1
|
Zhou Y, Ye Z, Wei W, Zhang M, Huang F, Li J, Cai C. Macrophages maintain mammary stem cell activity and mammary homeostasis via TNF-α-PI3K-Cdk1/Cyclin B1 axis. NPJ Regen Med 2023; 8:23. [PMID: 37130846 PMCID: PMC10154328 DOI: 10.1038/s41536-023-00296-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Adult stem cell niche is a special environment composed of a variety stromal cells and signals, which cooperatively regulate tissue development and homeostasis. It is of great interest to study the role of immune cells in niche. Here, we show that mammary resident macrophages regulate mammary epithelium cell division and mammary development through TNF-α-Cdk1/Cyclin B1 axis. In vivo, depletion of macrophages reduces the number of mammary basal cells and mammary stem cells (MaSCs), while increases mammary luminal cells. In vitro, we establish a three-dimensional culture system in which mammary basal cells are co-cultured with macrophages, and interestingly, macrophage co-culture promotes the formation of branched functional mammary organoids. Moreover, TNF-α produced by macrophages activates the intracellular PI3K/Cdk1/Cyclin B1 signaling in mammary cells, thereby maintaining the activity of MaSCs and the formation of mammary organoids. Together, these findings reveal the functional significance of macrophageal niche and intracellular PI3K/Cdk1/Cyclin B1 axis for maintaining MaSC activity and mammary homeostasis.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ye
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Wei Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Mengna Zhang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Fujing Huang
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jinpeng Li
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
| | - Cheguo Cai
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan, 430071, China.
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China.
| |
Collapse
|
2
|
Tower H, Dall G, Davey A, Stewart M, Lanteri P, Ruppert M, Lambouras M, Nasir I, Yeow S, Darcy PK, Ingman WV, Parker B, Haynes NM, Britt KL. Estrogen-induced immune changes within the normal mammary gland. Sci Rep 2022; 12:18986. [PMID: 36347875 PMCID: PMC9643548 DOI: 10.1038/s41598-022-21871-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 10/05/2022] [Indexed: 11/09/2022] Open
Abstract
Breast cancer (BCa) incidence increases following aberrant hormone exposure, which has been linked to direct effects on estrogen receptor (ER)+ mammary epithelium. While estrogen exposure during mammary involution has been shown to drive tumour growth via neutrophils, the potential for the ER + immune microenvironment to mediate part (in addition to mammary epithelial cells) of hormonally controlled BCa risk during normal development has not been assessed. We collected mammary tissue, lymph nodes and blood from tumour naïve mice treated with, oophorectomy, estrogen (17β estradiol) or Fulvestrant. Flow cytometry was used to examine the impact on the frequency of innate and adaptive immune cells. Oophorectomy and fulvestrant decreased the proportion of macrophages, particularly pro-tumour polarized M2 macrophages and neutrophils. Conversely, dendritic cells were increased by these therapies, as were eosinophils. Estrogen increased the proportion of M2 macrophages and to a lesser extent CD4-CD8- double negative and FoxP3+ regulatory T cells but decreased CD8 + T cells and B cells. Excluding eosinophils, these changes were restricted to the mammary tissue. This suggests that inhibiting estrogen action lowers the immune suppressive myeloid cells, increases in antigen presentation and eosinophil-mediated direct or indirect cytotoxic effects. In contrast, estrogen exposure, which drives BCa risk, increases the suppressive myeloid cells and reduces anti-tumour cytotoxic T cells. The impact of hormonal exposure on BCa risk, may in part be linked to its immune modulatory activity.
Collapse
Affiliation(s)
- Helen Tower
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Genevieve Dall
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia
| | - Ashleigh Davey
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1042.70000 0004 0432 4889Structural Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, 5052 Australia
| | - Melanie Stewart
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Patrick Lanteri
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Meagan Ruppert
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Maria Lambouras
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia
| | - Ibraheem Nasir
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Serene Yeow
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - Phillip K. Darcy
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Wendy V. Ingman
- grid.1010.00000 0004 1936 7304Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011 Australia ,grid.1010.00000 0004 1936 7304Robinson Research Institute, University of Adelaide, Adelaide, SA 5005 Australia
| | - Belinda Parker
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Evolution and Metastasis Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Nicole M. Haynes
- grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia ,grid.1055.10000000403978434Cancer Therapeutics Program, Peter MacCallum Cancer Centre, Melbourne, VIC Australia
| | - Kara L. Britt
- grid.1055.10000000403978434Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000 Australia ,grid.1002.30000 0004 1936 7857Department of Anatomy and Developmental Biology, Monash University Clayton, Wellington Rd, Clayton, 3800 Australia ,grid.1008.90000 0001 2179 088XSir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Melbourne, VIC Australia
| |
Collapse
|
3
|
Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27:185-210. [PMID: 35904679 DOI: 10.1007/s10911-022-09522-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022] Open
Abstract
Mammary cancer, or breast cancer in women, is a polygenic disease with a complex etiopathogenesis. While much remains elusive regarding its origin, it is well established that chemical carcinogens and endogenous estrogens contribute significantly to the initiation and progression of this disease. Rats have been useful models to study induced mammary cancer. They develop mammary tumors with comparable histopathology to humans and exhibit differences in resistance or susceptibility to mammary cancer depending on strain. While some rat strains (e.g., Sprague-Dawley) readily form mammary tumors following treatment with the chemical carcinogen, 7,12-dimethylbenz[a]-anthracene (DMBA), other strains (e.g., Copenhagen) are resistant to DMBA-induced mammary carcinogenesis. Genetic linkage in inbred strains has identified strain-specific quantitative trait loci (QTLs) affecting mammary tumors, via mechanisms that act together to promote or attenuate, and include 24 QTLs controlling the outcome of chemical induction, 10 QTLs controlling the outcome of estrogen induction, and 4 QTLs controlling the outcome of irradiation induction. Moreover, and based on shared factors affecting mammary cancer etiopathogenesis between rats and humans, including orthologous risk regions between both species, rats have served as useful models for identifying methods for breast cancer prediction and treatment. These studies in rats, combined with alternative animal models that more closely mimic advanced stages of breast cancer and/or human lifestyles, will further improve our understanding of this complex disease.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
4
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
5
|
Archer M, Dasari P, Walsh D, Britt KL, Evdokiou A, Ingman WV. Immune Regulation of Mammary Fibroblasts and the Impact of Mammographic Density. J Clin Med 2022; 11:jcm11030799. [PMID: 35160252 PMCID: PMC8837019 DOI: 10.3390/jcm11030799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Mammographic density is associated with a 4–6-fold increase in breast cancer risk independent of age and BMI. High mammographic density is characterized by breast tissue with high proportions of stroma comprised of fibroblasts, collagen, and immune cells. This study sought to investigate whether stromal fibroblasts from high mammographic density breast tissue contributes to increased extracellular matrix deposition and pro-tumorigenic signaling. Mammary fibroblasts were isolated from women with high and low mammographic density and exposed to immune factors myeloperoxidase (MPO), eosinophil peroxidase (EPO), transforming growth factor beta 1 (TGFB1) and tumour necrosis factor alpha (TNFA) for 72 h and profiled for expression of cancer-associated fibroblast and extracellular matrix regulation markers. No differences in gene expression profiles or collagen production were observed between fibroblasts with high or low mammographic density, and they did not have a differential response to immune mediators. MPO and EPO significantly increased the production of collagen 1. TGFB and TNFA induced variable changes in gene expression. Fibroblasts cultured in vitro from women with high mammographic density do not appear to be inherently different to those from women with low mammographic density. The function of fibroblasts in mammographic density-associated breast cancer risk is likely to be regulated by immune signals from surrounding cells in the microenvironment.
Collapse
Affiliation(s)
- Maddison Archer
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
| | - Pallave Dasari
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
| | - David Walsh
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
| | - Kara L. Britt
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
| | - Andreas Evdokiou
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
| | - Wendy V. Ingman
- Discipline of Surgical Specialties, Adelaide Medical School, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, SA 5011, Australia; (M.A.); (P.D.); (D.W.); (A.E.)
- Robinson Research Institute, University of Adelaide, Adelaide, SA 5001, Australia
- Correspondence: ; Tel.: +61-882-226-141
| |
Collapse
|
6
|
Nachmanson D, Officer A, Mori H, Gordon J, Evans MF, Steward J, Yao H, O'Keefe T, Hasteh F, Stein GS, Jepsen K, Weaver DL, Hirst GL, Sprague BL, Esserman LJ, Borowsky AD, Stein JL, Harismendy O. The breast pre-cancer atlas illustrates the molecular and micro-environmental diversity of ductal carcinoma in situ. NPJ Breast Cancer 2022; 8:6. [PMID: 35027560 PMCID: PMC8758681 DOI: 10.1038/s41523-021-00365-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022] Open
Abstract
Microenvironmental and molecular factors mediating the progression of Breast Ductal Carcinoma In Situ (DCIS) are not well understood, impeding the development of prevention strategies and the safe testing of treatment de-escalation. We addressed methodological barriers and characterized the mutational, transcriptional, histological, and microenvironmental landscape across 85 multiple microdissected regions from 39 cases. Most somatic alterations, including whole-genome duplications, were clonal, but genetic divergence increased with physical distance. Phenotypic and subtype heterogeneity was frequently associated with underlying genetic heterogeneity and regions with low-risk features preceded those with high-risk features according to the inferred phylogeny. B- and T-lymphocytes spatial analysis identified three immune states, including an epithelial excluded state located preferentially at DCIS regions, and characterized by histological and molecular features of immune escape, independently from molecular subtypes. Such breast pre-cancer atlas with uniquely integrated observations will help scope future expansion studies and build finer models of outcomes and progression risk.
Collapse
Affiliation(s)
- Daniela Nachmanson
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Adam Officer
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Hidetoshi Mori
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Jonathan Gordon
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Mark F Evans
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Joseph Steward
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
| | - Huazhen Yao
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Thomas O'Keefe
- Department of Surgery, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Farnaz Hasteh
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA
- Department of Pathology, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Gary S Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Kristen Jepsen
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA
| | - Donald L Weaver
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Pathology and Laboratory Medicine, University of Vermont, Burlington, VT, 05405, USA
| | - Gillian L Hirst
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Brian L Sprague
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Surgery, University of Vermont, Burlington, VT, 05405, USA
| | - Laura J Esserman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd St, San Francisco, CA, 94158, USA
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, Center for Immunology and Infectious Diseases, School of Medicine, University of California Davis, 2315 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Janet L Stein
- University of Vermont Cancer Center, 111 Colchester Avenue Main Campus, Main Pavillion, Level, 2, Burlington, VT, 05401, USA
- Department of Biochemistry, University of Vermont, Burlington, VT, 05405, USA
| | - Olivier Harismendy
- Division of Biomedical Informatics, Department of Medicine, University of California San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, San Diego, CA, 92093, USA.
| |
Collapse
|
7
|
Wang CC. Metabolic Stress Adaptations Underlie Mammary Gland Morphogenesis and Breast Cancer Progression. Cells 2021; 10:2641. [PMID: 34685621 PMCID: PMC8534177 DOI: 10.3390/cells10102641] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Breast cancers display dynamic reprogrammed metabolic activities as cancers develop from premalignant lesions to primary tumors, and then metastasize. Numerous advances focus on how tumors develop pro-proliferative metabolic signaling that differs them from adjacent, non-transformed epithelial tissues. This leads to targetable oncogene-driven liabilities among breast cancer subtypes. Other advances demonstrate how microenvironments trigger stress-response at single-cell resolution. Microenvironmental heterogeneities give rise to cell regulatory states in cancer cell spheroids in three-dimensional cultures and at stratified terminal end buds during mammary gland morphogenesis, where stress and survival signaling juxtapose. The cell-state specificity in stress signaling networks recapture metabolic evolution during cancer progression. Understanding lineage-specific metabolic phenotypes in experimental models is useful for gaining a deeper understanding of subtype-selective breast cancer metabolism.
Collapse
Affiliation(s)
- Chun-Chao Wang
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan; ; Tel.: +886-3-516-2589
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Wang DK, Zuo Q, He QY, Li B. Targeted Immunotherapies in Gastrointestinal Cancer: From Molecular Mechanisms to Implications. Front Immunol 2021; 12:705999. [PMID: 34447376 PMCID: PMC8383067 DOI: 10.3389/fimmu.2021.705999] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal cancer is a leading cause of cancer-related mortality and remains a major challenge for cancer treatment. Despite the combined administration of modern surgical techniques and chemoradiotherapy (CRT), the overall 5-year survival rate of gastrointestinal cancer patients in advanced stage disease is less than 15%, due to rapid disease progression, metastasis, and CRT resistance. A better understanding of the mechanisms underlying cancer progression and optimized treatment strategies for gastrointestinal cancer are urgently needed. With increasing evidence highlighting the protective role of immune responses in cancer initiation and progression, immunotherapy has become a hot research topic in the integrative management of gastrointestinal cancer. Here, an overview of the molecular understanding of colorectal cancer, esophageal cancer and gastric cancer is provided. Subsequently, recently developed immunotherapy strategies, including immune checkpoint inhibitors, chimeric antigen receptor T cell therapies, tumor vaccines and therapies targeting other immune cells, have been described. Finally, the underlying mechanisms, fundamental research and clinical trials of each agent are discussed. Overall, this review summarizes recent advances and future directions for immunotherapy for patients with gastrointestinal malignancies.
Collapse
Affiliation(s)
| | | | | | - Bin Li
- Ministry of Education (MOE), Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Pubertal mammary gland development is a key determinant of adult mammographic density. Semin Cell Dev Biol 2020; 114:143-158. [PMID: 33309487 DOI: 10.1016/j.semcdb.2020.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Mammographic density refers to the radiological appearance of fibroglandular and adipose tissue on a mammogram of the breast. Women with relatively high mammographic density for their age and body mass index are at significantly higher risk for breast cancer. The association between mammographic density and breast cancer risk is well-established, however the molecular and cellular events that lead to the development of high mammographic density are yet to be elucidated. Puberty is a critical time for breast development, where endocrine and paracrine signalling drive development of the mammary gland epithelium, stroma, and adipose tissue. As the relative abundance of these cell types determines the radiological appearance of the adult breast, puberty should be considered as a key developmental stage in the establishment of mammographic density. Epidemiological studies have pointed to the significance of pubertal adipose tissue deposition, as well as timing of menarche and thelarche, on adult mammographic density and breast cancer risk. Activation of hypothalamic-pituitary axes during puberty combined with genetic and epigenetic molecular determinants, together with stromal fibroblasts, extracellular matrix, and immune signalling factors in the mammary gland, act in concert to drive breast development and the relative abundance of different cell types in the adult breast. Here, we discuss the key cellular and molecular mechanisms through which pubertal mammary gland development may affect adult mammographic density and cancer risk.
Collapse
|
10
|
Aging-Associated Alterations in Mammary Epithelia and Stroma Revealed by Single-Cell RNA Sequencing. Cell Rep 2020; 33:108566. [PMID: 33378681 PMCID: PMC7898263 DOI: 10.1016/j.celrep.2020.108566] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Aging is closely associated with increased susceptibility to breast cancer, yet there have been limited systematic studies of aging-induced alterations in the mammary gland. Here, we leverage high-throughput single-cell RNA sequencing to generate a detailed transcriptomic atlas of young and aged murine mammary tissues. By analyzing epithelial, stromal, and immune cells, we identify age-dependent alterations in cell proportions and gene expression, providing evidence that suggests alveolar maturation and physiological decline. The analysis also uncovers potential pro-tumorigenic mechanisms coupled to the age-associated loss of tumor suppressor function and change in microenvironment. In addition, we identify a rare, age-dependent luminal population co-expressing hormone-sensing and secretory-alveolar lineage markers, as well as two macrophage populations expressing distinct gene signatures, underscoring the complex heterogeneity of the mammary epithelia and stroma. Collectively, this rich single-cell atlas reveals the effects of aging on mammary physiology and can serve as a useful resource for understanding aging-associated cancer risk. Using single-cell RNA-sequencing, Li et al. compare mammary epithelia and stroma in young and aged mice. Age-dependent changes at cell and gene levels provide evidence suggesting alveolar maturation, functional deterioration, and potential pro-tumorigenic and inflammatory alterations. Additionally, identification of heterogeneous luminal and macrophage subpopulations underscores the complexity of mammary lineages.
Collapse
|
11
|
Abstract
Despite decades of laboratory, epidemiological and clinical research, breast cancer incidence continues to rise. Breast cancer remains the leading cancer-related cause of disease burden for women, affecting one in 20 globally and as many as one in eight in high-income countries. Reducing breast cancer incidence will likely require both a population-based approach of reducing exposure to modifiable risk factors and a precision-prevention approach of identifying women at increased risk and targeting them for specific interventions, such as risk-reducing medication. We already have the capacity to estimate an individual woman's breast cancer risk using validated risk assessment models, and the accuracy of these models is likely to continue to improve over time, particularly with inclusion of newer risk factors, such as polygenic risk and mammographic density. Evidence-based risk-reducing medications are cheap, widely available and recommended by professional health bodies; however, widespread implementation of these has proven challenging. The barriers to uptake of, and adherence to, current medications will need to be considered as we deepen our understanding of breast cancer initiation and begin developing and testing novel preventives.
Collapse
Affiliation(s)
- Kara L Britt
- Breast Cancer Risk and Prevention Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia.
| | - Jack Cuzick
- Centre for Cancer Prevention, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Kelly-Anne Phillips
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
12
|
Avagliano A, Fiume G, Ruocco MR, Martucci N, Vecchio E, Insabato L, Russo D, Accurso A, Masone S, Montagnani S, Arcucci A. Influence of Fibroblasts on Mammary Gland Development, Breast Cancer Microenvironment Remodeling, and Cancer Cell Dissemination. Cancers (Basel) 2020; 12:E1697. [PMID: 32604738 PMCID: PMC7352995 DOI: 10.3390/cancers12061697] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The stromal microenvironment regulates mammary gland development and tumorigenesis. In normal mammary glands, the stromal microenvironment encompasses the ducts and contains fibroblasts, the main regulators of branching morphogenesis. Understanding the way fibroblast signaling pathways regulate mammary gland development may offer insights into the mechanisms of breast cancer (BC) biology. In fact, the unregulated mammary fibroblast signaling pathways, associated with alterations in extracellular matrix (ECM) remodeling and branching morphogenesis, drive breast cancer microenvironment (BCM) remodeling and cancer growth. The BCM comprises a very heterogeneous tissue containing non-cancer stromal cells, namely, breast cancer-associated fibroblasts (BCAFs), which represent most of the tumor mass. Moreover, the different components of the BCM highly interact with cancer cells, thereby generating a tightly intertwined network. In particular, BC cells activate recruited normal fibroblasts in BCAFs, which, in turn, promote BCM remodeling and metastasis. Thus, comparing the roles of normal fibroblasts and BCAFs in the physiological and metastatic processes, could provide a deeper understanding of the signaling pathways regulating BC dissemination. Here, we review the latest literature describing the structure of the mammary gland and the BCM and summarize the influence of epithelial-mesenchymal transition (EpMT) and autophagy in BC dissemination. Finally, we discuss the roles of fibroblasts and BCAFs in mammary gland development and BCM remodeling, respectively.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, 80131 Naples, Italy;
| | - Nunzia Martucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, 88100 Catanzaro, Italy; (G.F.); (E.V.)
| | - Luigi Insabato
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Daniela Russo
- Anatomic Pathology Unit, Department of Advanced Biomedical Sciences, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (L.I.); (D.R.)
| | - Antonello Accurso
- Department of General, Oncological, Bariatric and Endocrine-Metabolic Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Masone
- Department of Clinical Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy;
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy; (N.M.); (S.M.)
| |
Collapse
|
13
|
Houthuijzen JM, Jonkers J. Cancer-associated fibroblasts as key regulators of the breast cancer tumor microenvironment. Cancer Metastasis Rev 2019; 37:577-597. [PMID: 30465162 DOI: 10.1007/s10555-018-9768-3] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tumor cells exist in close proximity with non-malignant cells. Extensive and multilayered crosstalk between tumor cells and stromal cells tailors the tumor microenvironment (TME) to support survival, growth, and metastasis. Fibroblasts are one of the largest populations of non-malignant host cells that can be found within the TME of breast, pancreatic, and prostate tumors. Substantial scientific evidence has shown that these cancer-associated fibroblasts (CAFs) are not only associated with tumors by proximity but are also actively recruited to developing tumors where they can influence other cells of the TME as well as influencing tumor cell survival and metastasis. This review discusses the impact of CAFs on breast cancer biology and highlights their heterogeneity, origin and their role in tumor progression, ECM remodeling, therapy resistance, metastasis, and the challenges ahead of targeting CAFs to improve therapy response.
Collapse
Affiliation(s)
- J M Houthuijzen
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - J Jonkers
- Department of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Prolyl-4-hydroxylase Α subunit 2 (P4HA2) expression is a predictor of poor outcome in breast ductal carcinoma in situ (DCIS). Br J Cancer 2018; 119:1518-1526. [PMID: 30410060 PMCID: PMC6288166 DOI: 10.1038/s41416-018-0337-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/09/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022] Open
Abstract
Background Extracellular matrix (ECM) plays a crucial role in tumour behaviour. Prolyl-4-hydroxlase-A2 (P4HA2) is a key enzyme in ECM remodelling. This study aims to evaluate the prognostic significance of P4HA2 in breast ductal carcinoma in situ (DCIS). Methods P4HA2 expression was assessed immunohistochemically in malignant cells and surrounding stroma of a large DCIS cohort comprising 481 pure DCIS and 196 mixed DCIS and invasive carcinomas. Outcome analysis was evaluated using local recurrence free interval (LRFI). Results High P4HA2 expression was detected in malignant cells of half of pure DCIS whereas its expression in stroma was seen in 25% of cases. Higher P4HA2 expression was observed in mixed DCIS cases compared to pure DCIS both in tumour cells and in stroma. High P4HA2 was associated with features of high risk DCIS including younger age, higher grade, comedo necrosis, triple negative and HER2-positive phenotypes. Interaction between P4HA2 and radiotherapy was also observed regarding the outcome. High P4HA2 expression was an independent prognostic factor in predicting shorter LRFI. Conclusion P4HA2 plays a role in DCIS progression and can potentially be used to predict DCIS outcome. Incorporation of P4HA2 with other clinicopathological parameters could refine DCIS risk stratification that can potentially guide management decisions.
Collapse
|
15
|
Huo CW, Hill P, Chew G, Neeson PJ, Halse H, Williams ED, Henderson MA, Thompson EW, Britt KL. High mammographic density in women is associated with protumor inflammation. Breast Cancer Res 2018; 20:92. [PMID: 30092832 PMCID: PMC6085707 DOI: 10.1186/s13058-018-1010-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 06/27/2018] [Indexed: 01/27/2023] Open
Abstract
Background Epidemiological studies have consistently shown that increased mammographic density (MD) is a strong risk factor for breast cancer. We previously observed an elevated number of vimentin+/CD45+ leukocytes in high MD (HMD) epithelium. In the present study, we aimed to investigate the subtypes of immune cell infiltrates in HMD and low MD (LMD) breast tissue. Methods Fifty-four women undergoing prophylactic mastectomy at Peter MacCallum Cancer Centre or St. Vincent’s Hospital were enrolled. Upon completion of mastectomy, HMD and LMD areas were resected under radiological guidance in collaboration with BreastScreen Victoria and were subsequently fixed, processed, and sectioned. Fifteen paired HMD and LMD specimens were further selected according to their fibroglandular characteristics (reasonable amount [> 20%] of tissue per block on H&E stains) for subsequent IHC analysis of immune cell infiltration. Results Overall, immune cell infiltrates were predominantly present in breast ducts and lobules rather than in the stroma, with CD68+ macrophages and CD20+ B lymphocytes also surrounding the vasculature. Macrophages, dendritic cells (DCs), B lymphocytes, and programmed cell death protein 1 (PD-1) expression were significantly increased in HMD epithelium compared with LMD. Moreover, significantly higher levels of DCs, CD4+ T cells, and PD-1 were also observed in HMD stroma than in LMD stroma. The increased expression of interleukin (IL)-6 and IL-4, with unaltered interferon-γ, indicate a proinflammatory microenvironment. Conclusions Our work indicates that the immune system may be activated very early in breast cancer development and may in part underpin the breast cancer risk associated with HMD. Electronic supplementary material The online version of this article (10.1186/s13058-018-1010-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia W Huo
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Prue Hill
- Department of Pathology, St Vincent's Hospital, Melbourne, Australia
| | - Grace Chew
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Paul J Neeson
- Pathology Department, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia.,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia
| | | | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Michael A Henderson
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Erik W Thompson
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia.,Translational Research Institute, Brisbane, Australia
| | - Kara L Britt
- Peter MacCallum Cancer Centre, Melbourne, Australia. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
16
|
Chakrabarti R, Celià-Terrassa T, Kumar S, Hang X, Wei Y, Choudhury A, Hwang J, Peng J, Nixon B, Grady JJ, DeCoste C, Gao J, van Es JH, Li MO, Aifantis I, Clevers H, Kang Y. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche. Science 2018; 360:science.aan4153. [PMID: 29773667 DOI: 10.1126/science.aan4153] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 01/04/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
The stem cell niche is a specialized environment that dictates stem cell function during development and homeostasis. We show that Dll1, a Notch pathway ligand, is enriched in mammary gland stem cells (MaSCs) and mediates critical interactions with stromal macrophages in the surrounding niche in mouse models. Conditional deletion of Dll1 reduced the number of MaSCs and impaired ductal morphogenesis in the mammary gland. Moreover, MaSC-expressed Dll1 activates Notch signaling in stromal macrophages, increasing their expression of Wnt family ligands such as Wnt3, Wnt10A, and Wnt16, thereby initiating a feedback loop that promotes the function of Dll1-expressing MaSCs. Together, these findings reveal functionally important cross-talk between MaSCs and their macrophageal niche through Dll1-mediated Notch signaling.
Collapse
Affiliation(s)
- Rumela Chakrabarti
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. .,Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Toni Celià-Terrassa
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Sushil Kumar
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Xiang Hang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abrar Choudhury
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Julie Hwang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jia Peng
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Briana Nixon
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - John J Grady
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Christina DeCoste
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jie Gao
- Department of Pathology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Johan H van Es
- Hubrecht Institute and University Medical Center Utrecht, Utrecht, Netherlands
| | - Ming O Li
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Iannis Aifantis
- Department of Pathology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Hans Clevers
- Department of Pathology, NYU Langone Medical Center, New York City, NY 10016, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA
| |
Collapse
|
17
|
Akers RM. TRIENNIAL LACTATION SYMPOSIUM/BOLFA: Plasticity of mammary development in the prepubertal bovine mammary gland. J Anim Sci 2018; 95:5653-5663. [PMID: 29293751 DOI: 10.2527/jas2017.1792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although peripubertal mammary development represents only a small fraction of the total mass of mammary parenchyma present in the udder at the end of gestation and into lactation, there is increasing evidence that the tissue foundations created in early life can affect future mammary development and function. Studies on expression of estrogen and progesterone receptors seem to confirm the relevance of these steroids in prepubertal mammary development, but connections with other growth factors, hormones, and local tissue factors remain elusive. Enhanced preweaning feeding in the bovine appears to enhance the capacity of mammary tissue to response to mammogenic stimulation. This suggests the possibility that improved early nutrition might allow for creation of stem or progenitor cell populations to better support the massive ductal growth and lobulo-alveolar development during gestation. Increasing evidence that immune cells are involved in mammary development suggests there are unexpected and poorly understood connections between the immune system and mammary development. This is nearly unexplored in ruminants. Development of new tools to identify, isolate, and characterize cell populations within the developing bovine mammary gland offer the possibility of identifying and perhaps altering populations of mammary stem cells or selected progenitor cells to modulate mammary development and, possibly, mammary function.
Collapse
|
18
|
Kopecka J, Porto S, Lusa S, Gazzano E, Salzano G, Pinzòn-Daza ML, Giordano A, Desiderio V, Ghigo D, De Rosa G, Caraglia M, Riganti C. Zoledronic acid-encapsulating self-assembling nanoparticles and doxorubicin: a combinatorial approach to overcome simultaneously chemoresistance and immunoresistance in breast tumors. Oncotarget 2018; 7:20753-72. [PMID: 26980746 PMCID: PMC4991490 DOI: 10.18632/oncotarget.8012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/16/2016] [Indexed: 02/07/2023] Open
Abstract
The resistance to chemotherapy and the tumor escape from host immunosurveillance are the main causes of the failure of anthracycline-based regimens in breast cancer, where an effective chemo-immunosensitizing strategy is lacking. The clinically used aminobisphosphonate zoledronic acid (ZA) reverses chemoresistance and immunoresistance in vitro. Previously we developed a nanoparticle-based zoledronic acid-containing formulation (NZ) that allowed a higher intratumor delivery of the drug compared with free ZA in vivo. We tested its efficacy in combination with doxorubicin in breast tumors refractory to chemotherapy and immune system recognition as a new combinatorial approach to produce chemo- and immunosensitization. NZ reduced the IC50 of doxorubicin in human and murine chemoresistant breast cancer cells and restored the doxorubicin efficacy against chemo-immunoresistant tumors implanted in immunocompetent mice. By reducing the metabolic flux through the mevalonate pathway, NZ lowered the activity of Ras/ERK1/2/HIF-1α axis and the expression of P-glycoprotein, decreased the glycolysis and the mitochondrial respiratory chain, induced a cytochrome c/caspase 9/caspase 3-dependent apoptosis, thus restoring the direct cytotoxic effects of doxorubicin on tumor cell. Moreover, NZ restored the doxorubicin-induced immunogenic cell death and reversed the tumor-induced immunosuppression due to the production of kynurenine, by inhibiting the STAT3/indoleamine 2,3 dioxygenase axis. These events increased the number of dendritic cells and decreased the number of immunosuppressive T-regulatory cells infiltrating the tumors. Our work proposes the use of nanoparticle encapsulating zoledronic acid as an effective tool overcoming at the same time chemoresistance and immunoresistance in breast tumors, thanks to the effects exerted on tumor cell and tumor-infiltrating immune cells.
Collapse
Affiliation(s)
- Joanna Kopecka
- Department of Oncology, University of Turin, Turin, Italy
| | - Stefania Porto
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Sara Lusa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Elena Gazzano
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppina Salzano
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA, USA
| | - Martha Leonor Pinzòn-Daza
- Department of Oncology, University of Turin, Turin, Italy.,Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, RG in Biochemistry and Biotechnology (BIO-BIO), Bogotá, Colombia
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Vincenzo Desiderio
- Department of Experimental Medicine, Second University of Naples, Naples, Italy
| | - Dario Ghigo
- Department of Oncology, University of Turin, Turin, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, Federico II University of Naples, Naples, Italy
| | - Michele Caraglia
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Chiara Riganti
- Department of Oncology, University of Turin, Turin, Italy
| |
Collapse
|
19
|
Gorringe KL, Fox SB. Ductal Carcinoma In Situ Biology, Biomarkers, and Diagnosis. Front Oncol 2017; 7:248. [PMID: 29109942 PMCID: PMC5660056 DOI: 10.3389/fonc.2017.00248] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Ductal carcinoma in situ (DCIS) is an often-diagnosed breast disease and a known, non-obligate, precursor to invasive breast carcinoma. In this review, we explore the clinical and pathological features of DCIS, fundamental elements of DCIS biology including gene expression and genetic events, the relationship of DCIS with recurrence and invasive breast cancer, and the interaction of DCIS with the microenvironment. We also survey how these various elements are being used to solve the clinical conundrum of how to optimally treat a disease that has potential to progress, and yet is also likely over-treated in a significant proportion of cases.
Collapse
Affiliation(s)
- Kylie L. Gorringe
- Cancer Genomics Program, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Stephen B. Fox
- The Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Department of Pathology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
20
|
Paine IS, Lewis MT. The Terminal End Bud: the Little Engine that Could. J Mammary Gland Biol Neoplasia 2017; 22:93-108. [PMID: 28168376 PMCID: PMC5488158 DOI: 10.1007/s10911-017-9372-0] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
The mammary gland is one of the most regenerative organs in the body, with the majority of development occurring postnatally and in the adult mammal. Formation of the ductal tree is orchestrated by a specialized structure called the terminal end bud (TEB). The TEB is responsible for the production of mature cell types leading to the elongation of the subtending duct. The TEB is also the regulatory control point for basement membrane deposition, branching, angiogenesis, and pattern formation. While the hormonal control of TEB growth is well characterized, the local regulatory factors are less well understood. Recent studies of pubertal outgrowth and ductal elongation have yielded surprising details in regards to ongoing processes in the TEB. Here we summarize the current understanding of TEB biology, discuss areas of future study, and discuss the use of the TEB as a model for the study of breast cancer.
Collapse
Affiliation(s)
- Ingrid S Paine
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael T Lewis
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Huo CW, Waltham M, Khoo C, Fox SB, Hill P, Chen S, Chew GL, Price JT, Nguyen CH, Williams ED, Henderson M, Thompson EW, Britt KL. Mammographically dense human breast tissue stimulates MCF10DCIS.com progression to invasive lesions and metastasis. Breast Cancer Res 2016; 18:106. [PMID: 27776557 PMCID: PMC5078949 DOI: 10.1186/s13058-016-0767-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/05/2016] [Indexed: 12/22/2022] Open
Abstract
Background High mammographic density (HMD) not only confers a significantly increased risk of breast cancer (BC) but also is associated with BCs of more advanced stages. However, it is unclear whether BC progression and metastasis are stimulated by HMD. We investigated whether patient-derived HMD breast tissue could stimulate the progression of MCF10DCIS.com cells compared with patient-matched low mammographic density (LMD) tissue. Methods Sterile breast specimens were obtained immediately after prophylactic mastectomy from high-risk women (n = 10). HMD and LMD regions of each specimen were resected under radiological guidance. Human MCF10DCIS.com cells, a model of ductal carcinoma in situ (DCIS), were implanted into silicone biochambers in the groins of severe combined immunodeficiency mice, either alone or with matched LMD or HMD tissue (1:1), and maintained for 6 weeks. We assessed biochamber weight as a measure of primary tumour growth, histological grade of the biochamber material, circulating tumour cells and metastatic burden by luciferase and histology. All statistical tests were two-sided. Results HMD breast tissue led to increased primary tumour take, increased biochamber weight and increased proportions of high-grade DCIS and grade 3 invasive BCs compared with LMD. This correlated with an increased metastatic burden in the mice co-implanted with HMD tissue. Conclusions Our study is the first to explore the direct effect of HMD and LMD human breast tissue on the progression and dissemination of BC cells in vivo. The results suggest that HMD status should be a consideration in decision-making for management of patients with DCIS lesions. Electronic supplementary material The online version of this article (doi:10.1186/s13058-016-0767-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cecilia W Huo
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia
| | - Mark Waltham
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia.,St Vincent's Institute of Medical Research, Melbourne, VIC, 3156, Australia
| | - Christine Khoo
- Department of Pathology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia
| | - Stephen B Fox
- Department of Pathology, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC, 3000, Australia.,Department of Pathology, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia
| | - Prue Hill
- Department of Pathology, St Vincent's Hospital, Melbourne, VIC, 3156, Australia
| | - Shou Chen
- Department of Pathology, St Vincent's Hospital, Melbourne, VIC, 3156, Australia
| | - Grace L Chew
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia.,Austin Health and Northern Health, Melbourne, VIC, 3084, Australia
| | - John T Price
- College of Health and Biomedicine, Victoria University, St Albans, VIC, 8001, Australia.,Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC, 3800, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), Victoria University, University of Melbourne and Western Health, Sunshine Hospital, St Albans, VIC, 3021, Australia
| | - Chau H Nguyen
- College of Health and Biomedicine, Victoria University, St Albans, VIC, 8001, Australia
| | - Elizabeth D Williams
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia.,Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Australian Prostate Cancer Centre - Queensland, Brisbane, QLD, 4102, Australia
| | - Michael Henderson
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia.,Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, 3002, Australia
| | - Erik W Thompson
- Department of Surgery, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, 3156, Australia. .,St Vincent's Institute of Medical Research, Melbourne, VIC, 3156, Australia. .,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, 2 George Street, Brisbane, QLD, 4001, Australia. .,Translational Research Institute, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.
| | - Kara L Britt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Grattan Street, Parkville, VIC, 3010, Australia.,Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.,Metastasis Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
22
|
Boelens MC, Nethe M, Klarenbeek S, de Ruiter JR, Schut E, Bonzanni N, Zeeman AL, Wientjens E, van der Burg E, Wessels L, van Amerongen R, Jonkers J. PTEN Loss in E-Cadherin-Deficient Mouse Mammary Epithelial Cells Rescues Apoptosis and Results in Development of Classical Invasive Lobular Carcinoma. Cell Rep 2016; 16:2087-2101. [PMID: 27524621 PMCID: PMC4999419 DOI: 10.1016/j.celrep.2016.07.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/29/2016] [Accepted: 07/21/2016] [Indexed: 11/12/2022] Open
Abstract
Invasive lobular carcinoma (ILC) is an aggressive breast cancer subtype with poor response to chemotherapy. Besides loss of E-cadherin, a hallmark of ILC, genetic inactivation of PTEN is frequently observed in patients. Through concomitant Cre-mediated inactivation of E-cadherin and PTEN in mammary epithelium, we generated a mouse model of classical ILC (CLC), the main histological ILC subtype. While loss of E-cadherin induced cell dissemination and apoptosis, additional PTEN inactivation promoted cell survival and rapid formation of invasive mammary tumors that recapitulate the histological and molecular features, estrogen receptor (ER) status, growth kinetics, metastatic behavior, and tumor microenvironment of human CLC. Combined inactivation of E-cadherin and PTEN is sufficient to cause CLC development. These CLCs showed significant tumor regression upon BEZ235-mediated inhibition of PI3K signaling. In summary, this mouse model provides important insights into CLC development and suggests inhibition of phosphatidylinositol 3-kinase (PI3K) signaling as a potential therapeutic strategy for targeting CLC. PTEN loss rescues apoptosis induced by E-cadherin loss in mouse mammary epithelium Combined loss of E-cadherin and PTEN is sufficient to cause mouse mammary tumors These mouse mammary tumors closely resemble human classical lobular carcinoma (CLC) Mouse CLCs induced by loss of E-cadherin and PTEN regress upon PI3K inhibition
Collapse
Affiliation(s)
- Mirjam C Boelens
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Micha Nethe
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Sjoerd Klarenbeek
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Julian R de Ruiter
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Eva Schut
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Nicola Bonzanni
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Amber L Zeeman
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Ellen Wientjens
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Eline van der Burg
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Lodewyk Wessels
- Division of Molecular Carcinogenesis, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Renée van Amerongen
- Section of Molecular Cytology and Van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Cancer Genomics Netherlands, 3584 CG Utrecht, the Netherlands.
| |
Collapse
|
23
|
Rahbar H, McDonald ES, Lee JM, Partridge SC, Lee CI. How Can Advanced Imaging Be Used to Mitigate Potential Breast Cancer Overdiagnosis? Acad Radiol 2016; 23:768-73. [PMID: 27017136 DOI: 10.1016/j.acra.2016.02.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 02/22/2016] [Accepted: 02/24/2016] [Indexed: 02/08/2023]
Abstract
Radiologists, as administrators and interpreters of screening mammography, are considered by some to be major contributors to the potential harms of screening, including overdiagnosis and overtreatment. In this article, we outline current efforts within the breast imaging community toward mitigating screening harms, including the widespread adoption of tomosynthesis and potentially adjusting screening frequency and thresholds for image-guided breast biopsy. However, the emerging field of breast radiomics may offer the greatest promise for reducing overdiagnosis by identifying imaging-based biomarkers strongly associated with tumor biology, and therefore helping prevent the harms of unnecessary treatment for indolent cancers.
Collapse
|
24
|
Unsworth A, Anderson R, Haynes N, Britt K. OMIP-032: Two multi-color immunophenotyping panels for assessing the innate and adaptive immune cells in the mouse mammary gland. Cytometry A 2016; 89:527-30. [DOI: 10.1002/cyto.a.22867] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ashleigh Unsworth
- Metastasis Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
| | - Robin Anderson
- Metastasis Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
- The Sir Peter MacCallum Department of Oncology; University of Melbourne; Parkville Australia
| | - Nicole Haynes
- Gene Regulation Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
| | - Kara Britt
- Metastasis Laboratory; Peter MacCallum Cancer Centre; East Melbourne Australia
- The Sir Peter MacCallum Department of Oncology; University of Melbourne; Parkville Australia
| |
Collapse
|
25
|
Lo PK, Wolfson B, Zhou Q. Cancer stem cells and early stage basal-like breast cancer. World J Obstet Gynecol 2016; 5:150-161. [PMID: 28239564 PMCID: PMC5321620 DOI: 10.5317/wjog.v5.i2.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Revised: 10/21/2015] [Accepted: 01/22/2016] [Indexed: 02/05/2023] Open
Abstract
Ductal carcinoma in situ (DCIS) is a category of early stage, non-invasive breast tumor defined by the intraductal proliferation of malignant breast epithelial cells. DCIS is a heterogeneous disease composed of multiple molecular subtypes including luminal, HER2 and basal-like types, which are characterized by immunohistochemical analyses and gene expression profiling. Following surgical and radiation therapies, patients with luminal-type, estrogen receptor-positive DCIS breast tumors can benefit from adjuvant endocrine-based treatment. However, there are no available targeted therapies for patients with basal-like DCIS (BL-DCIS) tumors due to their frequent lack of endocrine receptors and HER2 amplification, rendering them potentially susceptible to recurrence. Moreover, multiple lines of evidence suggest that DCIS is a non-obligate precursor of invasive breast carcinoma. This raises the possibility that targeting precursor BL-DCIS is a promising strategy to prevent BL-DCIS patients from the development of invasive basal-like breast cancer. An accumulating body of evidence demonstrates the existence of cancer stem-like cells (CSCs) in BL-DCIS, which potentially determine the features of BL-DCIS and their ability to progress into invasive cancer. This review encompasses the current knowledge in regard to the characteristics of BL-DCIS, identification of CSCs, and their biological properties in BL-DCIS. We summarize recently discovered relevant molecular signaling alterations that promote the generation of CSCs in BL-DCIS and the progression of BL-DCIS to invasive breast cancer, as well as the influence of the tissue microenvironment on CSCs and the invasive transition. Finally, we discuss the translational implications of these findings for the prognosis and prevention of BL-DCIS relapse and progression.
Collapse
|
26
|
Buchsbaum RJ, Oh SY. Breast Cancer-Associated Fibroblasts: Where We Are and Where We Need to Go. Cancers (Basel) 2016; 8:cancers8020019. [PMID: 26828520 PMCID: PMC4773742 DOI: 10.3390/cancers8020019] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/12/2016] [Accepted: 01/20/2016] [Indexed: 02/04/2023] Open
Abstract
Cancers are heterogeneous tissues comprised of multiple components, including tumor cells and microenvironment cells. The tumor microenvironment has a critical role in tumor progression. The tumor microenvironment is comprised of various cell types, including fibroblasts, macrophages and immune cells, as well as extracellular matrix and various cytokines and growth factors. Fibroblasts are the predominant cell type in the tumor microenvironment. However, neither the derivation of tissue-specific cancer-associated fibroblasts nor markers of tissue-specific cancer-associated fibroblasts are well defined. Despite these uncertainties it is increasingly apparent that cancer-associated fibroblasts have a crucial role in tumor progression. In breast cancer, there is evolving evidence showing that breast cancer-associated fibroblasts are actively involved in breast cancer initiation, proliferation, invasion and metastasis. Breast cancer-associated fibroblasts also play a critical role in metabolic reprogramming of the tumor microenvironment and therapy resistance. This review summarizes the current understanding of breast cancer-associated fibroblasts.
Collapse
Affiliation(s)
- Rachel J Buchsbaum
- Molecular Oncology Research Institute and Department of Medicine, Division of Hematology-Oncology, Tufts Medical Center, Boston, MA 02111, USA.
| | - Sun Young Oh
- Department of Medicine, Division of Medical Oncology, Montefiore Medical Center, New York, NY 10467, USA.
| |
Collapse
|
27
|
Santos A, Matos A. Advances in the understanding of the clinically relevant genetic pathways and molecular aspects of canine mammary tumours. Part 2: Invasion, angiogenesis, metastasis and therapy. Vet J 2015; 205:144-53. [DOI: 10.1016/j.tvjl.2015.03.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 02/07/2023]
|
28
|
Huo CW, Chew G, Hill P, Huang D, Ingman W, Hodson L, Brown KA, Magenau A, Allam AH, McGhee E, Timpson P, Henderson MA, Thompson EW, Britt K. High mammographic density is associated with an increase in stromal collagen and immune cells within the mammary epithelium. Breast Cancer Res 2015; 17:79. [PMID: 26040322 PMCID: PMC4485361 DOI: 10.1186/s13058-015-0592-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 05/20/2015] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Mammographic density (MD), after adjustment for a women's age and body mass index, is a strong and independent risk factor for breast cancer (BC). Although the BC risk attributable to increased MD is significant in healthy women, the biological basis of high mammographic density (HMD) causation and how it raises BC risk remain elusive. We assessed the histological and immunohistochemical differences between matched HMD and low mammographic density (LMD) breast tissues from healthy women to define which cell features may mediate the increased MD and MD-associated BC risk. METHODS Tissues were obtained between 2008 and 2013 from 41 women undergoing prophylactic mastectomy because of their high BC risk profile. Tissue slices resected from the mastectomy specimens were X-rayed, then HMD and LMD regions were dissected based on radiological appearance. The histological composition, aromatase immunoreactivity, hormone receptor status and proliferation status were assessed, as were collagen amount and orientation, epithelial subsets and immune cell status. RESULTS HMD tissue had a significantly greater proportion of stroma, collagen and epithelium, as well as less fat, than LMD tissue did. Second harmonic generation imaging demonstrated more organised stromal collagen in HMD tissues than in LMD tissues. There was significantly more aromatase immunoreactivity in both the stromal and glandular regions of HMD tissues than in those regions of LMD tissues, although no significant differences in levels of oestrogen receptor, progesterone receptor or Ki-67 expression were detected. The number of macrophages within the epithelium or stroma did not change; however, HMD stroma exhibited less CD206(+) alternatively activated macrophages. Epithelial cell maturation was not altered in HMD samples, and no evidence of epithelial-mesenchymal transition was seen; however, there was a significant increase in vimentin(+)/CD45(+) immune cells within the epithelial layer in HMD tissues. CONCLUSIONS We confirmed increased proportions of stroma and epithelium, increased aromatase activity and no changes in hormone receptor or Ki-67 marker status in HMD tissue. The HMD region showed increased collagen deposition and organisation as well as decreased alternatively activated macrophages in the stroma. The HMD epithelium may be a site for local inflammation, as we observed a significant increase in CD45(+)/vimentin(+) immune cells in this area.
Collapse
Affiliation(s)
- Cecilia W Huo
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
| | - Grace Chew
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia.
| | - Prue Hill
- Department of Pathology, St. Vincent's Hospital, 41 Victoria Parade, Fitzroy, VIC, 3065, Australia.
| | - Dexing Huang
- St. Vincent's Institute, 9 Princes Street, Fitzroy, VIC, 3065, Australia.
| | - Wendy Ingman
- Discipline of Surgery, Faculty of Health Sciences, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Ground Floor, Norwich Centre, 55 King William Road, North Adelaide, SA, 5006, Australia.
| | - Leigh Hodson
- Discipline of Surgery, Faculty of Health Sciences, School of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, Australia. .,Robinson Research Institute, University of Adelaide, Ground Floor, Norwich Centre, 55 King William Road, North Adelaide, SA, 5006, Australia.
| | - Kristy A Brown
- Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, VIC, 3168, Australia.
| | - Astrid Magenau
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Clayton, Australia.
| | - Amr H Allam
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Clayton, Australia.
| | - Ewan McGhee
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia.
| | - Paul Timpson
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of NSW, Clayton, Australia.
| | - Michael A Henderson
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia. .,Peter MacCallum Cancer Centre, 2 St. Andrews Place, East Melbourne, VIC, 3002, Australia.
| | - Erik W Thompson
- University of Melbourne Department of Surgery, St. Vincent's Hospital, Level 2, Clinical Sciences Building, 29 Regent Street, Fitzroy, VIC, 3065, Australia. .,St. Vincent's Institute, 9 Princes Street, Fitzroy, VIC, 3065, Australia. .,Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, QLD, 4059, Australia.
| | - Kara Britt
- The Beatson Institute for Cancer Research, Switchback Road, Bearsden Glasgow, G61 1BD, UK. .,The Sir Peter MacCallum Department of Oncology, University of Melbourne, St. Andrews Place, East Melbourne, VIC, 3002, Australia. .,Department of Anatomy and Developmental Biology, Monash University, 19 Innovation Walk, Clayton, VIC, s, Australia.
| |
Collapse
|
29
|
Villagrasa A, Álvarez PJ, Osuna A, Garrido JM, Aránega A, Rodríguez-Serrano F. Exosomes Derived from Breast Cancer Cells, Small Trojan Horses? J Mammary Gland Biol Neoplasia 2014; 19:303-13. [PMID: 26130410 DOI: 10.1007/s10911-015-9332-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Exosomes are small extracellular vesicles secreted to the extracellular environment by several cell types, including tumor cells. It has been demonstrated that exosomes have an important role in intercellular communication, but they have recently been implicated in various tumor processes, including the oncogenic transformation of cells in the tumor microenvironment, tumor drug resistance, and the transport of tumor factors. Tumors appear to use exosomes to dialogue with and transform neighboring cells to create an ideal environment for their growth and expansion. On the other hand, the structure and function of exosomes may make them useful in cancer diagnosis and prognosis, because they contain molecules that could serve as biomarkers, including oncogenes, miRNAs, and certain proteins. They have the ability to travel via body fluids, from which they could be isolated and used to transport drugs to specific targets. This review aims to provide an update on the role of exosomes derived from breast cancer cells.
Collapse
Affiliation(s)
- Alejandro Villagrasa
- Institute of Biopathology and Regenerative Medicine, Biomedical Research Centre, University of Granada, 18016, Granada, Spain
| | | | | | | | | | | |
Collapse
|