1
|
Lasica R, Asanin M, Vukmirovic J, Maslac L, Savic L, Zdravkovic M, Simeunovic D, Polovina M, Milosevic A, Matic D, Juricic S, Jankovic M, Marinkovic M, Djukanovic L. What Do We Know about Peripartum Cardiomyopathy? Yesterday, Today, Tomorrow. Int J Mol Sci 2024; 25:10559. [PMID: 39408885 PMCID: PMC11477285 DOI: 10.3390/ijms251910559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Peripartum cardiomyopathy is a disease that occurs during or after pregnancy and leads to a significant decline in cardiac function in previously healthy women. Peripartum cardiomyopathy has a varying prevalence among women depending on the part of the world where they live, but it is associated with a significant mortality and morbidity in this population. Therefore, timely diagnosis, treatment, and monitoring of this disease from its onset are of utmost importance. Although many risk factors are associated with the occurrence of peripartum cardiomyopathy, such as conditions of life, age of the woman, nutrient deficiencies, or multiple pregnancies, the exact cause of its onset remains unknown. Advances in research on the genetic associations with cardiomyopathies have provided a wealth of data indicating a possible association with peripartum cardiomyopathy, but due to numerous mutations and data inconsistencies, the exact connection remains unclear. Significant insights into the pathophysiological mechanisms underlying peripartum cardiomyopathy have been provided by the theory of an abnormal 16-kDa prolactin, which may be generated in an oxidative stress environment and lead to vascular and consequently myocardial damage. Recent studies supporting this disease mechanism also include research on the efficacy of bromocriptine (a prolactin synthesis inhibitor) in restoring cardiac function in affected patients. Despite significant progress in the research of this disease, there are still insufficient data on the safety of use of certain drugs treating heart failure during pregnancy and breastfeeding. Considering the metabolic changes that occur in different stages of pregnancy and the postpartum period, determining the correct dosing regimen of medications is of utmost importance not only for better treatment and survival of mothers but also for reducing the risk of toxic effects on the fetus.
Collapse
Affiliation(s)
- Ratko Lasica
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
| | - Milika Asanin
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Jovanka Vukmirovic
- Faculty of Organizational Sciences, University of Belgrade, 11000 Belgrade, Serbia;
| | - Lidija Maslac
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Lidija Savic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Marija Zdravkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Clinical Center Bezanijska Kosa, 11000 Belgrade, Serbia
| | - Dejan Simeunovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Marija Polovina
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Aleksandra Milosevic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Dragan Matic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Stefan Juricic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Milica Jankovic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Milan Marinkovic
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (M.A.); (L.S.); (M.Z.); (D.S.); (M.P.); (A.M.); (D.M.); (M.M.)
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| | - Lazar Djukanovic
- Department of Cardiology, University Clinical Center of Serbia, 11000 Belgrade, Serbia; (L.M.); (S.J.); (M.J.)
| |
Collapse
|
2
|
Koldeweij C, Dibbets C, Franklin BD, Scheepers HCJ, de Wildt SN. A User-Driven Framework for Dose Selection in Pregnancy: Proof of Concept for Sertraline. Clin Pharmacol Ther 2024. [PMID: 39248386 DOI: 10.1002/cpt.3429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/07/2024] [Indexed: 09/10/2024]
Abstract
Despite growing knowledge of pregnancy-induced changes in physiology that may alter maternal and fetal pharmacokinetics, evidence-based antenatal doses are lacking for most drugs. Pharmacokinetic modeling and expanding clinical data in pregnancy may support antenatal doses. We aimed to develop and pilot a comprehensive and user-driven Framework for Dose Selection in Pregnancy to support the clinical implementation of a best-evidence antenatal dose for sertraline. After initial development and evaluation by experts, the framework prototype was piloted to formulate an antenatal dosing strategy for sertraline in depression and anxiety disorders. Next, the framework was reviewed and assessed for usability by a multidisciplinary working committee of end-users comprising healthcare practitioners, experts from other disciplines including pharmacometrics, reproductive toxicology and medical ethics, alongside pregnant women and a partner. The resulting framework encompasses the following: rationale for drug selection, a comprehensive analysis of pharmacokinetic and dose-related efficacy and safety data, and implementation aspects including feasibility and desirability of the recommended antenatal dose based on a structured maternal and fetal benefit-risk assessment. An antenatal dose recommendation for sertraline, as a case study, was formulated using this approach and endorsed for clinical use by the working committee. Future applications of the framework for other drugs can further demonstrate its suitability for developing best evidence, acceptable and clinically feasible antenatal doses.
Collapse
Affiliation(s)
- Charlotte Koldeweij
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Caroline Dibbets
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Bryony D Franklin
- Centre for Medication Safety and Service Quality, Imperial College Healthcare NHS Trust, London, UK
- Department of Practice and Policy, UCL School of Pharmacy, London, UK
| | - Hubertina C J Scheepers
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Grow, School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Kirovakov Z, Gyokova E, Hinkova N, Stoilov B. Management of Endocrinopathies During Pregnancy: A Systematic Review. Cureus 2024; 16:e70554. [PMID: 39479091 PMCID: PMC11524603 DOI: 10.7759/cureus.70554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/02/2024] Open
Abstract
Uncertainty surrounds the efficacy and security of several medications in treating endocrinopathies, such as gestational diabetes mellitus (GDM) in individuals whose normal glucose levels cannot be maintained by diet and exercise alone. To improve pregnancy results for GDM individuals, the present review is conducted to measure the effectiveness of several antidiabetic medications for glucose management. Up until 2024, we looked through PubMed and Google Scholar. Patients with GDM were enrolled in randomized controlled studies that examined several medications. Using the Cochrane risk of bias method, we obtained the pertinent data and evaluated the bias probability. To determine the odds ratio and the surface of the cumulative ranking function of the maternal and neonatal consequences of various therapies in GDM individuals, we first performed pair-wise meta-assessments and subsequently used a systematic review. Macrosomia, higher gestational ages, infant hypoglycemia, and birth weight are the neonatal outcomes. Glycohemoglobin (HbA1c), and pregnancy-induced hypertension (PIH) are the maternal outcomes. This thorough analysis of 25 trial designs found that metformin had fewer cases of macrosomia, higher gestational ages, infant hypoglycemia, and decreased birth weight when compared to glyburide. Metformin was found to be the fastest way to control blood sugar levels in individuals with GDM, whereas glyburide was found to be the most successful medicine for the same purpose.
Collapse
Affiliation(s)
- Zlatko Kirovakov
- Department of Midwifery Care, Faculty of Health Care, Medical University - Pleven, Pleven, BGR
| | - Elitsa Gyokova
- Department of Obstetrics and Gynecology, Faculty of Medicine, Medical University - Pleven, Pleven, BGR
- Department of Obstetrics and Gynecology, University Hospital Saint Marina - Pleven, Pleven, BGR
| | - Nadezhda Hinkova
- Department of Midwifery Care, Faculty of Health Care, Medical University - Pleven, Pleven, BGR
| | - Boris Stoilov
- Department of Obstetrics and Gynecology, Medical University of Plovdiv, Plovdiv, BGR
| |
Collapse
|
4
|
Koldeweij CJM, Dibbets AC, Ceulemans M, de Vries LC, Franklin BD, Scheepers HCJ, de Wildt SN. Willingness-to-use and preferences for model-informed antenatal doses: a cross-sectional study among European healthcare practitioners and pregnant women. Front Pharmacol 2024; 15:1403747. [PMID: 39211781 PMCID: PMC11358599 DOI: 10.3389/fphar.2024.1403747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Background: Physiological changes in pregnancy may affect drug safety and efficacy, sometimes requiring dose adjustments. Pregnancy-adjusted doses, however, are missing for most medications. Increasingly, pharmacokinetic models can be used for antenatal dose finding. Given the novelty of this technique and questions regarding dose credibility, the acceptability of model-informed antenatal doses should be explored. Objective: We aimed to assess the willingness-to-use and preferred features for model-informed antenatal doses among healthcare practitioners (HCPs) and pregnant women in European countries. Methods: A cross-sectional, web-based study drawing on two open surveys was performed between 8 September and 30 November 2022. Each survey comprised statements drawn from prior focus groups, associated with Likert-scales. Themes included respondents' information needs, search behaviours along with their willingness-to-use and preferred features for model-informed antenatal doses. The surveys were disseminated through professional societies, pregnancy websites and social media. A descriptive analysis was performed. Results: In total, 608 HCPs from different specialties and 794 pregnant women across 15 countries participated, with 81% of respondents across both groups in the Netherlands or Belgium. Among pregnant women, 31% were medical professionals and 85% used medication during pregnancy. Eighty-three percent of HCPs found current antenatal pharmacotherapy suboptimal and 97% believed that model-informed antenatal doses would enhance the quality of antenatal care. Most HCPs (93%) and pregnant women (75%) would be willing to follow model-informed antenatal doses. Most HCPs desired access to the evidence (88%), including from pharmacokinetic modelling (62%). Most pregnant women (96%) wanted to understand antenatal dosing rationales and to be involved in dosing decisions (97%). Conclusion: The willingness-to-use model-informed antenatal doses is high among HCPs and pregnant women provided that certain information needs are met.
Collapse
Affiliation(s)
- C. J. M. Koldeweij
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| | - A. C. Dibbets
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
| | - M. Ceulemans
- Clinical Pharmacology and Pharmacotherapy, Department of Pharmaceutical and Pharmacological Sciences, KULeuven, Belgium
- IQ Health, Radboud University Medical Center, Nijmegen, Netherlands
- L-C&Y, KU Leuven Child and Youth Institute, Leuven, Belgium
| | - L. C. de Vries
- Teratology Information Service, Netherlands Pharmacovigilance Centre Lareb, S’Hertogenbosch, Netherlands
| | - B. D. Franklin
- Centre for Medication Safety and Service Quality, Imperial College Healthcare NHS Trust, London, United Kingdom
- Department of Practice and Policy, UCL School of Pharmacy, London, United Kingdom
| | - H. C. J. Scheepers
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, Netherlands
- Grow, School for Oncology and Reproduction, Maastricht, Netherlands
| | - S. N. de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Paediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children’s Hospital, Rotterdam, Netherlands
| |
Collapse
|
5
|
Collins HE, Alexander BT, Care AS, Davenport MH, Davidge ST, Eghbali M, Giussani DA, Hoes MF, Julian CG, LaVoie HA, Olfert IM, Ozanne SE, Bytautiene Prewit E, Warrington JP, Zhang L, Goulopoulou S. Guidelines for assessing maternal cardiovascular physiology during pregnancy and postpartum. Am J Physiol Heart Circ Physiol 2024; 327:H191-H220. [PMID: 38758127 PMCID: PMC11380979 DOI: 10.1152/ajpheart.00055.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Maternal mortality rates are at an all-time high across the world and are set to increase in subsequent years. Cardiovascular disease is the leading cause of death during pregnancy and postpartum, especially in the United States. Therefore, understanding the physiological changes in the cardiovascular system during normal pregnancy is necessary to understand disease-related pathology. Significant systemic and cardiovascular physiological changes occur during pregnancy that are essential for supporting the maternal-fetal dyad. The physiological impact of pregnancy on the cardiovascular system has been examined in both experimental animal models and in humans. However, there is a continued need in this field of study to provide increased rigor and reproducibility. Therefore, these guidelines aim to provide information regarding best practices and recommendations to accurately and rigorously measure cardiovascular physiology during normal and cardiovascular disease-complicated pregnancies in human and animal models.
Collapse
Grants
- HL169157 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HD088590 NICHD NIH HHS
- HD083132 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- Jewish Heritage Fund for Excellence
- The Biotechnology and Biological Sciences Research Council
- P20GM103499 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- British Heart Foundation (BHF)
- R21 HD111908 NICHD NIH HHS
- Distinguished University Professor
- The Lister Insititute
- ES032920 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- Canadian Insitute's of Health Research Foundation Grant
- HL149608 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Royal Society (The Royal Society)
- U.S. Department of Defense (DOD)
- HL138181 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- MC_00014/4 UKRI | Medical Research Council (MRC)
- HD111908 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL163003 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- APP2002129 NHMRC Ideas Grant
- HL159865 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL131182 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL163818 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- NS103017 HHS | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
- HL143459 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL146562 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL138181 NHLBI NIH HHS
- 20CSA35320107 American Heart Association (AHA)
- RG/17/12/33167 British Heart Foundation (BHF)
- National Heart Foundation Future Leader Fellowship
- P20GM121334 HHS | NIH | National Institute of General Medical Sciences (NIGMS)
- HL146562-04S1 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL155295 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HD088590-06 HHS | NIH | Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)
- HL147844 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- WVU SOM Synergy Grant
- R01 HL146562 NHLBI NIH HHS
- HL159447 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- ES034646-01 HHS | NIH | National Institute of Environmental Health Sciences (NIEHS)
- HL150472 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- 2021T017 Dutch Heart Foundation Dekker Grant
- R01 HL163003 NHLBI NIH HHS
- Christenson professor In Active Healthy Living
- National Heart Foundation
- Dutch Heart Foundation Dekker
- WVU SOM Synergy
- Jewish Heritage
- Department of Health | National Health and Medical Research Council (NHMRC)
- Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)
Collapse
Affiliation(s)
- Helen E Collins
- University of Louisville, Louisville, Kentucky, United States
| | - Barbara T Alexander
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Alison S Care
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Mansoureh Eghbali
- University of California Los Angeles, Los Angeles, California, United States
| | | | | | - Colleen G Julian
- University of Colorado School of Medicine, Aurora, Colorado, United States
| | - Holly A LaVoie
- University of South Carolina School of Medicine, Columbia, South Carolina, United States
| | - I Mark Olfert
- West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | | | | | - Junie P Warrington
- University of Mississippi Medical Center, Jackson, Mississippi, United States
| | - Lubo Zhang
- Loma Linda University School of Medicine, Loma Linda, California, United States
| | | |
Collapse
|
6
|
Koldeweij C, Kleuskens M, Litjens C, Franklin BD, Scheepers HCJ, de Wildt SN. Perceived barriers and facilitators for model-informed dosing in pregnancy: a qualitative study across healthcare practitioners and pregnant women. BMC Med 2024; 22:248. [PMID: 38886762 PMCID: PMC11184760 DOI: 10.1186/s12916-024-03450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Most women use medication during pregnancy. Pregnancy-induced changes in physiology may require antenatal dose alterations. Yet, evidence-based doses in pregnancy are missing. Given historically limited data, pharmacokinetic models may inform pregnancy-adjusted doses. However, implementing model-informed doses in clinical practice requires support from relevant stakeholders. PURPOSE To explore the perceived barriers and facilitators for model-informed antenatal doses among healthcare practitioners (HCPs) and pregnant women. METHODS Online focus groups and interviews were held among healthcare practitioners (HCPs) and pregnant women from eight countries across Europe, Africa and Asia. Purposive sampling was used to identify pregnant women plus HCPs across various specialties prescribing or providing advice on medication to pregnant women. Perceived barriers and facilitators for implementing model-informed doses in pregnancy were identified and categorised using a hybrid thematic analysis. RESULTS Fifty HCPs and 11 pregnant women participated in 12 focus groups and 16 interviews between January 2022 and March 2023. HCPs worked in the Netherlands (n = 32), the UK (n = 7), South Africa (n = 5), Uganda (n = 4), Kenya, Cameroon, India and Vietnam (n = 1 each). All pregnant women resided in the Netherlands. Barriers and facilitators identified by HCPs spanned 14 categories across four domains whereas pregnant women described barriers and facilitators spanning nine categories within the same domains. Most participants found current antenatal dosing information inadequate and regarded model-informed doses in pregnancy as a valuable and for some, much-needed addition to antenatal care. Although willingness-to-follow model-informed antenatal doses was high across both groups, several barriers for implementation were identified. HCPs underlined the need for transparent model validation and endorsement of the methodology by recognised institutions. Foetal safety was deemed a critical knowledge gap by both groups. HCPs' information needs and preferred features for model-informed doses in pregnancy varied. Several pregnant women expressed a desire to access information and partake in decisions on antenatal dosing. CONCLUSIONS Given the perceived limitations of current pharmacotherapy for pregnant women and foetuses, model-informed dosing in pregnancy was seen as a promising means to enhance antenatal care by pregnant women and healthcare practitioners.
Collapse
Affiliation(s)
- Charlotte Koldeweij
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Mirèse Kleuskens
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Carlijn Litjens
- Netherlands Pharmacovigilance Centre Lareb, 's-Hertogenbosch, The Netherlands
| | - Bryony Dean Franklin
- Centre for Medication Safety and Service Quality, Imperial College Healthcare NHS Trust, London, UK
- Department of Practice and Policy, UCL School of Pharmacy, London, UK
| | - Hubertina C J Scheepers
- Department of Obstetrics and Gynaecology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Grow, School for Oncology and Reproduction, Maastricht, The Netherlands
| | - Saskia N de Wildt
- Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatric and Neonatal Intensive Care, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Abduljalil K, Gardner I, Jamei M. An Application of a Physiologically Based Pharmacokinetic Approach to Predict Ceftazidime Pharmacokinetics in a Pregnant Population. Pharmaceutics 2024; 16:474. [PMID: 38675135 PMCID: PMC11054561 DOI: 10.3390/pharmaceutics16040474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/19/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Physiological changes during pregnancy can alter maternal and fetal drug exposure. The objective of this work was to predict maternal and umbilical ceftazidime pharmacokinetics during pregnancy. Ceftazidime transplacental permeability was predicted from its physicochemical properties and incorporated into the model. Predicted concentrations and parameters from the PBPK model were compared to the observed data. PBPK predicted ceftazidime concentrations in non-pregnant and pregnant subjects of different gestational weeks were within 2-fold of the observations, and the observed concentrations fell within the 5th-95th prediction interval from the PBPK simulations. The calculated transplacental clearance (0.00137 L/h/mL of placenta volume) predicted an average umbilical cord-to-maternal plasma ratio of 0.7 after the first dose, increasing to about 1.0 at a steady state, which also agrees well with clinical observations. The developed maternal PBPK model adequately predicted the observed exposure and kinetics of ceftazidime in the pregnant population. Using a verified population-based PBPK model provides valuable insights into the disposition of drug concentrations in special individuals that are otherwise difficult to study and, in addition, offers the possibility of supplementing sparse samples obtained in vulnerable populations with additional knowledge, informing the dosing adjustment and study design, and improving the efficacy and safety of drugs in target populations.
Collapse
Affiliation(s)
- Khaled Abduljalil
- Certara Predictive Technologies, Level 2-Acero, 1 Concourse Way, Sheffield S1 2BJ, UK
| | | | | |
Collapse
|
8
|
Ait-Chikh C, Page G, Thoreau V. Physiologically-based pharmacokinetic models to predict drug exposure during pregnancy. ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:236-242. [PMID: 37739215 DOI: 10.1016/j.pharma.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/24/2023]
Abstract
As pregnant women are constantly exposed to drugs during pregnancy, either to treat long-term conditions or acute illnesses, drug safety is a major concern for the fetus and the mother. Clinical trials are rarely made in this population due to strict regulation and ethical reasons. However, drug pharmacokinetic (PK) parameters vary during pregnancy with an increase in distribution volume, renal clearance and more. In addition, the fetal distribution should be evaluated with the importance of placental diffusion, both active and passive. Therefore, there is a recent interest in the use of physiologically-based pharmacokinetic (PBPK) modeling to characterize these changes and complete the sparse data available on drug PK during pregnancy. Indeed, PBPK models integrate drug physicochemical and physiological parameters corresponding to each compartment of the body to estimate drug concentrations. This review establishes an overview on the current use of PBPK models in drug dosage determination for the pregnant woman, fetal exposure and drug interactions in the fetal compartment.
Collapse
Affiliation(s)
- Celia Ait-Chikh
- Faculté de médecine et pharmacie, université de Poitiers, UFR médecine et pharmacie, bâtiment D1, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France.
| | - Guylène Page
- Faculté de médecine et pharmacie, université de Poitiers, UFR médecine et pharmacie, bâtiment D1, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France; Neurovascular Unit and Cognitive Disorders (NEUVACOD), pôle Biologie santé, université de Poitiers, Poitiers, France
| | - Vincent Thoreau
- Faculté de médecine et pharmacie, université de Poitiers, UFR médecine et pharmacie, bâtiment D1, 6, rue de la Milétrie, TSA 51115, 86073 Poitiers cedex 9, France; Neurovascular Unit and Cognitive Disorders (NEUVACOD), pôle Biologie santé, université de Poitiers, Poitiers, France
| |
Collapse
|
9
|
Berton M, Bettonte S, Stader F, Decosterd L, Tarr PE, Livio F, Cavassini M, Braun DL, Kusejko K, Hachfeld A, Bernasconi E, Calmy A, Schmid P, Battegay M, Marzolini C. Antiretroviral Drug Exposure and Response in Obese and Morbidly Obese People With Human Immunodeficiency Virus (HIV): A Study Combining Modelling and Swiss HIV Cohort Data. Clin Infect Dis 2024; 78:98-110. [PMID: 37602428 PMCID: PMC10810714 DOI: 10.1093/cid/ciad495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
BACKGROUND Obesity is increasingly prevalent among people with HIV (PWH) and can possibly result in suboptimal antiretroviral drug (ARV) exposure and response. However, this has not been thoroughly evaluated given that obese PWH are underrepresented in clinical trials. We performed virtual trials using physiologically based pharmacokinetic (PBPK) modelling combined with observed clinical data to provide ARV dosing guidance in obese individuals. METHODS Each trial included a cohort of virtual adults with a body mass index (BMI) between 18.5 and 60 kg/m2. Therapeutic drug-monitoring data from the Swiss HIV Cohort Study (SHCS) were used to verify the predictive performance of the model. Subsequently, the model was applied to predict the pharmacokinetics of ARVs for different obesity classes. The association between ARV plasma concentrations and virological response was investigated in obese and nonobese individuals. RESULTS The PBPK model predicted an average reduction in ARV exposure of ∼20% and trough concentrations of ∼6% in obese (BMI ≥30 kg/m2) compared with nonobese (BMI: 18.5-25 kg/m2) individuals, consistent with observed clinical data. Etravirine and rilpivirine were the most impacted, especially in individuals with BMI >40 kg/m2 whose trough concentrations were below the clinical target threshold. Obese PWH in the SHCS did not have a higher rate of unsuppressed viral load than nonobese PWH. CONCLUSIONS The concentrations of ARVs are modestly reduced in obese individuals, with no negative impact on the virological response. Our data provide reassurance that standard doses of ARVs are suitable in obese PWH, including those who gained substantial weight with some of the first-line ARVs.
Collapse
Affiliation(s)
- Mattia Berton
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Sara Bettonte
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | | | - Laurent Decosterd
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Philip E Tarr
- Kantonsspital Baselland, University of Basel, Bruderholz, Switzerland
| | - Françoise Livio
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
| | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Dominique L Braun
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Katharina Kusejko
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Anna Hachfeld
- Department of Infectious Diseases, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Enos Bernasconi
- Division of Infectious Diseases, Ente Ospedaliero Cantonale Lugano, University of Geneva and University of Southern Switzerland, Lugano, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - Patrick Schmid
- Department of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Manuel Battegay
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Catia Marzolini
- Division of Infectious Diseases and Hospital Epidemiology, Departments of Medicine and Clinical Research, University Hospital Basel, Basel, Switzerland
- Faculty of Medicine, University of Basel, Basel, Switzerland
- Service and Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, University Hospital Lausanne and University of Lausanne, Lausanne, Switzerland
- Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
10
|
Cho CK, Ko E, Mo JY, Kang P, Jang CG, Lee SY, Lee YJ, Bae JW, Choi CI. PBPK modeling to predict the pharmacokinetics of pantoprazole in different CYP2C19 genotypes. Arch Pharm Res 2024; 47:82-94. [PMID: 38150171 DOI: 10.1007/s12272-023-01478-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/18/2023] [Indexed: 12/28/2023]
Abstract
Pantoprazole is used to treat gastroesophageal reflux disease (GERD), maintain healing of erosive esophagitis (EE), and control symptoms related to Zollinger-Ellison syndrome (ZES). Pantoprazole is mainly metabolized by cytochrome P450 (CYP) 2C19, converting to 4'-demethyl pantoprazole. CYP2C19 is a genetically polymorphic enzyme, and the genetic polymorphism affects the pharmacokinetics and/or pharmacodynamics of pantoprazole. In this study, we aimed to establish the physiologically based pharmacokinetic (PBPK) model to predict the pharmacokinetics of pantoprazole in populations with various CYP2C19 metabolic activities. A comprehensive investigation of previous reports and drug databases was conducted to collect the clinical pharmacogenomic data, physicochemical data, and disposition properties of pantoprazole, and the collected data were used for model establishment. The model was evaluated by comparing the predicted plasma concentration-time profiles and/or pharmacokinetic parameters (AUC and Cmax) with the clinical observation results. The predicted plasma concentration-time profiles in different CYP2C19 phenotypes properly captured the observed profiles. All fold error values for AUC and Cmax were included in the two-fold range. Consequently, the minimal PBPK model for pantoprazole related to CYP2C19 genetic polymorphism was properly established and it can predict the pharmacokinetics of pantoprazole in different CYP2C19 phenotypes. The present model can broaden the insight into the individualized pharmacotherapy for pantoprazole.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ju Yeon Mo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea.
| |
Collapse
|
11
|
Quinney SK, Bies RR, Grannis SJ, Bartlett CW, Mendonca E, Rogerson CM, Backes CH, Shah DK, Tillman EM, Costantine MM, Aruldhas BW, Allam R, Grant A, Abbasi MY, Kandasamy M, Zang Y, Wang L, Shendre A, Li L. The MPRINT Hub Data, Model, Knowledge and Research Coordination Center: Bridging the gap in maternal-pediatric therapeutics research through data integration and pharmacometrics. Pharmacotherapy 2023; 43:391-402. [PMID: 36625779 PMCID: PMC10192201 DOI: 10.1002/phar.2765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/13/2022] [Accepted: 12/08/2022] [Indexed: 01/11/2023]
Abstract
Maternal and pediatric populations have historically been considered "therapeutic orphans" due to their limited inclusion in clinical trials. Physiologic changes during pregnancy and lactation and growth and maturation of children alter pharmacokinetics (PK) and pharmacodynamics (PD) of drugs. Precision therapy in these populations requires knowledge of these effects. Efforts to enhance maternal and pediatric participation in clinical studies have increased over the past few decades. However, studies supporting precision therapeutics in these populations are often small and, in isolation, may have limited impact. Integration of data from various studies, for example through physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) modeling or bioinformatics approaches, can augment the value of data from these studies, and help identify gaps in understanding. To catalyze research in maternal and pediatric precision therapeutics, the Obstetric and Pediatric Pharmacology and Therapeutics Branch of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) established the Maternal and Pediatric Precision in Therapeutics (MPRINT) Hub. Herein, we provide an overview of the status of maternal-pediatric therapeutics research and introduce the Indiana University-Ohio State University MPRINT Hub Data, Model, Knowledge and Research Coordination Center (DMKRCC), which aims to facilitate research in maternal and pediatric precision therapeutics through the integration and assessment of existing knowledge, supporting pharmacometrics and clinical trials design, development of new real-world evidence resources, educational initiatives, and building collaborations among public and private partners, including other NICHD-funded networks. By fostering use of existing data and resources, the DMKRCC will identify critical gaps in knowledge and support efforts to overcome these gaps to enhance maternal-pediatric precision therapeutics.
Collapse
Affiliation(s)
- Sara K Quinney
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Robert R Bies
- Department of Pharmaceutical Sciences, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
- Institute for Computational and Data Sciences, University at Buffalo, State University of New York at Buffalo, Buffalo, New York, USA
| | - Shaun J Grannis
- Department of Family Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Center for Biomedical Informatics, Regenstrief Institute, Indianapolis, Indiana, USA
- Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA
| | - Christopher W Bartlett
- The Steve & Cindy Rasmussen Institute for Genomic Medicine, Battelle Center for Computational Biology, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Eneida Mendonca
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Colin M Rogerson
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Carl H Backes
- Division of Neonatology, Nationwide Children’s Hospital; Departments of Pediatrics and Obstetrics and Gynecology, The Ohio State University College of Medicine; Center for Perinatal Research and The Ohio Perinatal Research Network, The Abigail Wexner Research Institute at Nationwide Children’s Hospital, USA; The Heart Center at Nationwide Children’s Hospital, Columbus, Ohio, USA
| | - Dhaval K Shah
- Department of Pharmaceutical Sciences, University at Buffalo School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York, USA
| | - Emma M Tillman
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Maged M Costantine
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio, USA
| | - Blessed W Aruldhas
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
- Department of Pharmacology and Clinical Pharmacology, Christian Medical College, Vellore, India
| | - Reva Allam
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Amelia Grant
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mohammed Yaseen Abbasi
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Murugesh Kandasamy
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Yong Zang
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lei Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Aditi Shendre
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
12
|
Spiess D, Abegg VF, Chauveau A, Treyer A, Reinehr M, Oufir M, Duong E, Potterat O, Hamburger M, Simões-Wüst AP. Placental Passage of Protopine in an Ex Vivo Human Perfusion System. PLANTA MEDICA 2023; 89:194-207. [PMID: 35445384 PMCID: PMC9868778 DOI: 10.1055/a-1829-9546] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
The placental passage of protopine was investigated with a human ex vivo placental perfusion model. The model was first validated with diazepam and citalopram, 2 compounds known to cross the placental barrier, and antipyrine as a positive control. All compounds were quantified by partially validated U(H)PLC-MS/MS bioanalytical methods. Protopine was transferred from the maternal to the fetal circuit, with a steady-state reached after 90 min. The study compound did not affect placental viability or functionality, as glucose consumption, lactate production, and beta-human chorionic gonadotropin, and leptin release remained constant. Histopathological evaluation of all placental specimens showed unremarkable, age-appropriate parenchymal maturation with no pathologic findings.
Collapse
Affiliation(s)
- Deborah Spiess
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Mouhssin Oufir
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elisa Duong
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
13
|
Vandenberg LN, Rayasam SDG, Axelrad DA, Bennett DH, Brown P, Carignan CC, Chartres N, Diamond ML, Joglekar R, Shamasunder B, Shrader-Frechette K, Subra WA, Zarker K, Woodruff TJ. Addressing systemic problems with exposure assessments to protect the public's health. Environ Health 2023; 21:121. [PMID: 36635700 PMCID: PMC9835264 DOI: 10.1186/s12940-022-00917-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Understanding, characterizing, and quantifying human exposures to environmental chemicals is critical to protect public health. Exposure assessments are key to determining risks to the general population and for specific subpopulations given that exposures differ between groups. Exposure data are also important for understanding where interventions, including public policies, should be targeted and the extent to which interventions have been successful. In this review, we aim to show how inadequacies in exposure assessments conducted by polluting industries or regulatory agencies have led to downplaying or disregarding exposure concerns raised by communities; that underestimates of exposure can lead regulatory agencies to conclude that unacceptable risks are, instead, acceptable, allowing pollutants to go unregulated; and that researchers, risk assessors, and policy makers need to better understand the issues that have affected exposure assessments and how appropriate use of exposure data can contribute to health-protective decisions. METHODS We describe current approaches used by regulatory agencies to estimate human exposures to environmental chemicals, including approaches to address limitations in exposure data. We then illustrate how some exposure assessments have been used to reach flawed conclusions about environmental chemicals and make recommendations for improvements. RESULTS Exposure data are important for communities, public health advocates, scientists, policy makers, and other groups to understand the extent of environmental exposures in diverse populations. We identify four areas where exposure assessments need to be improved due to systemic sources of error or uncertainty in exposure assessments and illustrate these areas with examples. These include: (1) an inability of regulatory agencies to keep pace with the increasing number of chemicals registered for use or assess their exposures, as well as complications added by use of 'confidential business information' which reduce available exposure data; (2) the failure to keep assessments up-to-date; (3) how inadequate assumptions about human behaviors and co-exposures contribute to underestimates of exposure; and (4) that insufficient models of toxicokinetics similarly affect exposure estimates. CONCLUSION We identified key issues that impact capacity to conduct scientifically robust exposure assessments. These issues must be addressed with scientific or policy approaches to improve estimates of exposure and protect public health.
Collapse
Affiliation(s)
- Laura N Vandenberg
- Department of Environmental Health Sciences, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA.
| | - Swati D G Rayasam
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | | | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, Davis, CA, USA
| | - Phil Brown
- Social Science Environmental Health Research Institute, Northeastern University, Boston, MA, USA
| | - Courtney C Carignan
- Department of Food Science and Human Nutrition, Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Nicholas Chartres
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| | - Miriam L Diamond
- Department of Earth Sciences, University of Toronto, Toronto, ON, Canada
- School of the Environment, University of Toronto, Toronto, ON, Canada
| | - Rashmi Joglekar
- Earthjustice, New York, NY, USA
- Earthjustice, Washington, DC, USA
| | - Bhavna Shamasunder
- Department of Urban & Environmental Policy and Public Health, Occidental College, Los Angeles, CA, USA
| | - Kristin Shrader-Frechette
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
- Department of Philosophy, University of Notre Dame, Notre Dame, IN, USA
| | - Wilma A Subra
- Louisiana Environmental Action Network, Baton Rouge, LA, USA
| | - Ken Zarker
- Washington State Department of Ecology, Olympia, WA, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Burhanuddin K, Badhan R. Optimising Fluvoxamine Maternal/Fetal Exposure during Gestation: A Pharmacokinetic Virtual Clinical Trials Study. Metabolites 2022; 12:metabo12121281. [PMID: 36557319 PMCID: PMC9782298 DOI: 10.3390/metabo12121281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
Fluvoxamine plasma concentrations have been shown to decrease throughout pregnancy. CYP2D6 polymorphisms significantly influence these changes. However, knowledge of an optimum dose adjustment according to the CYP2D6 phenotype is still limited. This study implemented a physiologically based pharmacokinetic modelling approach to assess the gestational changes in fluvoxamine maternal and umbilical cord concentrations. The optimal dosing strategies during pregnancy were simulated, and the impact of CYP2D6 phenotypes on fluvoxamine maternal and fetal concentrations was considered. A significant decrease in fluvoxamine maternal plasma concentrations was noted during gestation. As for the fetal concentration, a substantial increase was noted for the poor metabolisers (PM), with a constant level in the ultrarapid (UM) and extensive (EM) metabolisers commencing from gestation week 20 to term. The optimum dosing regimen suggested for UM and EM reached a maximum dose of 300 mg daily at gestational weeks (GW) 15 and 35, respectively. In contrast, a stable dose of 100 mg daily throughout gestation for the PM is sufficient to maintain the fluvoxamine plasma concentration within the therapeutic window (60-230 ng/mL). Dose adjustment during pregnancy is required for fluvoxamine, particularly for UM and EM, to maintain efficacy throughout the gestational period.
Collapse
|
15
|
van de Vusse D, Mian P, Schoenmakers S, Flint RB, Visser W, Allegaert K, Versmissen J. Pharmacokinetics of the most commonly used antihypertensive drugs throughout pregnancy methyldopa, labetalol, and nifedipine: a systematic review. Eur J Clin Pharmacol 2022; 78:1763-1776. [PMID: 36104450 PMCID: PMC9474278 DOI: 10.1007/s00228-022-03382-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/03/2022] [Indexed: 01/09/2023]
Abstract
Abstract
Purpose
Antihypertensive drugs are among the most prescribed drugs during pregnancy. Methyldopa, labetalol, and nifedipine have been perceived safe to use during pregnancy and are therefore recommended in international guidelines for treatment of hypertension. In this review, we provide a complete overview of what is known on the pharmacokinetics (PK) of the antihypertensive drugs methyldopa, labetalol, and nifedipine throughout pregnancy.
Methods
A systematic search was performed to retrieve studies on the PK of methyldopa, labetalol, and nifedipine used throughout pregnancy. The search was restricted to English and original studies. The systematic search was conducted on July 27, 2021, in Embase, Medline Ovid, Web of Science, Cochrane Library, and Google Scholar. Keywords were methyldopa, labetalol, nifedipine, pharmacokinetics, pregnancy, and placenta.
Results
A total of 1459 unique references were identified of which title and abstract were screened. Based on this screening, 67 full-text papers were assessed, to retain 30 PK studies of which 2 described methyldopa, 12 labetalol, and 16 nifedipine. No fetal accumulation is found for any of the antihypertensive drugs studied.
Conclusion
We conclude that despite decades of prescribing methyldopa, labetalol, and nifedipine throughout pregnancy, descriptions of their PK during pregnancy are hampered by a large heterogeneity in the low number of available studies. Aiming for evidence-based and personalized dosing of antihypertensive medication in the future, further studies on the relationship of both PK and pharmacodynamics (including the optimal blood pressure targeting) during pregnancy and pregnancy-related pathology are urgently needed to prevent undertreatment, overtreatment, and side effects.
Collapse
Affiliation(s)
- Dylan van de Vusse
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Clinical Pharmacy, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Paola Mian
- Department of Clinical Pharmacy, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, The Netherlands
| | - Sam Schoenmakers
- Obstetrics and Gynecology, Division Obstetrics and Prenatal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Robert B Flint
- Department of Clinical Pharmacy, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Pediatrics, Division of Neonatology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Willy Visser
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Obstetrics and Gynecology, Division Obstetrics and Prenatal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Karel Allegaert
- Department of Clinical Pharmacy, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jorie Versmissen
- Department of Internal Medicine, Division of Pharmacology and Vascular Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Clinical Pharmacy, Erasmus MC University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
16
|
Physiologically based pharmacokinetic (PBPK) modeling of flurbiprofen in different CYP2C9 genotypes. Arch Pharm Res 2022; 45:584-595. [PMID: 36028591 DOI: 10.1007/s12272-022-01403-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/16/2022] [Indexed: 11/02/2022]
Abstract
The aim of this study was to establish the physiologically based pharmacokinetic (PBPK) model of flurbiprofen related to CYP2C9 genetic polymorphism and describe the pharmacokinetics of flurbiprofen in different CYP2C9 genotypes. PK-Sim® software was used for the model development and validation. A total of 16 clinical pharmacokinetic data for flurbiprofen in different CYP2C9 genotypes, dose regimens, and age groups were used for the PBPK modeling. Turnover number (kcat) of CYP2C9 values were optimized to capture the observed profiles in different CYP2C9 genotypes. In the simulation, predicted fraction metabolized by CYP2C9, fraction excreted to urine, bioavailability, and volume of distribution were similar to previously reported values. Predicted plasma concentration-time profiles in different CYP2C9 genotypes were visually similar to the observed profiles. Predicted AUCinf in CYP2C9*1/*2, CYP2C9*1/*3, and CYP2C9*3/*3 genotypes were 1.44-, 2.05-, and 3.67-fold higher than the CYP2C9*1/*1 genotype. The ranges of fold errors for AUCinf, Cmax, and t1/2 were 0.84-1.00, 0.61-1.22, and 0.74-0.94 in development and 0.59-0.98, 0.52-0.97, and 0.61-1.52 in validation, respectively, which were within the acceptance criterion. Thus, the PBPK model was successfully established and described the pharmacokinetics of flurbiprofen in different CYP2C9 genotypes, dose regimens, and age groups. The present model could guide the decision-making of tailored drug administration strategy by predicting the pharmacokinetics of flurbiprofen in various clinical scenarios.
Collapse
|
17
|
Physiologically based pharmacokinetic modelling to predict the pharmacokinetics of metoprolol in different CYP2D6 genotypes. Arch Pharm Res 2022; 45:433-445. [PMID: 35763157 DOI: 10.1007/s12272-022-01394-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
Metoprolol, a selective β1-adrenoreceptor blocking agent used in the treatment of hypertension, angina, and heart failure, is primarily metabolized by the CYP2D6 enzyme, which catalyzes α-hydroxylation and O-desmethylation. As CYP2D6 is genetically highly polymorphic and the enzymatic activity differs greatly depending on the presence of the mutant allele(s), the pharmacokinetic profile of metoprolol is highly variable depending on the genotype of CYP2D6. The aim of study was to develop the physiologically based pharmacokinetic (PBPK) model of metoprolol related to CYP2D6 genetic polymorphism for personalized therapy with metoprolol. For PBPK modelling, our previous pharmacogenomic data were used. To obtain kinetic parameters (Km, Vmax, and CLint) of each genotype, the recombinant CYP enzyme of each genotype was incubated with metoprolol and metabolic rates were assayed. Based on these data, the PBPK model of metoprolol was developed and validated in different CYP2D6 genotypes using PK-Sim® software. As a result, the input values for various parameters for the PBPK model were presented and the PBPK model successfully described the pharmacokinetics of metoprolol in each genotype group. The simulated values were within the acceptance criterion (99.998% confidence intervals) compared with observed values. The PBPK model developed in this study can be used for personalized pharmacotherapy with metoprolol in individuals of various races, ages, and CYP2D6 genotypes.
Collapse
|
18
|
Cho CK, Kang P, Park HJ, Ko E, Mu CY, Lee YJ, Choi CI, Kim HS, Jang CG, Bae JW, Lee SY. Physiologically based pharmacokinetic (PBPK) modeling of piroxicam with regard to CYP2C9 genetic polymorphism. Arch Pharm Res 2022; 45:352-366. [PMID: 35639246 DOI: 10.1007/s12272-022-01388-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 01/12/2023]
Abstract
Piroxicam is a non-steroidal anti-inflammatory drug used to alleviate symptoms of osteoarthritis and rheumatoid arthritis. CYP2C9 genetic polymorphism significantly influences the pharmacokinetics of piroxicam. The objective of this study was to develop and validate the piroxicam physiologically based pharmacokinetic (PBPK) model related to CYP2C9 genetic polymorphism. PK-Sim® version 10.0 was used for the PBPK modeling. The PBPK model was evaluated by predicted and observed plasma concentration-time profiles, fold errors of predicted to observed pharmacokinetic parameters, and a goodness-of-fit plot. The turnover number (kcat) of CYP2C9 was adjusted to capture the pharmacokinetics of piroxicam in different CYP2C9 genotypes. The population PBPK model overall accurately described and predicted the plasma concentration-time profiles in different CYP2C9 genotypes. In our simulations, predicted AUCinf in CYP2C9*1/*2, CYP2C9*1/*3, and CYP2C9*3/*3 genotypes were 1.83-, 2.07-, and 6.43-fold higher than CYP2C9*1/*1 genotype, respectively. All fold error values for AUC, Cmax, and t1/2 were included in the acceptance criterion with the ranges of 0.57-1.59, 0.63-1.39, and 0.65-1.51, respectively. The range of fold error values for predicted versus observed plasma concentrations was 0.11-3.13. 93.9% of fold error values were within the two-fold range. Average fold error, absolute average fold error, and root mean square error were 0.93, 1.27, and 0.72, respectively. Our model accurately captured the pharmacokinetic alterations of piroxicam according to CYP2C9 genetic polymorphism.
Collapse
Affiliation(s)
- Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hye-Jung Park
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eunvin Ko
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chou Yen Mu
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea.
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
19
|
Application of a Physiologically Based Pharmacokinetic Model to Predict Cefazolin and Cefuroxime Disposition in Obese Pregnant Women Undergoing Caesarean Section. Pharmaceutics 2022; 14:pharmaceutics14061162. [PMID: 35745736 PMCID: PMC9229966 DOI: 10.3390/pharmaceutics14061162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Intravenous (IV) cefuroxime and cefazolin are used prophylactically in caesarean sections (CS). Currently, there are concerns regarding sub-optimal dosing in obese pregnant women compared to lean pregnant women prior to CS. The current study used a physiologically based pharmacokinetic (PBPK) approach to predict cefazolin and cefuroxime pharmacokinetics in obese pregnant women at the time of CS as well as the duration that these drug concentrations remain above a target concentration (2, 4 or 8 µg/mL or µg/g) in plasma or adipose tissue. Cefazolin and cefuroxime PBPK models were first built using clinical data in lean and in obese non–pregnant populations. Models were then used to predict cefazolin and cefuroxime pharmacokinetics data in lean and obese pregnant populations. Both cefazolin and cefuroxime models sufficiently described their total and free levels in the plasma and in the adipose interstitial fluid (ISF) in non–pregnant and pregnant populations. The obese pregnant cefazolin model predicted adipose exposure adequately at different reference time points and indicated that an IV dose of 2000 mg can maintain unbound plasma and adipose ISF concentration above 8 µg/mL for 3.5 h post dose. Predictions indicated that an IV 1500 mg cefuroxime dose can achieve unbound plasma and unbound ISF cefuroxime concentration of ≥8 µg/mL up to 2 h post dose in obese pregnant women. Re-dosing should be considered if CS was not completed within 2 h post cefuroxime administration for both lean or obese pregnant if cefuroxime concentrations of ≥8 µg/mL is required. A clinical study to measure cefuroxime adipose concentration in pregnant and obese pregnant women is warranted.
Collapse
|
20
|
Prediction of Maternal and Fetal Doravirine Exposure by Integrating Physiologically Based Pharmacokinetic Modeling and Human Placenta Perfusion Experiments. Clin Pharmacokinet 2022; 61:1129-1141. [PMID: 35579825 PMCID: PMC9349081 DOI: 10.1007/s40262-022-01127-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2022] [Indexed: 11/25/2022]
Abstract
Background and Objective Doravirine is currently not recommended for pregnant women living with human immunodeficiency virus because efficacy and safety data are lacking. This study aimed to predict maternal and fetal doravirine exposure by integrating human placenta perfusion experiments with pregnancy physiologically based pharmacokinetic (PBPK) modeling. Methods Ex vivo placenta perfusions were performed in a closed–closed configuration, in both maternal-to-fetal and fetal-to-maternal directions (n = 8). To derive intrinsic placental transfer parameters from perfusion data, we developed a mechanistic placenta model. Next, we developed a maternal and fetal full-body pregnancy PBPK model for doravirine in Simcyp, which was parameterized with the derived intrinsic placental transfer parameters to predict in vivo maternal and fetal doravirine exposure at 26, 32, and 40 weeks of pregnancy. The predicted total geometric mean (GM) trough plasma concentration (Ctrough) values were compared with the target (0.23 mg/L) derived from in vivo exposure–response analysis. Results A decrease of 55% in maternal doravirine area under the plasma concentration–time curve (AUC)0–24h was predicted in pregnant women at 40 weeks of pregnancy compared with nonpregnant women. At 26, 32, and 40 weeks of pregnancy, predicted maternal total doravirine GM Ctrough values were below the predefined efficacy target of 0.23 mg/L. Perfusion experiments showed that doravirine extensively crossed the placenta, and PBPK modeling predicted considerable fetal doravirine exposure. Conclusion Substantially reduced maternal doravirine exposure was predicted during pregnancy, possibly resulting in impaired efficacy. Therapeutic drug and viral load monitoring are advised for pregnant women treated with doravirine. Considerable fetal doravirine exposure was predicted, highlighting the need for clinical fetal safety data. Supplementary Information The online version contains supplementary material available at 10.1007/s40262-022-01127-0.
Collapse
|
21
|
Job KM, Dallmann A, Parry S, Saade G, Haas DM, Hughes B, Berens P, Chen JY, Fu C, Humphrey K, Hornik C, Balevic S, Zimmerman K, Watt K. Development of a Generic Physiologically-Based Pharmacokinetic Model for Lactation and Prediction of Maternal and Infant Exposure to Ondansetron via Breast Milk. Clin Pharmacol Ther 2022; 111:1111-1120. [PMID: 35076931 PMCID: PMC10267851 DOI: 10.1002/cpt.2530] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 11/11/2022]
Abstract
Ondansetron is commonly used in breastfeeding mothers to treat nausea and vomiting. There is limited information in humans regarding safety of ondansetron exposure to nursing infants and no adequate study looking at ondansetron pharmacokinetics during lactation. We developed a generic physiologically-based pharmacokinetic lactation model for small molecule drugs and applied this model to predict ondansetron transfer into breast milk and characterize infant exposure. Drug-specific model inputs were parameterized using data from the literature. Population-specific inputs were derived from a previously conducted systematic literature review of anatomic and physiologic changes in postpartum women. Model predictions were evaluated using ondansetron plasma and breast milk concentration data collected prospectively from 78 women in the Commonly Used Drugs During Lactation and infant Exposure (CUDDLE) study. The final model predicted breast milk and plasma exposures following a single 4 mg dose of intravenous ondansetron in 1,000 simulated women who were 2 days postpartum. Model predictions showed good agreement with observed data. Breast milk median prediction error (MPE) was 18.4% and median absolute prediction error (MAPE) was 53.0%. Plasma MPE was 32.5% and MAPE was 43.2%. The model-predicted daily and relative infant doses were 0.005 mg/kg/day and 3.0%, respectively. This model adequately predicted ondansetron passage into breast milk. The calculated low relative infant dose indicates that mothers receiving ondansetron can safely breastfeed. The model building blocks and population database are open-source and can be adapted to other drugs.
Collapse
Affiliation(s)
- Kathleen M. Job
- Division of Clinical Pharmacology, Department of Pediatrics, The University of Utah, Salt Lake City, Utah, USA
| | - André Dallmann
- Pharmacometrics/Modeling & Simulation, Research & Development, Bayer AG, Leverkusen, Germany
| | - Samuel Parry
- Division of Maternal-Fetal Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - George Saade
- University of Texas Medical Branch–Galveston, Galveston, Texas, USA
| | - David M. Haas
- Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Brenna Hughes
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, USA
| | - Pamela Berens
- McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, Texas, USA
| | - Jia-Yu Chen
- The Emmes Company, LLC, Rockville, Maryland, USA
| | - Christina Fu
- The Emmes Company, LLC, Rockville, Maryland, USA
| | | | - Christoph Hornik
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Stephen Balevic
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Kanecia Zimmerman
- Duke Clinical Research Institute, Duke University, Durham, North Carolina, USA
| | - Kevin Watt
- Division of Clinical Pharmacology, Department of Pediatrics, The University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
22
|
Re-orienting anti-malarial drug development to better serve pregnant women. Malar J 2022; 21:121. [PMID: 35413907 PMCID: PMC9003153 DOI: 10.1186/s12936-022-04137-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/22/2022] [Indexed: 11/10/2022] Open
Abstract
Malaria is one of the most serious infectious diseases affecting predominantly low- and middle-income countries, where pregnant women are among the populations at risk. There are limited options to prevent or treat malaria in pregnancy, particularly in the first trimester, and existing ones may not work optimally in areas where the threat of drug resistance is rising. As malaria elimination is a key goal of the global health community, the inclusion of pregnant women in the adult population to protect from malaria will be key to achieving success. New, safe, and effective options are needed but it can take decades of evidence-gathering before a medicine is recommended for use in pregnancy. This is because pregnant women are typically not included in pre-registration clinical trials due to fear of causing harm. Data to support dosing and safety in pregnancy are subsequently collected in post-licensure studies. There have been growing calls in recent years that this practice needs to change, amplified by the COVID-19 pandemic and increasing public awareness that newly developed medicines generally cannot be administered to pregnant women from the onset. The development of new anti-malarials should ensure that data informing their use in pregnancy and breastfeeding are available earlier. To achieve this, a mindset change and a different approach to medications for pregnant women are needed. Changes in non-clinical, translational, and clinical approaches in the drug development pathway, in line with recent recommendations from the regulatory bodies are proposed in this Comment. The new approach applies to any malaria-endemic region, regardless of the type of Plasmodium responsible for malaria cases. By incorporating intentional and systematic data collection from pre-registration stages of development through post-licensure, it will be possible to inform on the benefit/risk balance of a new anti-malarial earlier and help ensure that the needs of pregnant individuals are addressed in a more timely and equitable manner in the future.
Collapse
|
23
|
Abduljalil K, Pansari A, Ning J, Jamei M. Prediction of Maternal and Fetal Acyclovir, Emtricitabine, Lamivudine, and Metformin Concentrations during Pregnancy Using a Physiologically Based Pharmacokinetic Modeling Approach. Clin Pharmacokinet 2022; 61:725-748. [DOI: 10.1007/s40262-021-01103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2021] [Indexed: 12/20/2022]
|
24
|
Abduljalil K, Ning J, Pansari A, Pan X, Jamei M. Prediction of Maternal and Fetoplacental Concentrations of Cefazolin, Cefuroxime and Amoxicillin during Pregnancy using bottom-up Physiologically based Pharmacokinetic Models. Drug Metab Dispos 2022; 50:386-400. [DOI: 10.1124/dmd.121.000711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 11/22/2022] Open
|
25
|
Zheng L, Yang H, Dallmann A, Jiang X, Wang L, Hu W. Physiologically Based Pharmacokinetic Modeling in Pregnant Women Suggests Minor Decrease in Maternal Exposure to Olanzapine. Front Pharmacol 2022; 12:793346. [PMID: 35126130 PMCID: PMC8807508 DOI: 10.3389/fphar.2021.793346] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/23/2021] [Indexed: 01/08/2023] Open
Abstract
Pregnancy is accompanied by significant physiological changes that might affect the in vivo drug disposition. Olanzapine is prescribed to pregnant women with schizophrenia, while its pharmacokinetics during pregnancy remains unclear. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of olanzapine in the pregnant population. With the contributions of each clearance pathway determined beforehand, a full PBPK model was developed and validated in the non-pregnant population. This model was then extrapolated to predict steady-state pharmacokinetics in the three trimesters of pregnancy by introducing gestation-related alterations. The model adequately simulated the reported time-concentration curves. The geometric mean fold error of Cmax and AUC was 1.14 and 1.09, respectively. The model predicted that under 10 mg daily dose, the systematic exposure of olanzapine had minor changes (less than 28%) throughout pregnancy. We proposed that the reduction in cytochrome P4501A2 activity is counteracted by the induction of other enzymes, especially glucuronyltransferase1A4. In conclusion, the PBPK model simulations suggest that, at least at the tested stages of pregnancy, dose adjustment of olanzapine can hardly be recommended for pregnant women if effective treatment was achieved before the onset of pregnancy and if fetal toxicity can be ruled out.
Collapse
Affiliation(s)
- Liang Zheng
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hongyi Yang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - André Dallmann
- Pharmacometrics/Modeling and Simulation, Research and Development, Pharmaceuticals Bayer AG, Leverkusen, Germany
| | - Xuehua Jiang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ling Wang
- Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Ling Wang, ; Wei Hu,
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ling Wang, ; Wei Hu,
| |
Collapse
|
26
|
Abduljalil K, Gardner I, Jamei M. Application of a Physiologically Based Pharmacokinetic Approach to Predict Theophylline Pharmacokinetics Using Virtual Non-Pregnant, Pregnant, Fetal, Breast-Feeding, and Neonatal Populations. Front Pediatr 2022; 10:840710. [PMID: 35652056 PMCID: PMC9150776 DOI: 10.3389/fped.2022.840710] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/11/2022] [Indexed: 12/23/2022] Open
Abstract
Perinatal pharmacology is influenced by a myriad of physiological variables that are changing dynamically. The influence of these covariates has not been assessed systemically. The objective of this work was to use theophylline as a model drug and to predict its pharmacokinetics before, during (including prediction of the umbilical cord level), and after pregnancy as well as in milk (after single and multiple doses) and in neonates using a physiological-based pharmacokinetic (PBPK) model. Neonatal theophylline exposure from milk consumption was projected in both normal term and preterm subjects. Predicted infant daily doses were calculated using theophylline average and maximum concentration in the milk as well as an estimate of milk consumption. Predicted concentrations and parameters from the PBPK model were compared to the observed data. PBPK predicted theophylline concentrations in non-pregnant and pregnant populations at different gestational weeks were within 2-fold of the observations and the observed concentrations fell within the 5th-95th prediction interval from the PBPK simulations. The PBPK model predicted an average cord-to-maternal plasma ratio of 1.0, which also agrees well with experimental observations. Predicted postpartum theophylline concentration profiles in milk were also in good agreement with observations with a predicted milk-to-plasma ratio of 0.68. For an infant of 2 kg consuming 150 ml of milk per day, the lactation model predicted a relative infant dose (RID) of 12 and 17% using predicted average (Cavg,ss) and maximum (Cmax,ss) concentration in milk at steady state. The maximum RID of 17% corresponds to an absolute infant daily dose of 1.4 ± 0.5 mg/kg/day. This dose, when administered as 0.233 mg/kg every 4 h, to resemble breastfeeding frequency, resulted in plasma concentrations as high as 3.9 (1.9-6.8) mg/L and 2.8 (1.3-5.3) (5th-95th percentiles) on day 7 in preterm (32 GW) and full-term neonatal populations.
Collapse
Affiliation(s)
| | - Iain Gardner
- Certara UK Limited (Simcyp Division), Sheffield, United Kingdom
| | - Masoud Jamei
- Certara UK Limited (Simcyp Division), Sheffield, United Kingdom
| |
Collapse
|
27
|
van Hoogdalem MW, Wexelblatt SL, Akinbi HT, Vinks AA, Mizuno T. A review of pregnancy-induced changes in opioid pharmacokinetics, placental transfer, and fetal exposure: Towards fetomaternal physiologically-based pharmacokinetic modeling to improve the treatment of neonatal opioid withdrawal syndrome. Pharmacol Ther 2021; 234:108045. [PMID: 34813863 DOI: 10.1016/j.pharmthera.2021.108045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/07/2023]
Abstract
Physiologically-based pharmacokinetic (PBPK) modeling has emerged as a useful tool to study pharmacokinetics (PK) in special populations, such as pregnant women, fetuses, and newborns, where practical hurdles severely limit the study of drug behavior. PK in pregnant women is variable and everchanging, differing greatly from that in their nonpregnant female and male counterparts typically enrolled in clinical trials. PBPK models can accommodate pregnancy-induced physiological and metabolic changes, thereby providing mechanistic insights into maternal drug disposition and fetal exposure. Fueled by the soaring opioid epidemic in the United States, opioid use during pregnancy continues to rise, leading to an increased incidence of neonatal opioid withdrawal syndrome (NOWS). The severity of NOWS is influenced by a complex interplay of extrinsic and intrinsic factors, and varies substantially between newborns, but the extent of prenatal opioid exposure is likely the primary driver. Fetomaternal PBPK modeling is an attractive approach to predict in utero opioid exposure. To facilitate the development of fetomaternal PBPK models of opioids, this review provides a detailed overview of pregnancy-induced changes affecting the PK of commonly used opioids during gestation. Moreover, the placental transfer of these opioids is described, along with their disposition in the fetus. Lastly, the implementation of these factors into PBPK models is discussed. Fetomaternal PBPK modeling of opioids is expected to provide improved insights in fetal opioid exposure, which allows for prediction of postnatal NOWS severity, thereby opening the way for precision postnatal treatment of these vulnerable infants.
Collapse
Affiliation(s)
- Matthijs W van Hoogdalem
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Scott L Wexelblatt
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Henry T Akinbi
- Perinatal Institute, Division of Neonatology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Alexander A Vinks
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Tomoyuki Mizuno
- Division of Clinical Pharmacology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA; Center for Addiction Research, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
28
|
Spiess D, Abegg VF, Chauveau A, Treyer A, Reinehr M, Oufir M, Duong E, Potterat O, Hamburger M, Simões-Wüst AP. Placental Passage of Humulone and Protopine in an Ex Vivo Human Perfusion System. PLANTA MEDICA 2021; 87:1192-1205. [PMID: 34530480 PMCID: PMC8585570 DOI: 10.1055/a-1578-3803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/28/2021] [Indexed: 05/07/2023]
Abstract
The placental passage of humulone and protopine was investigated with a human ex vivo placental perfusion model. The model was first validated with diazepam and citalopram, 2 compounds known to cross the placental barrier, and antipyrine as a positive control. All compounds were quantified by partially validated U(H)PLC-MS/MS bioanalytical methods. Only a small portion of humulone initially present in the maternal circuit reached the fetal circuit. The humulone concentration in the maternal circuit rapidly decreased, likely due to metabolization in the placenta. Protopine was transferred from the maternal to the fetal circuit, with a steady-state reached after 90 min. None of the study compounds affected placental viability or functionality, as glucose consumption, lactate production, beta-human chorionic gonadotropin, and leptin release remained constant. Histopathological evaluation of all placental specimens showed unremarkable, age-appropriate parenchymal maturation with no pathologic findings.
Collapse
Affiliation(s)
- Deborah Spiess
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Vanessa Fabienne Abegg
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Antoine Chauveau
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Andrea Treyer
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Michael Reinehr
- Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Mouhssin Oufir
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elisa Duong
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Olivier Potterat
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Matthias Hamburger
- Division of Pharmaceutical Biology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Ana Paula Simões-Wüst
- Department of Obstetrics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
29
|
Idda ML, Campesi I, Fiorito G, Vecchietti A, Urru SAM, Solinas MG, Franconi F, Floris M. Sex-Biased Expression of Pharmacogenes across Human Tissues. Biomolecules 2021; 11:1206. [PMID: 34439872 PMCID: PMC8393247 DOI: 10.3390/biom11081206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/18/2022] Open
Abstract
Individual response to drugs is highly variable and largely influenced by genetic variants and gene-expression profiles. In addition, it has been shown that response to drugs is strongly sex-dependent, both in terms of efficacy and toxicity. To expand current knowledge on sex differences in the expression of genes relevant for drug response, we generated a catalogue of differentially expressed human transcripts encoded by 289 genes in 41 human tissues from 838 adult individuals of the Genotype-Tissue Expression project (GTEx, v8 release) and focused our analysis on relevant transcripts implicated in drug response. We detected significant sex-differentiated expression of 99 transcripts encoded by 59 genes in the tissues most relevant for human pharmacology (liver, lung, kidney, small intestine terminal ileum, skin not sun-exposed, and whole blood). Among them, as expected, we confirmed significant differences in the expression of transcripts encoded by the cytochromes in the liver, CYP2B6, CYP3A7, CYP3A5, and CYP1A1. Our systematic investigation on differences between male and female in the expression of drug response-related genes, reinforce the need to overcome the sex bias of clinical trials.
Collapse
Affiliation(s)
- Maria Laura Idda
- Institute of Genetics and Biomedical research, 07100 Sassari, Italy;
| | - Ilaria Campesi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| | - Giovanni Fiorito
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
- Unit of Environmental Epidemiology, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Andrea Vecchietti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| | - Silvana Anna Maria Urru
- Hospital Pharmacy Unit, Trento General Hospital, Autonomous Province of Trento, 38122 Trento, Italy;
- Department of Chemistry and Pharmacy, School of Hospital Pharmacy, University of Sassari, 07100 Sassari, Italy
| | - Maria Giuliana Solinas
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| | - Flavia Franconi
- National Laboratory of Pharmacology and Gender medicine, National Institute of Biostructure and Biosystems, 00136 Rome, Italy;
| | - Matteo Floris
- Institute of Genetics and Biomedical research, 07100 Sassari, Italy;
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (I.C.); (G.F.); (A.V.); (M.G.S.)
| |
Collapse
|
30
|
Silva LL, Silvola RM, Haas DM, Quinney SK. Physiologically based pharmacokinetic modelling in pregnancy: Model reproducibility and external validation. Br J Clin Pharmacol 2021; 88:1441-1451. [PMID: 34337764 DOI: 10.1111/bcp.15018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023] Open
Abstract
AIMS Physiologically based pharmacokinetic (PBPK) models have been previously developed for betamethasone and buprenorphine for pregnant women. The goal of this work was to replicate and reassess these models using data from recently completed studies. METHODS Betamethasone and buprenorphine PBPK models were developed in Simcyp V19 based on prior publications using V17 and V15. Ability to replicate models was verified by comparing predictions in V19 to those previously published. Once replication was verified, models were reassessed by comparing predictions to observed data from additional studies in pregnant women. Model performance was based upon visual inspection of concentration vs. time profiles, and comparison of pharmacokinetic parameters. Models were deemed reproducible if parameter estimates were within 10% of previously reported values. External validations were considered acceptable if the predicted area under the concentration-time curve (AUC) and peak plasma concentration fell within 2-fold of the observed. RESULTS The betamethasone model was successfully replicated using Simcyp V19, with ratios of reported (V17) to reproduced (V19) peak plasma concentration of 0.98-1.04 and AUC of 0.95-1.07. The model-predicted AUC ratios ranged from 0.98-1.79 compared to external data. The previously published buprenorphine PBPK model was not reproducible, as we predicted intravenous clearance of 70% that reported previously (both in Simcyp V15). CONCLUSION While high interstudy variability was observed in the newly available clinical data, the PBPK model sufficiently predicted changes in betamethasone exposure across gestation. Model reproducibility and reassessment with external data are important for the advancement of the discipline. PBPK modelling publications should contain sufficient detail and clarity to enable reproducibility.
Collapse
Affiliation(s)
- Larissa L Silva
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rebecca M Silvola
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - David M Haas
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sara K Quinney
- Division of Clinical Pharmacology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
31
|
Szeto KX, Le Merdy M, Dupont B, Bolger MB, Lukacova V. PBPK Modeling Approach to Predict the Behavior of Drugs Cleared by Kidney in Pregnant Subjects and Fetus. AAPS JOURNAL 2021; 23:89. [PMID: 34169370 PMCID: PMC8225528 DOI: 10.1208/s12248-021-00603-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/27/2021] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to develop a physiologically based pharmacokinetic (PBPK) model predicting the pharmacokinetics (PK) of different compounds in pregnant subjects. This model considers the differences in tissue sizes, blood flow rates, enzyme expression levels, glomerular filtration rates, plasma protein binding, and other factors affected during pregnancy in both the maternal and fetal models. The PBPKPlus™ module in GastroPlus® was used to model the PK of cefuroxime and cefazolin. For both compounds, the model was first validated against PK data in healthy non-pregnant volunteers and then applied to predict pregnant groups PK. The model accurately described the PK in both non-pregnant and pregnant groups and explained well differences in the plasma concentration due to pregnancy. The fetal plasma and amniotic fluid concentrations were also predicted reasonably well at different stages of pregnancy. This work describes the use of a PBPK approach for drug development and demonstrates the ability to predict differences in PK in pregnant subjects and fetal exposure for compounds excreted renally. The prediction for pregnant groups is also improved when the model is calibrated with postpartum or non-pregnant female group if such data are available.
Collapse
Affiliation(s)
- Ke Xu Szeto
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, California, 93534, USA
| | - Maxime Le Merdy
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, California, 93534, USA
| | - Benjamin Dupont
- PhinC Development, 36 Rue Victor Basch, 91300, Massy, France
| | - Michael B Bolger
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, California, 93534, USA
| | - Viera Lukacova
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, California, 93534, USA.
| |
Collapse
|
32
|
Almurjan A, Macfarlane H, Badhan RKS. The application of precision dosing in the use of sertraline throughout pregnancy for poor and ultrarapid metabolizer CYP 2C19 subjects: A virtual clinical trial pharmacokinetics study. Biopharm Drug Dispos 2021; 42:252-262. [PMID: 33851424 DOI: 10.1002/bdd.2278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/07/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Sertraline is known to undergo changes in pharmacokinetics during pregnancy. CYP 2C19 has been implicated in the interindividual variation in clinical effect associated with sertraline activity. However, knowledge of suitable dose titrations during pregnancy and within CYP 2C19 phenotypes is lacking. A pharmacokinetic modeling virtual clinical trials approach was implemented to: (i) assess gestational changes in sertraline trough plasma concentrations for CYP 2C19 phenotypes, and (ii) identify appropriate dose titration strategies to stabilize sertraline levels within a defined therapeutic range throughout gestation. Sertraline trough plasma concentrations decreased throughout gestation, with maternal volume expansion and reduction in plasma albumin being identified as possible causative reasons. All CYP 2C19 phenotypes required a dose increase throughout gestation. For extensive metabolizer (EM) and ultrarapid metabolizer (UM) phenotypes, doses of 100-150 mg daily are required throughout gestation. For poor metabolizers (PM), 50 mg daily during trimester 1 followed by a dose of 100 mg daily in trimesters 2 and 3 are required.
Collapse
Affiliation(s)
- Aminah Almurjan
- Medicines Optimisation Research Group, Aston Pharmacy School, Aston University, Birmingham, UK
| | - Hannah Macfarlane
- Medicines Optimisation Research Group, Aston Pharmacy School, Aston University, Birmingham, UK
| | - Raj K S Badhan
- Medicines Optimisation Research Group, Aston Pharmacy School, Aston University, Birmingham, UK
| |
Collapse
|
33
|
Seeman MV. The Pharmacodynamics of Antipsychotic Drugs in Women and Men. Front Psychiatry 2021; 12:650904. [PMID: 33897500 PMCID: PMC8062799 DOI: 10.3389/fpsyt.2021.650904] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background: Animal and human experiments have confirmed sex differences in the expression of hepatic enzymes that metabolize antipsychotic drugs and that may, in this way, be partly responsible for the clinical sex/gender differences observed in the efficacy and tolerability of antipsychotic treatment. Aim: The aim of this mini review is to synthesize the literature on the pharmacodynamics of male/female differential response to antipsychotic drugs. Method: Relevant search terms were used to search for pre-clinical and human trials and analysis of antipsychotic differential drug response and occurrence/severity of adverse effects in women and men. Results: The search found that sex influences drug response via the amount of a given drug that enters the brain and the number of neurotransmitter receptors to which it can bind. Consequently, sex partly determines the efficacy of a specific drug and its liability to induce unwanted effects. There are other factors that can overshadow or enhance the dimorphic effect of sex, for instance, the host's age, hormonal status, diet and life style as well as the molecular structure of the drug and its dose, and the method of its administration. Most of all, the host's individual genetics affects each step of a drug's pharmacodynamics. Conclusion: On average, women's psychotic symptoms respond to antipsychotic drugs at doses lower than men's. This means that many women may be de facto overdosed and, thus, experience unnecessary adverse effects. That being said, factors such as genetics and age probably determine drug response and tolerability to a greater degree than do biological sex or gender social roles.
Collapse
Affiliation(s)
- Mary V Seeman
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Arya V, Venkatakrishnan K. Role of Physiologically Based Pharmacokinetic Modeling and Simulation in Enabling Model-Informed Development of Drugs and Biotherapeutics. J Clin Pharmacol 2020; 60 Suppl 1:S7-S11. [PMID: 33205427 DOI: 10.1002/jcph.1770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Vikram Arya
- Division of Infectious Disease Pharmacology (DIDP), Office of Clinical Pharmacology (OCP), Office of Translational Sciences (OTS), Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Karthik Venkatakrishnan
- EMD Serono Research and Development Institute, Inc. (a business of Merck KGaA, Darmstadt, Germany), Billerica, Massachusetts, USA
| |
Collapse
|
35
|
Abduljalil K, Pansari A, Jamei M. Prediction of maternal pharmacokinetics using physiologically based pharmacokinetic models: assessing the impact of the longitudinal changes in the activity of CYP1A2, CYP2D6 and CYP3A4 enzymes during pregnancy. J Pharmacokinet Pharmacodyn 2020; 47:361-383. [DOI: 10.1007/s10928-020-09711-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
|
36
|
A pharmacometrician's role in enhancing medication use in pregnancy and lactation. J Pharmacokinet Pharmacodyn 2020; 47:267-269. [PMID: 32803462 PMCID: PMC7473842 DOI: 10.1007/s10928-020-09707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|