1
|
Sil BK, Jamiruddin MR, Paul PK, Aekwattanaphol N, Nakpheng T, Haq MA, Buatong W, Srichana T. Ascorbic acid as serine protease inhibitor in lung cancer cell line and human serum albumin. PLoS One 2024; 19:e0303706. [PMID: 39042609 PMCID: PMC11265676 DOI: 10.1371/journal.pone.0303706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/30/2024] [Indexed: 07/25/2024] Open
Abstract
Serine proteases (SPs) are distributed among all living cells accounting for almost one-third of all proteases. Dysregulation of SPs during inflammation and/or infection can result in devastating consequences, such as skin and lung inflammation, neuroinflammation, arthritis, as well as metastasis of cancerous cells. Such activities are tightly regulated by various inhibitors known as serine protease inhibitors (SERPIN). The thermodynamic investigations previously revealed that L-ascorbic acid binds to trypsin more firmly than pepsin and the binding force of L-ascorbic acid is driven by hydrogen bonds and van der Waals forces. However, the physiochemical effects of such interaction on trypsin and/or pepsin have not yet been reported. Ascorbic acid, also known as vitamin C, is one of the essential nutrients and most common food supplements, fortificants, and preservatives. The aim of this study was to explore the inhibitory effects of ascorbic acid on serine proteases at various concentrations on the in-vitro digestion and/or hydrolysis of intercellular matrix of cell monolayer and human serum albumin (HSA). The inhibitory effects of ascorbic on trypsin are investigated by qualitative and quantitative analysis using SDS-PAGE imaging and NIH densitometric software. Upon the addition of ascorbic acid in both indicator systems, the detachment and/or dissociation of cell monolayer and the digestion of HSA were inhibited in the presence of EDTA-Trypsin. The inhibitory effect of ascorbic acid on the digestion of intercellular matrix and/or hydrolysis of HSA showed a dose-dependent trend until it reached the maximum extent of inhibition. At an equal concentration (2.5mg/mL) ascorbic acid and EDTA-Trypsin exhibited the most potent inhibitory effect on the in vitro digestion of protein either in the form of intercellular matrix in cell monolayer and/or HSA respectively. Overall, our results based on two indicator systems strongly indicate that ascorbic acid may function as a serine protease inhibitor (SERPIN) beyond other important functions.
Collapse
Affiliation(s)
- Bijon Kumar Sil
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | | | - Pijush Kumar Paul
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Nattanit Aekwattanaphol
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Titpawan Nakpheng
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Md. Ahsanul Haq
- Immunobiology, Nutrition and Toxicology Lab, Nutrition Research Division, icddr,b, Dhaka, Bangladesh
| | - Wilaiporn Buatong
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Teerapol Srichana
- Drug Delivery System Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
El Gammal RN, Elmansi H, El-Emam AA, Belal F, Elzahhar PA, Belal ASF, Hammouda MEA. Insights on the in-vitro binding interaction between donepezil and bovine serum albumin. BMC Chem 2023; 17:31. [PMID: 37024940 PMCID: PMC10077752 DOI: 10.1186/s13065-023-00944-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/27/2023] [Indexed: 04/08/2023] Open
Abstract
In this work, the binding mechanism between donepezil (DNP) and bovine serum albumin (BSA) was established using several techniques, including fluorimetry, UV- spectrophotometry, synchronous fluorimetry (SF), fourier transform infrared (FTIR), fluorescence resonance energy transfer (FRET) besides molecular docking study. The fluorescence quenching mechanism of DNP-BSA binding was a combined dynamic and static quenching. The thermodynamic parameters, binding forces, binding constant, and the number of binding sites were determined using a different range of temperature settings. Van't Hoff's equation was used to calculate the reaction parameters, including enthalpy change (ΔHο) and entropy change (ΔSο). The results pointed out that the DNP-BSA binding was endothermic. It was shown that the stability of the drug-protein system was predominantly due to the intermolecular hydrophobic forces. Additionally, the site probing method revealed that subdomain IIA (Site I) is where DNP and BSA's binding occurs. This was validated using a molecular docking study with the most stable DNP configuration. This study might help to understand DNP's pharmacokinetics profile and toxicity as well as provides crucial information for its safe use and avoiding its toxicity.
Collapse
Affiliation(s)
- Reem N El Gammal
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Perihan A Elzahhar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Ahmed S F Belal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt (HUE), New Damietta, Egypt
| |
Collapse
|
3
|
Palakkeezhillam VNV, Haribabu J, Manakkadan V, Rasin P, Varughese RE, Gayathri D, Bhuvanesh N, Echeverria C, Sreekanth A. Synthesis, spectroscopic characterizations, single crystal X-ray analysis, DFT calculations, in vitro biological evaluation and in silico evaluation studies of thiosemicarbazones based 1,3,4-thiadiazoles. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
El Gammal RN, Elmansi H, El-Emam AA, Belal F, Hammouda MEA. Exploring the molecular interaction of mebendazole with bovine serum albumin using multi-spectroscopic approaches and molecular docking. Sci Rep 2022; 12:11582. [PMID: 35804178 PMCID: PMC9270458 DOI: 10.1038/s41598-022-15696-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 06/28/2022] [Indexed: 11/24/2022] Open
Abstract
This article presents the binding interaction between mebendazole (MBZ) and bovine serum albumin. The interaction has been studied using different techniques, such as fluorescence quenching spectroscopy, UV–visible spectroscopy, synchronous fluorescence spectroscopy, fourier transform infrared, and fluorescence resonance energy transfer in addition to molecular docking. Results from Stern Volmer equation stated that the quenching for MBZ-BSA binding was static. The fluorescence quenching spectroscopic study was performed at three temperature settings. The binding constant (kq), the number of binding sites (n), thermodynamic parameters (ΔHο, ΔSο and ΔGο), and binding forces were determined. The results exhibited that the interaction was endothermic. It was revealed that intermolecular hydrophobic forces led to the stabilization of the drug-protein system. Using the site marker technique, the binding between MBZ and BSA was found to be located at subdomain IIA (site I). This was furtherly approved using the molecular docking technique with the most stable MBZ configuration. This research may aid in understanding the pharmacokinetics and toxicity of MBZ and give fundamental data for its safe usage to avoid its toxicity.
Collapse
Affiliation(s)
- Reem N El Gammal
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| | - Heba Elmansi
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Ali A El-Emam
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Fathalla Belal
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Mohammed E A Hammouda
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University - Egypt (HUE), New Damietta, Egypt
| |
Collapse
|
5
|
Yıldırım H, Yıldız M, Bayrak N, Mataracı-Kara E, Radwan MO, Jannuzzi AT, Otsuka M, Fujita M, TuYuN AF. Promising Antibacterial and Antifungal Agents Based on Thiolated Vitamin K3 Analogs: Synthesis, Bioevaluation, Molecular Docking. Pharmaceuticals (Basel) 2022; 15:586. [PMID: 35631412 PMCID: PMC9146127 DOI: 10.3390/ph15050586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 02/07/2023] Open
Abstract
In the present study, we designed and synthesized thiolated VK3 analogs (VK3a-g) along with an extensive antimicrobial study. After the evaluation of the antibacterial and antifungal activity against various bacterial and fungal strains, we presented an initial structure-activity relationship study on these VK3 analogs. In particular, four thiolated VK3 analogs exhibited superior biological potency against some Gram-positive bacterial strains, including Staphylococcus aureus (ATCC® 29213) and Enterococcus faecalis (ATCC® 29212). Next, all thiolated VK3 analogs were evaluated for their potential of cell growth inhibition on the NCI-60 cancer cell lines panel. This screening underlined that the thiolated VK3 analogs have no visible cytotoxicity on different cancer cell lines. The selected two thiolated VK3 analogs (VK3a and VK3b), having minimal hemolytic activity, which also have the lowest MIC values on S. aureus and E. faecalis, were further evaluated for their inhibition capacities on biofilm formation after evaluating their potential in vitro antimicrobial activity against each of the 20 clinically obtained resistant strains of Staphylococcus aureus. VK3b showed excellent antimicrobial activity against clinically resistant S. aureus isolates. Furthermore, the tested molecules showed nearly two log10 reduction in the viable cell count at six hours according to the time kill curve studies. Although these molecules decreased biofilm attachment about 50%, when sub-MIC concentrations were used these molecules increased the percentage of biofilm formation. The molecular docking of VK3a and VK3b in S. aureus thymidylate kinase was conducted in order to predict their molecular interactions. VK3a and VK3b exhibited excellent lead-likeness properties and pharmacokinetic profiles that qualify them for further optimization and development. In conclusion, since investigating efficient novel antimicrobial molecules is quite difficult, these studies are of high importance, especially in the present era of antimicrobial resistance.
Collapse
Affiliation(s)
- Hatice Yıldırım
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Mahmut Yıldız
- Department of Chemistry, Gebze Technical University, Gebze, Kocaeli 41400, Turkey;
| | - Nilüfer Bayrak
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Avcilar, Istanbul 34320, Turkey; (H.Y.); (N.B.)
| | - Emel Mataracı-Kara
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Mohamed Osman Radwan
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ayse Tarbin Jannuzzi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul 34116, Turkey;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
- Department of Drug Discovery, Science Farm Ltd., 1-7-30 Kuhonji, Chuo-ku, Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan; (M.O.R.); (M.O.); (M.F.)
| | - Amaç Fatih TuYuN
- Department of Chemistry, Faculty of Science, Istanbul University, Fatih, Istanbul 34126, Turkey
| |
Collapse
|
6
|
Cazacu N, Chilom CG, David M, Florescu M. Conformational Changes in the BSA-LT4 Complex Induced by the Presence of Vitamins: Spectroscopic Approach and Molecular Docking. Int J Mol Sci 2022; 23:ijms23084215. [PMID: 35457032 PMCID: PMC9027512 DOI: 10.3390/ijms23084215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022] Open
Abstract
Levothyroxine (LT4) is known for its use in various conditions including hypothyroidism. LT4 interaction with serum albumin may be influenced by the presence of vitamins. For this reason, we investigated the effect of vitamin C, vitamin B12, and folic acid on the complex of Bovine Serum Albumin with LT4 (BSA-LT4). UV-Vis spectroscopy was used to monitor the influence of vitamins on the BSA-LT4 complex. Fluorescence spectroscopy revealed a static quenching mechanism of the fluorescence of BSA-LT4 complex by the vitamin C and folic acid and a combined mechanism for vitamin B12. The interaction of vitamin C and folic acid with BSA-LT4 was moderate, while the binding of vitamin B12 was much stronger, extending the storage time of LT4 in blood plasma. Synchronous fluorescence found that the vitamins were closer to the vicinity of Trp than to Tyr and the effect was more pronounced for the binding of vitamin B12. The thermal stability of the BSA-LT4 complex was more evident, but no influence on the stability of BSA-LT4 complex was obtained for vitamin C. Molecular docking studies showed that vitamin C and folic acid bound the same site of the protein, while vitamin B12 bonded to a different site.
Collapse
Affiliation(s)
- Nicoleta Cazacu
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str. Atomistilor No. 405, CP MG-11, Bucuresti-Magurele, 077125 Magurele, Romania; (N.C.); (C.G.C.)
| | - Claudia G. Chilom
- Department of Electricity, Solid Physics and Biophysics, Faculty of Physics, University of Bucharest, Str. Atomistilor No. 405, CP MG-11, Bucuresti-Magurele, 077125 Magurele, Romania; (N.C.); (C.G.C.)
| | - Melinda David
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii No. 1, Building C, Room CI30, 500068 Brasov, Romania;
| | - Monica Florescu
- Department of Fundamental, Prophylactic and Clinical Disciplines, Faculty of Medicine, Transilvania University of Brasov, Str. Universitatii No. 1, Building C, Room CI30, 500068 Brasov, Romania;
- Correspondence:
| |
Collapse
|
7
|
Sarmento CO, Pinheiro BFA, Abrahão J, Chaves OA, Moreira MB, Nikolaou S. Interactions of a Ruthenium‐Ketoprofen Compound with Human Serum Albumin and DNA: Insights from Spectrophotometric Titrations and Molecular Docking Calculations. ChemistrySelect 2022. [DOI: 10.1002/slct.202104020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Caroline O. Sarmento
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Bruno F. A. Pinheiro
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| | - Josielle Abrahão
- Departamento de Bioquímica Universidade Estadual de Maringá-UEM 87020-900 Maringá PR Brasil
| | - Otávio A. Chaves
- Departamento de Química Centro de Química de Coimbra Universidade de Coimbra Rua Larga s/n 3004-535 Coimbra Portugal
| | - Mariete B. Moreira
- Departamento de Química Universidade Estadual de Londrina-UEL 86051-990 Londrina PR Brasil
| | - Sofia Nikolaou
- Departamento de Química Laboratório de Atividade Biológica e Química Supramolecular de Compostos de Coordenação (LABIQSC2) Faculdade de Filosofia Ciências e Letras de Ribeirão Preto Universidade de São Paulo Av. Bandeirantes 3900 14040-901 Ribeirão Preto SP Brazil
| |
Collapse
|
8
|
Śliwińska-Hill U. Spectroscopic studies of simultaneous binding of cyclophosphamide and imatinib mesylate to human holo-transferrin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119538. [PMID: 33582440 DOI: 10.1016/j.saa.2021.119538] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
The interactions of proteins with drugs are very important from a pharmacological point of view. Holo-transferrin is a blood-plasma glycoprotein whose main function is iron-binding and the transport of other ligands. Additionally, the protein is only transferrin-form recognized by TfR1 and TfR2 receptors at the surface of rapidly proliferating malignant cells. Imatinib mesylate is a tyrosine-kinase inhibitor mainly used in the treatment of blood cancers, frequently in multidrug therapy with cyclophosphamide. In this study the effect of cyclophosphamide on the interaction of imatinib mesylate with human holo-transferrin has been investigated. Using spectroscopic techniques such as fluorescence, circular dichroism, ultraviolet-visible and electrophoretic light scattering additive parameters, system stability and the effect of the ligands on the protein conformation at varying pH values have been defined. Calculated quenching constants are in the order of 2 × 104 M-1 and the type of interaction depends on the reaction medium. Under physiological conditions binding constant is 1.329 × 106 M-1 whereas in an environment similar to that of cancer cells the constant is significantly lower, Ka = 6.060 × 104 M-1. N values are approximate to 1 in all cases. Moreover, some changes are observed in the α-helical structure of the protein after interaction with the drugs and the presence of cyclophosphamide slightly stabilizes the protein secondary structure. All collected data proves the effect of cyclophosphamide on the interaction between imatinib mesylate and human holo-transferrin. It is of great clinical interest due to anticancer, multidrug therapies including both imatinib mesylate and cyclophosphamide.
Collapse
Affiliation(s)
- Urszula Śliwińska-Hill
- Department of Analytical Chemistry, Faculty of Pharmacy, Wrocław Medical University, Borowska 211A, 50-566 Wrocław, Poland.
| |
Collapse
|
9
|
An investigation of the effect of PVP-coated silver nanoparticles on the interaction between clonazepam and bovine serum albumin based on molecular dynamics simulations and molecular docking. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Xiong Y, Shi C, Li L, Tang Y, Zhang X, Liao S, Zhang B, Sun C, Ren C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02230j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence is widely used to detect functional groups and ions, and peptides are used in various fields due to their excellent biological activity.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Sisi Liao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai 264000, China
| |
Collapse
|
11
|
Ali SS, Zia MK, Siddiqui T, Ahsan H, Khan FH. Influence of Ascorbic Acid on the Structure and Function of Alpha-2- macroglobulin: Investigations using Spectroscopic and Thermodynamic Techniques. Protein Pept Lett 2020; 27:201-209. [DOI: 10.2174/0929866526666191002113525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 01/07/2023]
Abstract
Background:
Ascorbic acid is a classic dietary antioxidant which plays an important role
in the body of human beings. It is commonly found in various foods as well as taken as dietary
supplement.
Objective:
The plasma ascorbic acid concentration may range from low, as in chronic or acute
oxidative stress to high if delivered intravenously during cancer treatment. Sheep alpha-2-
macroglobulin (α2M), a human α2M homologue is a large tetrameric glycoprotein of 630 kDa with
antiproteinase activity, found in sheep’s blood.
Methods:
In the present study, the interaction of ascorbic acid with alpha-2-macroglobulin was
explored in the presence of visible light by utilizing various spectroscopic techniques and
isothermal titration calorimetry (ITC).
Results:
UV-vis and fluorescence spectroscopy suggests the formation of a complex between
ascorbic acid and α2M apparent by increased absorbance and decreased fluorescence. Secondary
structural changes in the α2M were investigated by CD and FT-IR spectroscopy. Our findings
suggest the induction of subtle conformational changes in α2M induced by ascorbic acid.
Thermodynamics signatures of ascorbic acid and α2M interaction indicate that the binding is an
enthalpy-driven process.
Conclusion:
It is possible that ascorbic acid binds and compromises antiproteinase activity of α2M
by inducing changes in the secondary structure of the protein.
Collapse
Affiliation(s)
- Syed Saqib Ali
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Mohammad Khalid Zia
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Tooba Siddiqui
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| | - Haseeb Ahsan
- Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi - 110025, India
| | - Fahim Halim Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, India
| |
Collapse
|
12
|
UV/Vis and fluorescence study on the interaction of Ni(II) complex of Schiff base of glycine and chiral auxiliary (S)-2-[N-(N′-benzylprolyl)amino]benzophenone with bovine serum albumin. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-019-02527-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Insights into the binding mechanism of a model protein with fomesafen: Spectroscopic studies, thermodynamics and molecular modeling exploration. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Ganesh K, Balraj C, Satheshkumar A, Elango KP. Spectroscopic studies on the formation of charge transfer complexes of l-phenylalanine with 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones in aqueous medium. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
15
|
Wang S, Peng X, Cui L, Li T, Yu B, Ma G, Ba X. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 190:89-95. [PMID: 28915469 DOI: 10.1016/j.saa.2017.09.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/14/2017] [Accepted: 09/07/2017] [Indexed: 06/07/2023]
Abstract
The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-l-lysine. Benefiting from the enhanced solubility of 3.32×10-2g/mL for MLC and 4.66×10-2g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139mM and 49.622mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.
Collapse
Affiliation(s)
- Sujuan Wang
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Xixi Peng
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Liangliang Cui
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Tongtong Li
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Bei Yu
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China
| | - Gang Ma
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China; Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, China.
| | - Xinwu Ba
- College of Chemistry and Environmental Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
16
|
Study of the Binding between Camptothecin Analogs and FTO by Spectroscopy and Molecular Docking. J Fluoresc 2017; 27:1467-1477. [DOI: 10.1007/s10895-017-2086-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/04/2017] [Indexed: 10/19/2022]
|
17
|
Spectroscopic and molecular docking approaches for investigating conformation and binding characteristics of clonazepam with bovine serum albumin (BSA). JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 167:158-167. [DOI: 10.1016/j.jphotobiol.2016.12.029] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/20/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022]
|
18
|
Abdelhameed AS, Nusrat S, Ajmal MR, Zakariya SM, Zaman M, Khan RH. A biophysical and computational study unraveling the molecular interaction mechanism of a new Janus kinase inhibitor Tofacitinib with bovine serum albumin. J Mol Recognit 2016; 30. [DOI: 10.1002/jmr.2601] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/12/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Ali Saber Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy; King Saud University; Riyadh Saudi Arabia
| | - Saima Nusrat
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| | | | | | - Masihuz Zaman
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit; Aligarh Muslim University; Aligarh India
| |
Collapse
|
19
|
Suganthi M, Elango KP. Synthesis, characterization and serum albumin binding studies of vitamin K3 derivatives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 166:126-135. [PMID: 27898366 DOI: 10.1016/j.jphotobiol.2016.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 10/09/2016] [Accepted: 11/16/2016] [Indexed: 12/17/2022]
Abstract
Synthesis, characterization and bovine serum albumin (BSA) binding properties of three derivatives of vitamin K3 have been described. Results of UV-Vis and fluorescence spectra indicate complexation between BSA and the ligands with conformational changes in protein, which is strongly supported by synchronous and three dimensional fluorescence studies. Addition of the ligands quenches the fluorescence of BSA which is accompanied by reduction in quantum yield (Ф) from 0.1010 to 0.0775-0.0986 range. Thermodynamic investigations reveal that hydrophobic interaction is the major binding force in the spontaneous binding of these ligands with BSA. The binding constants obtained depend on the substituent present in the quinone ring, which correlates linearly with the Taft's field substituent constant (σF). The results show that compound with strong electron withdrawing nitro-group forms relatively stronger complex with BSA than amino and thioglycolate substituted ones. Circular dichroism studies show that the α-helical content of the protein, upon complexation with the ligands, decreases in the case of amino and nitro substituted vitamin K3 while increases in thioglycolate substituted compound. Molecular docking studies indicated that the vitamin K3 derivatives are surrounded by hydrophobic residues of the BSA molecule, which is in good agreement with the results of fluorescence spectral and thermodynamic studies.
Collapse
Affiliation(s)
- Murugesan Suganthi
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | - Kuppanagounder P Elango
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India.
| |
Collapse
|
20
|
Solomonov AV, Shipitsyna MK, Vashurin AS, Rumyantsev EV, Timin AS, Ivanov SP. Analysis of binding ability of two tetramethylpyridylporphyrins to albumin and its complex with bilirubin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 168:12-20. [PMID: 27267279 DOI: 10.1016/j.saa.2016.05.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 05/27/2016] [Accepted: 05/28/2016] [Indexed: 06/06/2023]
Abstract
An interaction between 5,10,15,20-tetrakis-(N-methyl-x-pyridyl)porphyrins, x=2; 4 (TMPyPs) with bovine serum albumin (BSA) and its bilirubin (BR) complex was investigated by UV-Viz and fluorescence spectroscopy under imitated physiological conditions involving molecular docking studies. The parameters of forming intermolecular complexes (binding constants, quenching rate constants, quenching sphere radius etc.) were determined. It was showed that the interaction between proteins and TMPyPs occurs via static quenching of protein fluorescence and has predominantly hydrophobic and electrostatic character. It was revealed that obtained complexes are relatively stable, but in the case of TMPyP4 binding with proteins occurs better than TMPyP2. Nevertheless, both TMPyPs have better binding ability with free protein compared to BRBSA at the same time. The influence of TMPyPs on the conformational changes in protein molecules was studied using synchronous fluorescence spectroscopy. It was found that there is no competition of BR with TMPyPs for binging sites on protein molecule and BR displacement does not occur. Molecular docking calculations have showed that TMPyPs can bind with albumin via tryptophan residue in the hydrophilic binding site of protein molecule but it is not one possible interaction way.
Collapse
Affiliation(s)
- Alexey V Solomonov
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation; Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Maria K Shipitsyna
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation.
| | - Arthur S Vashurin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation.
| | - Evgeniy V Rumyantsev
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation.
| | - Alexander S Timin
- Inorganic Chemistry Department, Ivanovo State University of Chemistry and Technology, 7 Sheremetevskij prosp., 153000 Ivanovo, Russian Federation; Tomsk Polytechnic University, RASA Center in Tomsk, 30, Lenin Avenue, 634500 Tomsk, Russian Federation.
| | - Sergey P Ivanov
- Ufa Institute of Chemistry of the Russian Academy of Sciences, Prosp. Oktyabrya 71, Ufa 450045, Russian Federation.
| |
Collapse
|
21
|
Tyunina EY, Badelin VG. Interaction of l-Phenylalanine with Nicotinic Acid in Buffer Solution by Volumetric Measurements at Various Temperatures. J SOLUTION CHEM 2016. [DOI: 10.1007/s10953-016-0451-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Durgannavar AK, Patgar MB, Nandibewoor ST, Chimatadar SA. Fluorescent bovine serum albumin interacting with the antitussive quencher dextromethorphan: a spectroscopic insight. LUMINESCENCE 2015; 31:843-50. [DOI: 10.1002/bio.3040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 07/28/2015] [Accepted: 08/19/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Amar K. Durgannavar
- P. G. Department of Studies in Chemistry; Karnatak University; Dharwad India
| | - Manjanath B. Patgar
- P. G. Department of Studies in Chemistry; Karnatak University; Dharwad India
| | | | | |
Collapse
|
23
|
Chaturvedi SK, Ahmad E, Khan JM, Alam P, Ishtikhar M, Khan RH. Elucidating the interaction of limonene with bovine serum albumin: a multi-technique approach. MOLECULAR BIOSYSTEMS 2015; 11:307-16. [DOI: 10.1039/c4mb00548a] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanistic insight into the BSA–limonene interaction: biophysical and molecular docking approach.
Collapse
Affiliation(s)
| | - Ejaz Ahmad
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Javed Masood Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Parvez Alam
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Mohd Ishtikhar
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit
- Aligarh Muslim University
- Aligarh 202002
- India
| |
Collapse
|
24
|
Meti MD, Byadagi KS, Nandibewoor ST, Chimatadar SA. Multi-spectral characterization & effect of metal ions on the binding of bovine serum albumin upon interaction with a lincosamide antibiotic drug, clindamycin phosphate. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 138:324-30. [DOI: 10.1016/j.jphotobiol.2014.05.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/28/2014] [Accepted: 05/31/2014] [Indexed: 11/27/2022]
|
25
|
Solomonov AV, Rumyantsev EV, Kochergin BA, Antina EV. The Interaction of BODIPY with bovine serum albumin and its bilirubin complex. Biophysics (Nagoya-shi) 2014. [DOI: 10.1134/s0006350914010217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Ganesh K, El-Mossalamy EH, Satheshkumar A, Balraj C, Elango KP. Molecular complexes of l-phenylalanine with substituted 1,4-benzoquinones in aqueous medium: spectral and theoretical investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 116:301-310. [PMID: 23973571 DOI: 10.1016/j.saa.2013.07.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/29/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Various spectral techniques such as UV-Vis, FT-IR, and fluorescence have been employed to investigate the charge transfer interaction of L-phenylalanine (LPA) with substituted 1,4-benzoquinones (MQ(1-4)). Kinetic and thermodynamic properties of the complexes were determined in aqueous medium at physiological condition (pH=7). The interaction of MQ(1-4) with L-phenylalanine (LPA) was found to proceed through the formation of donor-acceptor complex, yielding a radical anion. The stoichiometry of the complexes was determined by Jobs continuous variation method and was found to be 1:1 in all the cases. Fluorescence quenching studies showed that the interaction between the donor and the acceptors is spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The order of the experimentally measured association constant of these complexes was well supported by DFT/B3LYP calculations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | | | |
Collapse
|
27
|
Solomonov AV, Rumyantsev EV, Antina EV. Serum albumin and its bilirubin complex as drug-carrier proteins for water-soluble porphyrin: a spectroscopic study. MONATSHEFTE FUR CHEMIE 2013. [DOI: 10.1007/s00706-013-1062-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Abstract
The interaction between natural pheophorbide (a superior photosensitizer) and bovine serum albumin (BSA) in physiological condition is investigated by means of UV-Vis, fluorescence and synchronous fluorescence spectra so as to provide the basis for clinical use. Natural pheophorbide was isolated from silkworm excrement. BSA in pH 7.4 Tris buffer mixed with different concentration of pheophorbide was kept at certain temperature for 3 h or under illumination by laser at 630 nm for 20 min. UV-Vis absorption of BSA was enhanced and its fluorescence was quenched by pheophorbide. Illumination of laser at 630 nm intensified the quenching. The mechanism is deemed as mainly static quenching. The binding constants Ka at 300, 310, 320 K are separately 6.93×1012,7.40×1012,6.82×1012 L/mol/s respectively. Number of binding sites n is 1; the binding distance R is 3.70 nm, and that suggests non-radiation energy transfer from BSA to pheophorbide. The thermodynamic parameters of the binding reaction are H=36.7 kJ/mol, S=213 J/mol/K, and G negative value, and indicates that hydrophobic force plays a predominant role in the process, and it is a spontaneous interaction. Synchronous fluorescence spectra show that pheophorbide mainly interacts with tryptophan residue of BSA and leads to the promotion of hydrophobic force. Pheophorbide can bind to serum protein and be transported in vivo, makes no destruction to molecular structure of serum protein, but causes its conformational alteration.
Collapse
|
29
|
Zhang T, Li D. Influences of urea and pH on the interaction of cinchonidine with bovine serum albumin by steady state fluorescence spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 112:15-20. [PMID: 23651774 DOI: 10.1016/j.saa.2013.04.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/15/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
The binding of cinchonidine to bovine serum albumin (BSA) in aqueous solution in the absence and presence of urea has been studied by fluorescence spectroscopic techniques at pH 7.40. Denaturation of BSA in the presence of urea is almost complete at [urea] ≥8.0 M. Upon unfolding, two fluorescence peaks of BSA were observed. One peak was assigned to the fluorescence of Trp residue in a polar environment, and the other peak was assigned to the fluorescence of Tyr residues. In addition, the fluorescence quenching effects of cinchonidine were shown not only on the native but also on the unfolded form of BSA. The quenching rate constants and binding constants calculated in the absence and presence of the denaturant urea indicates that the binding capacity of cinchonidine to the denatured BSA deceases dramatically. In addition, influence of pH on the interaction between cinchonidine and BSA was investigated and the binding abilities of the drug to BSA deceased under lower pH conditions (pH 3.5 and 1.8) and higher pH conditions (pH 9.0).
Collapse
Affiliation(s)
- Tian Zhang
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | | |
Collapse
|
30
|
Spectroscopic Investigation of the Interactions of Cryptotanshinone and Icariin with Two Serum Albumins. J SOLUTION CHEM 2013. [DOI: 10.1007/s10953-013-0022-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Spectroscopic Studies of the Supramolecular Interactions Between Uracil and 5-Hydroxy-6-Methyluracil with Bovine Serum Albumin and its Bilirubin Complex. Protein J 2013; 32:343-55. [DOI: 10.1007/s10930-013-9493-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
32
|
Ganesh K, Satheshkumar A, Balraj C, Elango KP. Substituent effect on the electron acceptor property of 1,4-benzoquinone towards the formation of molecular complex with sulfamethoxazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 107:156-166. [PMID: 23416920 DOI: 10.1016/j.saa.2013.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 12/28/2012] [Accepted: 01/10/2013] [Indexed: 06/01/2023]
Abstract
UV-Vis, (1)H NMR, FT-IR, LC-MS and fluorescence spectral techniques were employed to investigate the mechanism of interaction of sulfamethoxazole with varying number of methoxy/chloro substituted 1,4-benzoquinones (MQ1-4) and to characterize the reaction products. The interactions of MQ1-4 with sulfamethoxazole (SULF) were found to proceed through the formation of a donor-acceptor complex, containing radical anion and its conversion to the product. Fluorescence quenching studies showed that the interaction between the donor and the acceptors are spontaneous. The results indicated that the progressive replacement of chlorine atom (-I effect) by methoxy group (+M effect) in the quinone decreased the electron acceptor property of the quinone. The results of the correlation of experimentally measured binding constants with electrochemical data and ab initio DFT calculations supported these observations.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | | | | | |
Collapse
|
33
|
Li L, Lin R, He H, Jiang L, Gao M. Interaction of carboxylated single-walled carbon nanotubes with bovine serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 105:45-51. [PMID: 23291228 DOI: 10.1016/j.saa.2012.11.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/22/2012] [Accepted: 11/30/2012] [Indexed: 06/01/2023]
Abstract
Carboxylated single-walled carbon nanotubes (c-SWNTs) were synthesized prosperously in order to improve dispersion of raw carbon nanotubes. Then, bovine serum albumin (BSA) was used as the template protein to study the biocompatibility of c-SWNTs by UV-Vis, fluorescence and circular dichroism (CD) spectroscopic methods at the molecular level. Results from fluorescence spectrum showed obvious decreases in fluorescence intensity of BSA induced by c-SWNTs, indicating the occurrence of interaction between BSA and c-SWNTs. Static quenching effect of c-SWNTs was verified by linear Stern-Volmer plots and K(SV) values. Thermodynamic parameters at different temperatures demonstrated that the interaction between c-SWNTs and BSA was mainly favored by hydrophobic force. In addition, Na(+) interfered with the quenching effect of c-SWNTs, which revealed that electrostatic force played a role in binding roles of BSA to c-SWNTs simultaneously. The results of UV and synchronous fluorescence spectrum validated that hydrophobicity of amino acid residues expressly increased with the addition of c-SWNTs. The content of α-helix structure in BSA decreased by 14.06% with c-SWNTs viewed from CD spectrum. Effect of SWNTs on the conformation of BSA could be controlled by the surface chemistry of SWNTs.
Collapse
Affiliation(s)
- Lili Li
- China Pharmaceutical University, Nanjing 210009, China
| | | | | | | | | |
Collapse
|
34
|
Petrônio MS, Zeraik ML, da Fonseca LM, Ximenes VF. Apocynin: chemical and biophysical properties of a NADPH oxidase inhibitor. Molecules 2013; 18:2821-39. [PMID: 23455672 PMCID: PMC6269682 DOI: 10.3390/molecules18032821] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/11/2022] Open
Abstract
Apocynin is the most employed inhibitor of NADPH oxidase (NOX), a multienzymatic complex capable of catalyzing the one-electron reduction of molecular oxygen to the superoxide anion. Despite controversies about its selectivity, apocynin has been used as one of the most promising drugs in experimental models of inflammatory and neurodegenerative diseases. Here, we aimed to study the chemical and biophysical properties of apocynin. The oxidation potential was determined by cyclic voltammetry (Epa = 0.76V), the hydrophobicity index was calculated (logP = 0.83) and the molar absorption coefficient was determined (e275nm = 1.1 × 104 M-1 cm-1). Apocynin was a weak free radical scavenger (as measured using the DPPH, peroxyl radical and nitric oxide assays) when compared to protocatechuic acid, used here as a reference antioxidant. On the other hand, apocynin was more effective than protocatechuic acid as scavenger of the non-radical species hypochlorous acid. Apocynin reacted promptly with the non-radical reactive species H2O2 only in the presence of peroxidase. This finding is relevant, since it represents a new pathway for depleting H2O2 in cellular experimental models, besides the direct inhibition of NADPH oxidase. This could be relevant for its application as an inhibitor of NOX4, since this isoform produces H2O2 and not superoxide anion. The binding parameters calculated by fluorescence quenching showed that apocynin binds to human serum albumin (HSA) with a binding affinity of 2.19 × 104 M-1. The association did not alter the secondary and tertiary structure of HSA, as verified by synchronous fluorescence and circular dichroism. The displacement of fluorescent probes suggested that apocynin binds to site I and site II of HSA. Considering the current biomedical applications of this phytochemical, the dissemination of these chemical and biophysical properties can be very helpful for scientists and physicians interested in the use of apocynin.
Collapse
Affiliation(s)
- Maicon S. Petrônio
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
| | - Maria Luiza Zeraik
- Departamento de Química Orgânica, Instituto de Química, Unesp-Univ Estadual Paulista, Araraquara, SP, 14800-900, Brazil; E-Mail:
| | - Luiz Marcos da Fonseca
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
| | - Valdecir F. Ximenes
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Unesp-Univ Estadual Paulista, Araraquara, SP 14801-902, Brazil; E-Mails: ;
- Departamento de Química, Faculdade de Ciências, Unesp-Univ Estadual Paulista, Bauru, SP 17033-360, Brazil
| |
Collapse
|
35
|
Yu X, Liu H, Yang Y, Lu S, Yao Q, Yi P. The investigation of the interaction between Oxymetazoline hydrochloride and mucin by spectroscopic approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2013; 103:125-129. [PMID: 23257339 DOI: 10.1016/j.saa.2012.11.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 10/29/2012] [Accepted: 11/05/2012] [Indexed: 06/01/2023]
Abstract
The fluorescence and ultraviolet spectroscopy were explored to study the interaction between Oxymetazoline hydrochloride (OMZH) and mucin under imitated physiological condition. The results demonstrated that the fluorescence quenching mechanism between OMZH and mucin is a combined quenching process. The binding constants (K(a)), binding sites (n) and the corresponding thermodynamic parameters (ΔG, ΔH, and ΔS) of the interaction system were calculated at different temperatures. The hydrogen bonds and van der Waals forces play a major role in the interaction between OMZH and mucin. According to Förster non-radiation energy transfer theory, the binding distance between OMZH and mucin was calculated.
Collapse
Affiliation(s)
- Xianyong Yu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, Hunan Province College Key Laboratory of QSAR/QSPR, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | | | | | | | | | | |
Collapse
|
36
|
Ganesh K, Balraj C, Satheshkumar A, Elango K. Spectroscopic studies on the formation of molecular complexes of sulfamethoxazole with novel 2,3,5-trichloro-6-alkoxy-1,4-benzoquinones. J Mol Struct 2013. [DOI: 10.1016/j.molstruc.2012.09.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Solomonov AV, Rumyantsev EV, Ivanov SP, Kochergin BA, Antina EV. Molecular complexation of uracil with bovine serum albumin and its complex with bilirubin studied by spectroscopic methods. Russ Chem Bull 2012. [DOI: 10.1007/s11172-012-0276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Ganesh K, Elango KP. Spectroscopic and spectrofluorimetric studies on the interaction of albendazole and trimethoprim with iodine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 93:185-197. [PMID: 22481175 DOI: 10.1016/j.saa.2012.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/21/2012] [Accepted: 03/03/2012] [Indexed: 05/31/2023]
Abstract
Raman, UV-vis, FT-IR, and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole (ALB) and trimethoprim (TMP) drugs with iodine. Interactions of ALB and TMP with iodine yields triiodide ion and its formation was confirmed by electronic and Raman spectra. The peaks appeared in Raman spectra of the isolated products are at around 145, 113 and 82 cm(-1) are assigned to ν(as)(I-I), ν(s)(I-I) and δ(I(3)(-)) respectively, confirmed the presence of I(3)(-) ion. Formation constant (K), molar extinction coefficient (ɛ) and thermodynamic properties ΔH(#), ΔS(#) and ΔG(#) were determined and discussed. Fluorescence quenching studies indicated that the interaction between the ALB, TMP with iodine are spontaneous and the TMP-iodine interaction is found to be stronger than that the other system. Solvent variation studies indicated that the binding constant increased with an increase in polarity of the medium.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram 624 302, India
| | | |
Collapse
|
39
|
Ganesh K, Balraj C, Satheshkumar A, Elango KP. Spectroscopic investigation on the mechanism of formation of molecular complexes of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 92:46-55. [PMID: 22402578 DOI: 10.1016/j.saa.2012.02.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Revised: 02/03/2012] [Accepted: 02/09/2012] [Indexed: 05/31/2023]
Abstract
UV-vis, (1)H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of albendazole and trimethoprim with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and to characterize the reaction products. The interaction of DDQ with trimethoprim (TMP) and albenadazole (ALB) were found to proceed through the formation of donor-acceptor complex, containing DDQ radical anion and its conversion to the product. Fluorescence quenching studies indicated that the interaction between the donors and the acceptor are spontaneous and the interaction of TMP-DDQ (binding constant=2.9×10(5)) is found to be stronger than that the ALB-DDQ (binding constant=3×10(3)) system. Also, the binding constant increased with an increase in polarity of the medium indicating the involvement of radical anion as intermediate.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute (Deemed University), Gandhigram, India
| | | | | | | |
Collapse
|
40
|
Study on the interaction between isoniazid and bovine serum albumin by fluorescence spectroscopy: the effect of dimethylsulfoxide. Mol Biol Rep 2012; 39:7559-67. [PMID: 22327779 DOI: 10.1007/s11033-012-1590-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2011] [Accepted: 01/31/2012] [Indexed: 11/27/2022]
Abstract
The investigation of the binding between isoniazid (or isonicotinic acid hydrazide, INH) and serum albumin is of crucial importance to reveal the reason of resistant Mycobacterium tuberculosis strains towards INH and to increase the anti-tuberculous activity of INH. The interaction between INH and bovine serum albumin (BSA) was studied by fluorescence, UV and FT-IR spectroscopy methods. The analysis of the emission quenching at different temperatures revealed that the quenching mechanism corresponds to a static process and, as consequence; a complex INH-BSA is formed. The modified Stern-Volmer quenching constant K (a) and the corresponding thermodynamic parameters ΔH, ΔG and ΔS were calculated. The distance, r, between donor (BSA) and acceptor (INH) was calculated to be 2.14 nm based on Förster's non-radiative energy transfer theory (FRET). The results obtained on the basis of fluorescence study of BSA solutions at the presence of dimethylsulfoxide (DMSO) were discussed in terms of the hydration properties and competitive intermolecular interactions between BSA and solvent components. The dependence of binding constant on the concentration of added DMSO as a solvent component showed non monotonous behavior. The conformational changes of BSA and its secondary structure alterations at the presence of INH were revealed.
Collapse
|
41
|
B S, Hegde AH, K C R, J S. Exploring the binding mechanism of ondansetron hydrochloride to serum albumins: spectroscopic approach. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 86:410-416. [PMID: 22112579 DOI: 10.1016/j.saa.2011.10.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 10/17/2011] [Accepted: 10/28/2011] [Indexed: 05/31/2023]
Abstract
The mechanism of interaction of ondansetron hydrochloride (OND) to serum albumins [bovine serum albumin (BSA) and human serum albumin (HSA)] was studied for the first time employing fluorimetric, circular dichroism, FTIR and UV-vis absorption techniques under the simulated physiological conditions. Fluorimetric results were utilized to investigate the binding and conformational characteristics of protein upon interaction with varying concentrations of the drug. Higher binding constant values revealed the strong interaction between the drug and protein while the number of binding sites close to unity indicated single class of binding site for OND in protein. Thermodynamic results revealed that both hydrogen bond and hydrophobic interactions played a major role in stabilizing drug-protein complex. Site marker competitive experiments indicated that the OND bound to albumins at subdomin II A (Sudlow's site I). Further, the binding distance between OND and serum albumin was calculated based on the Förster's theory of non-radioactive energy transfer and found to be 2.30 and 3.41 nm, respectively for OND-BSA and OND-HSA. The circular dichroism data revealed that the presence of OND decreased the α-helix content of serum albumins. 3D-fluorescence results also indicated the conformational changes in protein upon interaction with OND. Further, the effects of some cations have been investigated in the interaction of drug to protein.
Collapse
Affiliation(s)
- Sandhya B
- Department of Chemistry, Karnatak University, Dharwad 580 003, India
| | | | | | | |
Collapse
|
42
|
Li D, Zhang T, Xu C, Ji B. Effect of pH on the interaction of vitamin B12 with bovine serum albumin by spectroscopic approaches. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 83:598-608. [PMID: 21955947 DOI: 10.1016/j.saa.2011.09.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/02/2011] [Accepted: 09/07/2011] [Indexed: 05/31/2023]
Abstract
The interaction mechanism between vitamin B12 (B12, cyanocobalamin) and bovine serum albumin (BSA) has been investigated by fluorescence, synchronous fluorescence, ultraviolet-vis (UV) absorbance, and three-dimensional fluorescence. The intrinsic fluorescence of BSA was strongly quenched by the addition of B12 in different pH buffer solutions (pH 2.5, 3.5, 5.0, 7.4, and 9.0) and spectroscopic observations are mainly rationalized in terms of a static quenching process at lower concentration of B12 (C(B12)/C(BSA)<5) and a combined quenching process at higher concentration of B12 (C(B12)/C(BSA)>5). The structural characteristics of B12 and BSA were probed, and their binding affinities were determined under different pH conditions. The results indicated that the binding abilities of B12 to BSA in the acidic and basic pH regions (pH 2.5, 3.5, 5.0, and 9.0) were lower than that at simulating physiological condition (pH 7.4). In addition, the efficiency of energy transfer from tryptophan fluorescence to B12 was found to depend on the binding distance r between the donor and acceptor calculated using Förster's theory. The effect of B12 on the conformation of BSA was analyzed using UV, synchronous fluorescence and three-dimensional fluorescence under different pH conditions. These results showed that the binding of B12 to BSA causes apparent change in the secondary and tertiary structures of BSA.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | | | | | | |
Collapse
|
43
|
Hou Z, Zhou N, He B, Yang Y, Yu X. Study of the interaction between quinocetone and bovine serum albumin by spectroscopic approaches. J Mol Struct 2011. [DOI: 10.1016/j.molstruc.2011.07.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Binding of engeletin with bovine serum albumin: insights from spectroscopic investigations. J Fluoresc 2011; 22:511-9. [PMID: 21947612 DOI: 10.1007/s10895-011-0985-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Accepted: 09/16/2011] [Indexed: 11/27/2022]
Abstract
In this paper, several spectroscopic techniques were used to investigate the interaction of engeletin (ELN) with bovine serum albumin (BSA). The analysis of UV-Vis absorption and fluorescence spectra revealed that ELN and BSA formed a static complex ELN-BSA, and ELN quenched the fluorescence of BSA effectively. According to the thermodynamic parameters ΔS(0) = 47.27 J·mol(-1)·K(-1) and ΔΗ(0) = -10.34 kJ·mol(-1), the hydrophobic and hydrogen bond interactions were suggested to be the major interaction forces between ELN and BSA. Raman spectroscopy indicated that the binding of ELN slightly changed the conformations and microenviroment of BSA and decreased the α-helix content of BSA.
Collapse
|
45
|
Ganesh K, Balraj C, Elango KP. Spectroscopic and spectrofluorimetric studies on the interaction of irbesartan with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone and iodine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 79:1621-1629. [PMID: 21684193 DOI: 10.1016/j.saa.2011.05.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2010] [Revised: 04/21/2011] [Accepted: 05/16/2011] [Indexed: 05/30/2023]
Abstract
Raman, UV-vis, 1H NMR, FT-IR, mass and fluorescence spectral techniques were employed to investigate the mechanism of interaction of irbesartan (IRB) drug with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and iodine. Interaction of IRB with iodine yields triiodide ion and its formation was confirmed by electronic and Raman spectra. The peaks appeared in Raman spectrum of the isolated product at 143, 113 and 76 cm(-1) are assigned to νas(I-I), νs(I-I) and δ(I3-) respectively, confirmed the presence of I3- ion. The interaction of DDQ with irbesartan was found to proceed through the formation of outer complex and its conversion to the CT complex. Formation constant (K), molar extinction coefficient (ɛ) and thermodynamic properties ΔH#, ΔS# and ΔG# were determined and discussed. Fluorescence quenching studies indicated that the interaction between the IRB and the acceptors are spontaneous and the IRB-DDQ interaction is found to be stronger than that the other system. Solvent variation studies indicated that the binding constant increased with an increase in polarity of the medium.
Collapse
Affiliation(s)
- K Ganesh
- Department of Chemistry, Gandhigram Rural Institute, Deemed University, Gandhigram 624 302, India
| | | | | |
Collapse
|
46
|
Liu R, Yu X, Gao W, Ji D, Yang F, Li X, Chen J, Tao H, Huang H, Yi P. Study on the interaction between salvianic acid A sodium and bovine serum albumin by spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2011; 78:1535-1539. [PMID: 21345721 DOI: 10.1016/j.saa.2011.01.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 12/26/2010] [Accepted: 01/26/2011] [Indexed: 05/30/2023]
Abstract
The interaction between salvianic acid A sodium (SAS) and bovine serum albumin (BSA) was investigated using fluorescence and ultraviolet spectroscopy at different temperatures under imitated physiological conditions. The experimental results showed that the fluorescence of BSA was quenched by SAS through a static quenching procedure. The binding constants of SAS with BSA were 2.03, 1.17 and 0.71×10(5) L mol(-1) at 291, 298 and 305 K, respectively. Negative values of ΔG, ΔH, and ΔS indicate that the interaction between SAS and BSA is driven by hydrogen bonds and van der Waals forces. According to Förster non-radiation energy transfer theory, the binding distance between BSA and SAS was calculated to be about 2.92 nm. The effect of SAS on the conformation of BSA was analyzed using synchronous fluorescence spectroscopy. In addition, the effect of some metal ions Cu(2+), Ca(2+), Mg(2+), and Zn(2+) on the binding constant between SAS and BSA was examined.
Collapse
Affiliation(s)
- Ronghua Liu
- Key Laboratory of Theoretical Chemistry and Molecular Simulation of Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Liu W, Ding F, Sun Y. Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution. J SOLUTION CHEM 2011. [DOI: 10.1007/s10953-010-9647-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Liu Y, Mei P, Zhang YZ, Sun XH, Liu Y. Spectroscopic studies on the interaction of fluorine containing triazole with bovine serum albumin. Biol Trace Elem Res 2010; 138:125-38. [PMID: 20195922 DOI: 10.1007/s12011-010-8630-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 01/28/2010] [Indexed: 10/19/2022]
Abstract
The binding of one fluorine including triazole (C(10)H(9)FN(4)S, FTZ) to bovine serum albumin (BSA) was studied by spectroscopic techniques including fluorescence spectroscopy, UV-Vis absorption, and circular dichroism (CD) spectroscopy under simulative physiological conditions. Fluorescence data revealed that the fluorescence quenching of BSA by FTZ was the result of forming a complex of BSA-FTZ, and the binding constants (K (a)) at three different temperatures (298, 304, and 310 K) were 1.516 × 10(4), 1.627 × 10(4), and 1.711 × 10(4) mol L(-1), respectively, according to the modified Stern-Volmer equation. The thermodynamic parameters ΔH and ΔS were estimated to be 7.752 kJ mol(-1) and 125.217 J mol(-1) K(-1), respectively, indicating that hydrophobic interaction played a major role in stabilizing the BSA-FTZ complex. It was observed that site I was the main binding site for FTZ to BSA from the competitive experiments. The distance r between donor (BSA) and acceptor (FTZ) was calculated to be 7.42 nm based on the Förster theory of non-radioactive energy transfer. Furthermore, the analysis of fluorescence data and CD data revealed that the conformation of BSA changed upon the interaction with FTZ.
Collapse
Affiliation(s)
- Yang Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou, Hubei 434023, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
He LL, Wang X, Liu B, Wang J, Sun YG. Interaction Between Ranitidine Hydrochloride and Bovine Serum Albumin in Aqueous Solution. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9537-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Spectroscopic Studies on the Interaction of 2,4-Dichlorophenol with Bovine Serum Albumin. J SOLUTION CHEM 2010. [DOI: 10.1007/s10953-010-9518-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|