allicin on S. aureus-induced mastitis in mice. Pathological histology revealed that allicin inhibited S. aureus-induced pathological damage and myeloperoxidase activity in mammary tissues. Enzyme-linked immunosorbent assays demonstrated that allicin reduced the production of IL-1β and TNF-α as well as inhibited the NF-κB and mitogen-activated protein kinase pathway by reducing phosphorylation of p65, IκBα, p38, JNK, and ERK. Western blotting revealed that allicin reduced TLR2 and TLR6 expression in mammary tissues and cells but not in HEK293 cells. The lipid raft content was reduced by allicin, which inhibited signaling downstream of TLR2 and TLR6. Liver X receptor α (LXRα) luciferase reporter assays and LXRα interference experiments showed that allicin improved the LXRα activity and adenosine 5'-triphosphate-binding cassette G and A1 (ABCG and ABCA1) expression, thereby reducing the cholesterol level, lipid raft formation, and downstream TLR2 and TLR6 pathway activity. These results demonstrated that allicin exerted anti-inflammatory effects against S. aureus mastitis by improving the LXRα activity and reducing lipid raft formation.
Collapse
Affiliation(s)
- Yu Chen
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Ying Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Mei Yang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| | - Meng-Yao Guo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine , Huazhong Agricultural University , Wuhan 430070 , People's Republic of China
| |
Collapse
|
47
|
Neamah AJ, Ayyez HN, Klaif SF, Khudhair YI, Hussain MH. Molecular and phylogenetic study of Staphylococcus aureus isolated from human and cattle of Al-Qadisiyah Governorate, Iraq. Vet World 2019; 12:1378-1382. [PMID: 31749570 PMCID: PMC6813604 DOI: 10.14202/vetworld.2019.1378-1382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/29/2019] [Indexed: 01/05/2023] Open
Abstract
AIM This study was designed to detect the prevalence of Staphylococcus aureus, to estimate the frequency of methicillin resistance gene (mecA), femA (specific gene for S. aureus), and lukS gene, and the prevalence of urinary tract infection (UTI) in human and bovine mastitis caused by S. aureus. MATERIALS AND METHODS A total of 102 cases of S. aureus were included in this study; 72 specimens were isolated from human with UTIs and 30 specimens were isolated from milk of cattle with acute mastitis. Diagnosis was done by VITEK 2 Compact after subculture and purification. All isolates were examined for the presence of mecA, femA, and lukS (Panton-Valentine leukocidin) using multiplex polymerase chain reaction. RESULTS Culture and biochemical evaluation of the samples revealed the presence of S. aureus, among which the genes mecA, femA, and lukS were positively detected in 68 (94.4%), 36 (50%), and 20 (27.7%) of S. aureus isolates from methicillin-resistant humans, respectively. In the same manner, the genes mecA, femA, and lukS were positively detected in 27 (90%), 14 (46.7%), and 11 (36.7%) of S. aureus isolates from methicillin-resistant cattle. Sequencing of partial order of femA gene isolated from human isolate and from cattle with mecA isolated from human revealed high sequence identity with the National Center for Biotechnology Information (NCBI)-Basic Local Alignment Search Tool. S. aureus isolates and the phylogenetic analysis showed that there was a significant genetic similarity (0.5 genetic change) between human and animals isolates, and then, the gene sequences were deposited into NCBI-Genbank accession numbers MG696860.1 for mecA and femA from human, MG696861.1 for mecA and femA from cattle, MK474469.1 for mecA and femA gene from human, and MG696862.1 for mecA and femA gene from cattle. CONCLUSION The study represents the first report of genetic relationship between S. aureus from humans and cattle of Iraq. Therefore, it is essential to define the role of animals as an important source of the distribution of pathogen related to public health. The continuous monitoring of methicillin susceptibility pattern of S. aureus isolates that have high standards of infections might prevent methicillin-resistant S. aureus transmission in either direction between human and cattle, the risk of dairy milk on humans, or self-direction between the same species.
Collapse
Affiliation(s)
- Ahmed Jasim Neamah
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Hayder Naji Ayyez
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Saba Falah Klaif
- Unit of Zoonotic Diseases, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Yahia Ismail Khudhair
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| | - Muthanna Hadi Hussain
- Department of Internal and Preventive Medicine, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah, Iraq
| |
Collapse
|
48
|
Schnitt A, Tenhagen BA. Risk Factors for the Occurrence of Methicillin-Resistant Staphylococcus aureus in Dairy Herds: An Update. Foodborne Pathog Dis 2019; 17:585-596. [PMID: 31433237 PMCID: PMC7549011 DOI: 10.1089/fpd.2019.2638] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In dairy cows, Staphylococcus aureus is a major mastitis pathogen and methicillin-resistant S. aureus (MRSA) has been reported from dairy farms around the world. The risk of foodborne zoonotic infections with bovine MRSA strains seems to be low since MRSA prevalence is low in dairy herds and milk is commonly heat treated before consumption. However, bovine mastitis caused by MRSA is an important issue in veterinary medicine since treatment options with non-β-lactam antibiotics are limited. For the development of effective MRSA prevention strategies, it is necessary to know which factors increase the risk for MRSA transmission into and within dairy herds. Therefore, the aim of this review is to summarize the risk factors for the occurrence of MRSA in dairy herds and to identify the respective knowledge gaps. MRSA was more frequently detected in conventional dairy farms than in organic farms and in larger farms than in smaller farms. Dairy farms housing pigs along with cattle are more frequently affected by MRSA. Moreover, humans carrying MRSA can probably infect dairy cows. Consequently, pigs and humans may introduce new MRSA strains into dairy herds. MRSA transmission within dairy herds was associated with improper milking hygiene procedures. Furthermore, methicillin-resistant coagulase-negative staphylococci (MR-CoNS) were repeatedly isolated from dairy farms. This is an important issue since MR-CoNS may transfer resistance genes to S. aureus. The role of antimicrobial exposure as a risk factor for the occurrence of MRSA within dairy herds needs to be further investigated.
Collapse
Affiliation(s)
- Arne Schnitt
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Bernd-Alois Tenhagen
- Department Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
49
|
Abdi RD, Kerro Dego O. Antimicrobial activity of Persicaria pensylvanica extract against Staphylococcus aureus. Eur J Integr Med 2019. [DOI: 10.1016/j.eujim.2019.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Merrill C, Ensermu DB, Abdi RD, Gillespie BE, Vaughn J, Headrick SI, Hash K, Walker TB, Stone E, Kerro Dego O. Immunological responses and evaluation of the protection in dairy cows vaccinated with staphylococcal surface proteins. Vet Immunol Immunopathol 2019; 214:109890. [PMID: 31378218 DOI: 10.1016/j.vetimm.2019.109890] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/18/2022]
Abstract
Bovine mastitis is a significant cause of economic losses in the dairy industry. Staphylococcus aureus is one of the most common contagious mastitis pathogens, whereas Staphylococcus chromogenes increasingly became a significant cause of subclinical mastitis in dairy cows. Current mastitis control measures are not effective on all mastitis pathogens. There is no effective vaccine to control Staphylococcal mastitis in dairy cows. The objective of this study was to evaluate the immune responses and protection in dairy cows vaccinated with S. aureus surface proteins (SASP) or S. chromogenes surface proteins (SCSP). We divided eighteen Holstein dairy cows randomly into three groups of 6 animals each. We vaccinated group 1 and 2 animals with SASP and SCSP with Emulsigen-D adjuvant, respectively. We injected control (group 3) animals with PBS (pH 7.2) in Emulsigen®-D. We vaccinated animals three times at 28 and 14 days before drying off, and at dry off. Two weeks after the third vaccination, we challenged each animal by dipping all teats in S. aureus culture suspension once daily for 14 consecutive days. We evaluated milk or mammary secretion and serum antibody titers during vaccination and challenge periods. We evaluated milk samples for the number of bacteria shedding and somatic cell counts (SCC). Out of six cows vaccinated with SASP, one cow was removed from the study due to injury, two were infected clinically, another two were infected subclinically, and the remaining cow was not infected. No SCSP vaccinated cows developed clinical or subclinical mastitis. Out of six control cows, two developed clinical mastitis whereas four were infected subclinically. The SCSP vaccine cross-protected against S. aureus mastitis and reduced number of S. aureus shedding in milk. We concluded that the SCSP is a promising vaccine to control Staphylococcal mastitis in dairy cows.
Collapse
Affiliation(s)
- C Merrill
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA
| | - D B Ensermu
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA
| | - R D Abdi
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA; Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, Long Island University, Greenvale, NY11548, USA(1)
| | - B E Gillespie
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA
| | - J Vaughn
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA
| | - S I Headrick
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA
| | - K Hash
- The University of Tennessee, East Tennessee Research and Education Center-Little River Animal and Environmental Unit, Walland, TN, USA
| | - T B Walker
- The University of Tennessee, East Tennessee Research and Education Center-Little River Animal and Environmental Unit, Walland, TN, USA
| | - E Stone
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA
| | - O Kerro Dego
- The University of Tennessee, Department of Animal Science, Knoxville, TN, USA.
| |
Collapse
|