1
|
Singh S, Gopi P, Sharma P, Rani MSS, Pandya P, Ali MS. Hemoglobin targeting potential of aminocarb pesticide: Investigation into dynamics, conformational stability, and energetics in solvent environment. Biochem Biophys Res Commun 2024; 736:150896. [PMID: 39471679 DOI: 10.1016/j.bbrc.2024.150896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
Aminocarb (AMC), a carbamate pesticide, due to its prevalent usage exhibits increased accumulation in the environment affecting both insects and humans. It enters the human body via food grains and be transported through bloodstream. AMC's chemical structure, containing specific molecular frameworks and functional groups, enables it to bind with proteins like albumin and hemoglobin. Given that molecules with similar architecture are known to bind with hemoglobin, we aimed to explore Aminocarb's binding capability and the potential mechanism or mode of its interaction with hemoglobin. Hb being a tetramer with a profound interface between amino acid chains offers multiple binding sites. It is therefore important to investigate the structural aspects of binding of AMC by employing various spectroscopic and in-silico methods. The surface of the α1 chain near the α1β2 interface emerges as the preferred binding site for AMC, primarily due to its conformational restrictions. In its bound state, AMC tends to maintain a relaxed conformation, closely resembling its globally optimized geometry, and resides in close proximity to the α1 chain via multiple hydrophobic contacts and water bridge as observed in molecular dynamics (MD) simulations. Fluorescence quenching experiments showed moderate binding strength (7.7 × 10⁴ L M⁻1 at 288 K, 7.8 × 10⁴ L M⁻1 at 298 K, 7.9 × 10⁴ L M⁻1 at 308 K) and spontaneous binding, driven by hydrophobic and van der Waals interactions, as indicated by enthalpy (0.80-0.91 kJ mol⁻1), entropy (0.0970-0.0974 kJ mol⁻1), and Gibbs free energy (-27.13 to - 29.08 kJ mol⁻1). Circular dichroism experiments reveal no major structural changes in Hb. Quantum chemical calculations and MD simulations reveal conformation-dependent energy differences, enhancing our understanding of AMC's binding mechanism to Hb.
Collapse
Affiliation(s)
- Shweta Singh
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Kristu Jayanti College, Autonomous, Bengaluru, 560077, India
| | - Priyanka Gopi
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India
| | - Palak Sharma
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; Department of Forensic Science, Mody University of Science and Technology, Lakshmangarh, Rajasthan, 332311, India
| | - Majji Sai Sudha Rani
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India; School of Sciences, Noida International University, Sector 17A, Uttar Pradesh, 203201, India
| | - Prateek Pandya
- Amity Institute of Forensic Sciences, Amity University Uttar Pradesh, Noida, 201303, India.
| | - Mohd Sajid Ali
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Li JX, Lu N, Tian R. (-)-Epigallocatechin gallate as an inhibitor of hemoglobin-catalyzed lipid oxidation: molecular mechanism of action and nutritional application. Toxicol In Vitro 2024; 99:105871. [PMID: 38851603 DOI: 10.1016/j.tiv.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Hemoglobin (Hb) is effective inducer for lipid oxidation and protein-polyphenol interaction is a well-known phenomenon. The effects of the interaction of (-)-epigallocatechin gallate (EGCG) with Hb on lipid oxidation were rarely elucidated. The detailed interaction between bovine Hb and EGCG was systematically explored by experimental and theoretical approaches, to illustrate the molecular mechanisms by which EGCG influenced the redox states and stability of Hb. EGCG would bind to the central pocket of protein with one binding site to form Hb-EGCG complex. The binding constant for Hb-EGCG complex was 0.34 × 104 M-1 at 277 K, and thermodynamic parameters (ΔH > 0, ΔS > 0 and ΔG < 0) revealed the participation of hydrophobic forces in the binding process. The binding of EGCG would increase the compactness of protein molecule and diminish the crevice near the heme cavity, which was responsible for the reduction of met-Hb to oxy-Hb and inhibition of hemin release from met-Hb. Moreover, EGCG efficiently suppressed Hb-caused lipid oxidation in liposomes and cod muscles, which was possibly attributed to the reduction to oxy-Hb state and declined hemin dissociation from met-Hb. Altogether, our results provide significant insights into the binding of EGCG to redox-active Hb, which represents a novel mechanism for the anti-oxidant capacity of EGCG in human health and is favorable to the applications of natural EGCG in the good quality of Hb-containing products.
Collapse
Affiliation(s)
- Jia-Xin Li
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Naihao Lu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Rong Tian
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
3
|
Burman M, Bag S, Ghosal S, Mukherjee M, Pramanik G, Bhowmik S. Revealing the Improved Binding Interaction of Plant Alkaloid Harmaline with Human Hemoglobin in Molecular Crowding Condition. ACS OMEGA 2024; 9:21668-21679. [PMID: 38764694 PMCID: PMC11097346 DOI: 10.1021/acsomega.4c02766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024]
Abstract
Harmaline and harmine are two structurally similar β-carboline alkaloids with several therapeutic activities, such as anti-inflammatory, antioxidant, neuroprotective, nephroprotective, antidiabetic, and antitumor activities. It has been previously reported that the interaction between harmaline and hemoglobin (Hb) is weak in buffer media compared to harmine. Crowding agents induce a molecular crowding environment in the ex vivo condition, which is almost similar to the intracellular environment. In this present study, we have investigated the nature of the interactions of harmaline and harmine with Hb by increasing the percentage of the crowding agent in buffer solution. The results of the UV-vis and fluorescence spectroscopy analysis have showed that with an increasing proportion of crowding agents, the interaction between harmaline and Hb is steadily improving in comparison to harmine. It has been found that the binding constant of Hb-harmaline reaches 6.82 × 105 M-1 in the 40% polyethylene glycol 200-mediated crowding condition, indicating high affinity compared to very low interaction in buffer media. Steady-state fluorescence anisotropy along with fluorescence lifetime measurements further revealed that the rotational movement of harmaline is maximally restricted by Hb in high crowding environments. Stoichiometry results represent that Hb and harmaline interacts in a 1:1 ratio in different percentages of the crowding agent. The circular dichroism spectroscopic results predict stronger interaction of harmaline with Hb (secondary structure alterations) in a higher crowding environment. From the melting study, it was found that the reactions between Hb and harmaline in crowding environments are endothermic (ΔH > 0) and disordering (ΔS > 0) in nature, indicating that hydrogen bonding and van der Waals interactions are the main interacting forces between Hb and harmaline. Harmaline molecules are more reactive in molecular crowding conditions than in normal buffer condition. This study represents that the interaction between harmaline and Hb is stronger compared to the structurally similar harmine in a molecular crowding environment, which may enlighten the drug discovery process in cell-mimicking conditions.
Collapse
Affiliation(s)
- Mangal
Deep Burman
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sagar Bag
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Souvik Ghosal
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| | - Moupriya Mukherjee
- UGC-DAE
Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Goutam Pramanik
- UGC-DAE
Consortium for Scientific Research, Kolkata Centre, Sector III, LB-8, Bidhan Nagar, Kolkata 700 106, India
| | - Sudipta Bhowmik
- Department
of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
- Mahatma
Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to be University), Pondy−Cuddalore Main Road, Pillaiyarkuppam, Pondicherry 607402, India
| |
Collapse
|
4
|
Naha S, Velmathi S. A fluorescence turn "on-off" imaging probe for sequential detection of Al 3+ and L-Cysteine in HeLa cells. Methods 2024; 221:27-34. [PMID: 38008345 DOI: 10.1016/j.ymeth.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
At this "Aluminum Age", exposure to aluminum (metallic or ionic form) is inevitable and inestimable. The presence of aluminum in biological systems is evident but more often aluminum toxicity is less understood. Therefore, the presence of biologically reactive aluminum needs to be identified and quantified. Alongside metals, L-cysteine, an essential amino acid, plays a pivotal role in the homeostasis of cellular oxidative and reductive stress. However, excess (<7g) could be lethal and can lead to death. Thus, in-situ selective detection of aluminum and L-cysteine is of larger interest. Here we report a fluorogenic probe (R) for the sequential selective detection and quantification of Al3+ and L-cysteine in a semi-aqueous medium (3:7; water: DMSO). The probe (R) was synthesized by a one-step acid-mediated condensation reaction between pyridine-3,4-diamine and 2-hydroxy-1-napthaldehyde. The synthesized probe was characterized using 1H and 13C NMR, and HR-Mass spectroscopic techniques. The probe (R) is non-emissive in nature, but on recognition of Al3+, the probe R showed "turn-on" emission (bright yellow colour) showing two emission maxima (522 nm and 547 nm), and no naked eye observable color change. Other competing cations do not show any noticeable fluorescence outcome. The R + Al3+ ensemble can specifically detect L-cysteine among all the essential amino acids by showing a fluorescence "turn-off" response. The sensing mechanism of Al3+ is obeying the chelation-enhanced fluorescence (CHEF) effect. The binding constant of R + Al3+ is 0.3 × 104 M-1. The limit of detection (LoD) for Al3+ and L-cysteine are 2.02 × 10-7 M and 0.5 × 10-5 M respectively. The probe (R) can show maximum efficiency within the pH range (7.0-10.0). The probe is found non-toxic (>80 % cell viability with 15 µM concentration) and employed for the in-vitro fluorescence imaging in the HeLa cell.
Collapse
Affiliation(s)
- Sanay Naha
- Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India.
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, National Institute of Technology, Tiruchirappalli, Tamilnadu 620015, India.
| |
Collapse
|
5
|
Spectroscopic investigations on fungal aspartic protease as target of gallic acid. Int J Biol Macromol 2023; 228:333-345. [PMID: 36565834 DOI: 10.1016/j.ijbiomac.2022.12.218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/02/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Proteases are a major virulence factor in pathogenic fungi and can serve as a potential therapeutic target. The interaction of gallic acid (GA) with Aspartic fungal protease (PepA) was investigated using biophysical and in silico approaches. UV-Vis and fluorescence spectroscopy showed complex formation and static quenching of PepA by GA with Ka of 7.4 × 105 M-1 and stoichiometric binding site (n) of 1.67. CD-spectroscopy showed marked changes in helical content and synchronous fluorescence spectra measurements indicated significant changes in the microenvironment around tryptophan residues in the GA-PepA complex. Outcomes of Isothermal Titration Calorimetry (ITC) measurement and molecular modelling studies validated the spectroscopic results. The binding of GA to Human Serum albumin (HSA) was moderate (Ka = 1.9 × 103 M-1) and did not cause structural disruption of HSA. To conclude, gallic acid is strongly bound to fungal protease leading to structural disruption and inhibition whereas HSA structure was largely conserved. Gallic acid thus appears to be a potential therapeutic agent against fungal proteases.
Collapse
|
6
|
Wieczfinska J, Sitarek P, Kowalczyk T, Skała E, Pawliczak R. The Anti-inflammatory Potential of Selected Plant-derived Compounds in Respiratory Diseases. Curr Pharm Des 2021; 26:2876-2884. [PMID: 32250214 DOI: 10.2174/1381612826666200406093257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 01/04/2023]
Abstract
Inflammation plays a major role in chronic airway diseases like asthma, COPD, and cystic fibrosis. Inflammation plays a crucial role in the worsening of the lung function resulting in worsening symptoms. The inflammatory process is very complexed, therefore the strategies for developing an effective treatment for inflammatory airway diseases would benefit from the use of natural substances. Plant products have demonstrated anti-inflammatory properties on various lung disease models and numerous natural plant agents have successfully been used to treat inflammation. Naturally occurring substances may exert some anti-inflammatory effects by modulating some of the inflammatory pathways. These agents have been used in different cultures for thousands of years and have proven to be relatively safe. Parthenolide, apocynin, proanthocyanidins, and boswellic acid present different mechanisms of actions - among others, through NF-kB or NADPH oxidase inhibition, therefore showing a wide range of applications in various inflammatory diseases. Moreover, some of them have also antioxidant properties. This review provides an overview of the anti-inflammatory effects of some of the natural agents and illustrates their great potential as sources of drugs to cover an extensive range of pharmacological effects.
Collapse
Affiliation(s)
| | - Przemyslaw Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, S. Banacha 12/16, 90-237, Lodz, Poland
| | - Ewa Skała
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
7
|
Syed MM, Doshi PJ, Bharshankh A, Dhavale DD, Kate SL, Kulkarni G, Doshi JB, Kulkarni MV. Repurposing of genistein as anti-sickling agent: elucidation by multi spectroscopic, thermophoresis, and molecular modeling techniques. J Biomol Struct Dyn 2020; 40:4038-4050. [PMID: 33305701 DOI: 10.1080/07391102.2020.1852967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sickle cell disease (SCD) is a major medical problem in which mono-therapeutic interventions have so far shown only limited effectiveness. We studied the repurpose of genistein, which could prevent sickle hemoglobin from polymerizing under hypoxic conditions in this disease. Genistein an important nutraceutical molecule found in soybean. The present study examines the repurposing genistein as an anti- sickling agent. Genistein shows inhibition of Hb S polymerization as well as a sickle reversal. Also, we have explored the interaction of the genistein with sickle hemoglobin (Hb S), using fluorescence, far-UV-CD spectroscopy, MicroScale Thermophoresis (MST), FTIR, combined with molecular modeling computations. The quenching constant decreases with increasing temperature, a characteristic that coincides with the static type of quenching mechanism. Temperature-dependent fluorescence measurements and molecular modeling studies reveal that apart from the hydrogen bonding, electrostatic interactions also play a crucial role in genistein and Hb S complex formation. In silico, distribution prediction of adsorption, digestion, metabolism, excretion, and toxicity (ADME/Tox) based on physical and chemical properties show that genistein is nontoxic and has ideal drug properties. The helicity and thermophoretic mobility of Hb S was a change in the presence of genistein, which leads to the destabilizing the Hb S polymer was examined using CD and MST, respectively. Our results open up the possibility for a promising therapeutic approach for the SCD by repurposed genistein as an anti-sickling agent.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Ankita Bharshankh
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| | - Sudam L Kate
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Girish Kulkarni
- Maharashtra Arogya Mandal's, Sumatibhai Shah Ayurved Ahavidyalaya - College of Ayurveda and Research Centre Hadapsar, Pune, Maharashtra, India
| | - Jignesh B Doshi
- Toxoid Purification Department, Serum Institute of India Ltd, Hadapsar, Pune, Maharashtra, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, India
| |
Collapse
|
8
|
A A MA, Ameenudeen S, Kumar A, Hemalatha S, Ahmed N, Ali N, AlAsmari AF, Aashique M, Waseem M. Emerging Role of Mitophagy in Inflammatory Diseases: Cellular and Molecular Episodes. Curr Pharm Des 2020; 26:485-491. [PMID: 31914907 DOI: 10.2174/1381612826666200107144810] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
Mitochondria are the crucial regulators for the major source of ATP for different cellular events. Due to damage episodes, mitochondria have been established for a plethora ofalarming signals of stress that lead to cellular deterioration, thereby causing programmed cell death. Defects in mitochondria play a key role in arbitrating pathophysiological machinery with recent evince delineating a constructive role in mitophagy mediated mitochondrial injury. Mitophagy has been known for the eradication of damaged mitochondria via the autophagy process. Mitophagy has been investigated as an evolutionarily conserved mechanism for mitochondrial quality control and homeostasis. Impaired mitophagy has been critically linked with the pathogenesis of inflammatory diseases. Nevertheless, the exact mechanism is not quite revealed, and it is still debatable. The purpose of this review was to investigate the possible role of mitophagy and its associated mechanism in inflammation-mediated diseases at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Mohamed Adil A A
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India.,SSE, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Shabnam Ameenudeen
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Ashok Kumar
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - S Hemalatha
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Neesar Ahmed
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Aashique
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| | - Mohammad Waseem
- School of Life Sciences, BS Abdur Rahman Crescent Institute of Science & Technology, Chennai, India
| |
Collapse
|
9
|
Sadeghzadeh F, Entezari AA, Behzadian K, Habibi K, Amiri-Tehranizadeh Z, Asoodeh A, Saberi MR, Chamani J. Characterizing the Binding of Angiotensin Converting Enzyme I Inhibitory Peptide to Human Hemoglobin: Influence of Electromagnetic Fields. Protein Pept Lett 2020; 27:1007-1021. [DOI: 10.2174/1871530320666200425203636] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/18/2020] [Accepted: 02/22/2020] [Indexed: 01/28/2023]
Abstract
Background:
Drug-protein complexes is one of the crucial factors when analyzing the
pharmacokinetics and pharmacodynamics of a drug because they can affect the excretion, distribution,
metabolism and interaction with target tissues.
Objectives:
The aim of this study was to investigate the interaction of human hemoglobin (Hb) and
angiotensin I converting enzyme inhibitory peptide (ACEIP) in the absence and presence of different-
frequency electromagnetic fields (EMF).
Methods:
Various spectroscopic methods like fluorescence spectroscopy, ultraviolet, circular
dichroism and conductometry techniques were applied to investigate Hb-ACEIP interaction in the
absence and presence of EMF.
Result:
The presented spectroscopic studies indicated that EMF changed the interaction between
Hb and ACEIP. The a-helix content of Hb decreased upon binding to ACEIP and conductivity of
the solution enhanced upon binding. Based on Stern-Volmer equations, it could be stated that the
Hb-ACEIP affinity was higher in the presence of EMF.
Conclusion:
It can be concluded that for patients who use the drug to control blood pressure, a
low-frequency electromagnetic field would have a positive effect on the uptake of the drug.
Collapse
Affiliation(s)
- Farzaneh Sadeghzadeh
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amir Arsalan Entezari
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kiana Behzadian
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Kimia Habibi
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri-Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
10
|
Chaves OA, Calheiro TP, Netto-Ferreira JC, de Oliveira MC, Franceschini SZ, de Salles CMC, Zanatta N, Frizzo CP, Iglesias BA, Bonacorso HG. Biological assays of BF2-naphthyridine compounds: Tyrosinase and acetylcholinesterase activity, CT-DNA and HSA binding property evaluations. Int J Biol Macromol 2020; 160:1114-1129. [DOI: 10.1016/j.ijbiomac.2020.05.162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 01/30/2023]
|
11
|
Ding F, Peng W, Peng YK, Liu BQ. Elucidating the potential neurotoxicity of chiral phenthoate: Molecular insight from experimental and computational studies. CHEMOSPHERE 2020; 255:127007. [PMID: 32416396 DOI: 10.1016/j.chemosphere.2020.127007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Chiral organophosphorus pollutants are existed ubiquitously in the ecological environment, but the enantioselective toxicities of these nerve agents to humans and their molecular bases have not been fully elucidated. Using experimental and computational approaches, this story was to explore the neurotoxic response process of the target acetylcholinesterase (AChE) to chiral phenthoate and further decipher the microscopic mechanism of such toxicological effect at the enantiomeric level. The results showed that the toxic reaction of AChE with chiral phenthoate exhibited significant enantioselectivity, and (R)-phenthoate (K=1.486 × 105 M-1) has a bioaffinity for the nerve enzyme nearly three times that of (S)-phenthoate (K=4.503 × 104 M-1). Dynamic research outcomes interpreted the wet experiments, and the inherent conformational flexibility of the target enzyme has a great influence on the enantioselective neurotoxicological action processes, especially reflected in the conformational changes of the three key loop regions (i.e. residues His-447, Gly-448, and Tyr-449; residues Gly-122, Phe-123, and Tyr-124; and residues Thr-75, Leu-76, and Tyr-77) around the reaction patch. This was supported by the quantitative results of conformational studies derived from circular dichroism spectroscopy (α-helix: 34.7%→30.2%/31.6%; β-sheet: 23.6%→19.5%/20.7%; turn: 19.2%→22.4%/21.9%; and random coil: 22.5%→27.9%/25.8%). Meanwhile, via analyzing the modes of toxic action and free energies, we can find that (R)-phenthoate has a strong inhibitory effect on the enzymatic activity of AChE, as compared with (S)-phenthoate, and electrostatic energy (-23.79/-17.77 kJ mol-1) played a critical role in toxicological reactions. These points were the underlying causes of chiral phenthoate displaying different degrees of enantioselective neurotoxicity.
Collapse
Affiliation(s)
- Fei Ding
- Department of Environmental Science and Engineering, School of Water and Environment, Chang'an University, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Chang'an University, No. 126 Yanta Road, Yanta District, Xi'an, 710054, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Yu-Kui Peng
- Center for Food Quality Supervision, Inspection & Testing, Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling, 712100, China
| | - Bing-Qi Liu
- Department of Agricultural Chemistry, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
12
|
Zhang Q, Zhu Z, Ni Y. Interaction between aspirin and vitamin C with human serum albumin as binary and ternary systems. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 236:118356. [PMID: 32325408 DOI: 10.1016/j.saa.2020.118356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Foods generally contain special ingredients which easily to interact with drugs human intaking, thus affecting drug efficacy and excretion, and even cause adverse reactions. Vitamin C (Vit. C) is abundant in fresh fruits and vegetables. It plays a regulatory role in redox metabolism, and its absence can cause scurvy. Aspirin (ASP) can be used to treat many diseases, is the earliest, common and widely used as antipyretic, analgesic and antirheumatic medicine. Human serum albumin (HSA) is the most abundant protein in vertebrate plasma and has the property of combining and transporting endogenous and exogenous substances. In this paper, the effects of Vit. C on the combination of ASP and HSA were studied by multi-spectra and voltammetric approaches. Fluorescence spectra showed that the quenching mode between Vit. C and HSA is dynamic, and the main binding force is hydrophobic force. The quenching mode between ASP and HSA is static one, and the main binding force is hydrogen bond and van der Waals force. For ternary biological system of (HSA-ASP)-Vit. C, the binding constant decreases compared with HSA-Vit. C system. However, for (HSA-Vit. C)-ASP system, the binding constant does not change when compared with binary system of HSA-ASP. Based on the technology combination of voltammetry, infrared, three-dimensional fluorescence and circular dichroism (CD), it is proved that the existence of ASP will influence the binding process of Vit. C to HSA. It could be concluded that taking Vit. C first doesn't affect the absorption of ASP and may be good for health; in contrast, it is not good to take Vit. C immediately as one have just taken ASP, because the existence of ASP reduce the absorption of Vit. C for human body.
Collapse
Affiliation(s)
- Qiulan Zhang
- School of Chemistry, Nanchang University, Nanchang 330031, China.
| | - Zhi Zhu
- School of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yongnian Ni
- School of Chemistry, Nanchang University, Nanchang 330031, China
| |
Collapse
|
13
|
Mirzaei M, Harismah K, Soleimani M, Mousavi S. Inhibitory effects of curcumin on aldose reductase and cyclooxygenase-2 enzymes. J Biomol Struct Dyn 2020; 39:6424-6430. [DOI: 10.1080/07391102.2020.1800513] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahmoud Mirzaei
- Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kun Harismah
- Department of Chemical Engineering, Faculty of Engineering, Universitas Muhammadiyah Surakarta, Surakarta, Indonesia
| | - Mehdi Soleimani
- Isfahan Pharmacy Students' Research Committee, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sarah Mousavi
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
14
|
Wang J, Gao J, Fan Q, Li H, Di Y. The Effect of Metformin on Thyroid-Associated Serum Hormone Levels and Physiological Indexes: A Meta-Analysis. Curr Pharm Des 2020; 25:3257-3265. [PMID: 31533598 DOI: 10.2174/1381612825666190918162649] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many diseases can be treated with metformin. People with serum thyrotropin (TSH) levels higher than 10 mIU/L are at a risk of cardiovascular events. Some studies have suggested that metformin can lower serum TSH levels to a subnormal level in patients with hyperthyrotropinaemia or hypothyroidism. OBJECTIVE The objective of this analysis is to evaluate the effect of metformin treatment on serum TSH, free triiodothyronine (FT3), and free thyroxine (FT4) levels and other associated physiological indices. METHODS A comprehensive search using the PubMed, EMBASE, Web of Science and Cochrane Central databases was undertaken for controlled trials on the effect of metformin on serum TSH, FT3, and FT4 levels and associated physiological indices. The primary outcome measures were serum TSH, FT3 and FT4 levels, thyroid size, thyroid nodule size, blood pressure, heart rate, body weight, and body mass index (BMI). The final search was conducted in April 2019. RESULTS Six RCTs were included. A total of 494 patients met the inclusion criteria. Metformin treatment did not significantly lower the serum TSH levels at 3 or 6 months but did at 12 months. Moreover, forest plots also suggested that metformin can significantly lower the serum TSH levels in patients with normal thyroid function but cannot statistically change the serum TSH levels in patients with abnormal thyroid function. In addition, metformin treatment clearly lowered the serum FT3 levels and had no significant effect on serum FT4 levels. Lastly, metformin cannot significantly change the systolic blood pressure (SBP) or BMI but can clearly increase the diastolic blood pressure (DBP). CONCLUSION Metformin treatment can significantly lower the serum TSH levels, and this effect was much clearer after a 12-month treatment duration and in people with normal thyroid function. However, metformin cannot significantly change the serum FT4 levels or lower serum FT3 levels in people with non-thyroid cancer diseases. In addition, metformin can significantly increase DBP, but it has no clear effect on SBP or BMI.
Collapse
Affiliation(s)
- Junjie Wang
- Changzhi Medical College, No. 161, Jiefangdong Street, Shanxi Province, Changzhi 046000, China
| | - Jinghan Gao
- Central Hospital Affiliated to Shenyang Medical College, No.5, Nanqixi Road, Liaoning Province, Shenyang 110000, China
| | - Qin Fan
- Shanxi Dayi Hospital, No.99, Longcheng Street, Shanxi Province, Taiyuan 030000, China
| | - Hongzhuo Li
- Heping Hospital Affiliated to Changzhi Medical College, No.110, Yanannan Road, Shanxi Province, Changzhi 046000, China
| | - Yunhua Di
- Central Hospital Affliated to Shenyang Medical College, No.5, Nanqixi Road, Liaoning Province, Shenyang 110000, China
| |
Collapse
|
15
|
Shahba H, Sabet M. Two-Step and Green Synthesis of Highly Fluorescent Carbon Quantum Dots and Carbon Nanofibers from Pine Fruit. J Fluoresc 2020; 30:927-938. [PMID: 32500261 DOI: 10.1007/s10895-020-02562-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 05/25/2020] [Indexed: 01/01/2023]
Abstract
To green synthesis of highly yield photoluminescence carbon nanofibers/carbon quantum dots by pine fruit the ball milling assisted hydrothermal method was served. Different analysis such as XRD, EDS, elemental mapping and FT-IR analysis were used to study the product structure. The optical properties of the synthesized carbon nanomaterials were investigated by UV-Vis and PL analysis. Also, the effects of hydrothermal time and temperature on the PL intensity were studied. To study the product size and morphology SEM and TEM analysis were served. Also, the nucleation and growth mechanism was studied by TEM images. The results showed the product is composed of very tiny nitrogen-doped carbon dots and carbon nanofibers with high photoluminescence intensity. The photocatalytic activity of the product was investigated by degradation of six dyes namely Acid blue, Eosin Y, Erichrome Black T, Methylene blue, Methyl orange and Methyl. The results showed the product has high photocatalytic activity and it can degrade the dyes with creation reactive oxide species in the aqueous solution. The surface activity of the product was also investigated and it was found it can adsorb Pb2+ and Cd2+ from the water with 100% efficiency. The results showed we can synthesis of useful carbon nanomaterials with high photoluminescence intensity, highly photocatalytic activity and surface adsorption via a simple and fast method with the pine fruit. Graphical abstract.
Collapse
Affiliation(s)
- Haniyeh Shahba
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, PO Box: 77176, Rafsanjan, Iran
| | - Mohammad Sabet
- Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, PO Box: 77176, Rafsanjan, Iran.
| |
Collapse
|
16
|
Saha S, Chowdhury J. Understanding the structure and conformation of bovine hemoglobin in presence of the drug hydroxyurea: multi-spectroscopic studies supported by docking and molecular dynamics simulation. J Biomol Struct Dyn 2020; 39:3533-3547. [PMID: 32397828 DOI: 10.1080/07391102.2020.1766568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Binding interaction between the small antitumor drug Hydroxyurea (HU) and Bovine Hemoglobin (BHb) has been explored in details from multi-spectroscopic and computational studies. The formation of ground state complex between BHb and HU has been suggested from the electronic UV-Vis and steady-state fluorescence spectroscopic studies. The quenching in fluorescence of BHb in presence of HU at varied concentrations has been analyzed from the SV plots. Static type of quenching has been suggested from time-resolved fluorescence spectroscopic studies. Binding parameters associated with the BHb-HU complex have also been estimated from the temperature dependent fluorescence spectroscopic studies. Alterations in the micro-environment of the Tyr and Trp residues of BHb in presence of HU have been observed from the synchronous fluorescence measurement. The result obtained from CD spectroscopic measurements signify partial unfolding in the secondary structure of BHb due to binding with HU molecule. The experimental observations are supported by theoretical studies. Molecular docking and molecular dynamics simulations have been performed to investigate the structural stability and compactness of BHb in the binding interaction between BHb and HU. The interaction of BHb with HU is expected to provide fundamental insights towards understanding the therapeutic effectiveness of HU upon interaction with BHb used in chemo-, radio therpeutic procedures and also in the treatment of SCD.
Collapse
Affiliation(s)
- Saumen Saha
- Department of Physics, Jadavpur University, Kolkata, India
| | | |
Collapse
|
17
|
He LL, Qi Q, Wang X, Li Y, Zhu Y, Wang XF, Xu L. Synthesis of two novel pyrazolo[1,5-a]pyrimidine compounds with antibacterial activity and biophysical insights into their interactions with plasma protein. Bioorg Chem 2020; 99:103833. [PMID: 32305694 DOI: 10.1016/j.bioorg.2020.103833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022]
Abstract
Two novel water-soluble pyrazolo[1,5-a]pyrimidine derivatives, 5-chloro-7-(4-methyl-piperazin -1-yl)-pyrazolo[1,5-a]pyrimidine (CMPS) and N'-(5-chloro-pyrazolo[1,5-a]pyrimidin-7-yl)-N,N-dimethyl -propane-1,3-diamine (NCPS), were synthesized and characterized with antibacterial activity. Then, the interactions of these compounds with bovine serum albumin (BSA) were studied by fluorescence, time-resolved fluorescence, circular dichroism (CD) spectroscopy and molecular docking. The results indicate that both CMPS and NCPS could effectively quench the intrinsic fluorescence of BSA via a static quenching process. The energy transfer from BSA to CMPS and NCPS may occur with high probability. Both CMPS and NCPS bind in the site I of BSA. The hydrophobic force and hydrogen bonds play major roles in the complex formation. Binding constants for both systems show that the affinity of CMPS binding to BSA is stronger than that of NCPS. The results of three-dimensional fluorescence and CD spectra reveal that the binding of CMPS and NCPS to BSA can induce conformational changes of BSA, and the influence of CMPS is slightly stronger than that of NCPS.
Collapse
Affiliation(s)
- Ling-Ling He
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Qi Qi
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xin Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| | - Yu Li
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yao Zhu
- College of Science, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Xiao-Fang Wang
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China
| | - Liang Xu
- School of Pharmaceutical Sciences, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
18
|
Wang Y, Han Q, Zhang G, Zhang H. Evaluation of the binding mechanism of iodine with trypsin and pepsin: A spectroscopic and molecular docking. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118036. [PMID: 31931358 DOI: 10.1016/j.saa.2020.118036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/28/2019] [Accepted: 01/03/2020] [Indexed: 06/10/2023]
Abstract
In this work, the effects of I2 on the activities and conformational structures of digestive enzymes, trypsin and pepsin were studied. The results indicated that the enzyme activities were decreased to some extent in the presence of I2, especially trypsin. Upon gradual addition of I2, the intrinsic fluorescence quenching of trypsin and pepsin were observed by mainly static collision and hydrophobic forces. I2 is more likely to cause the fluorescence quenching of trypsin than that of pepsin. Compared with pepsin, trypsin has a greater ability to bind with I2. The synchronous fluorescence spectral results indicated that I2 induced the quaternary structure changes of trypsin/pepsin and changed the hydrophobicity of Tyr and Trp residues. In addition, molecular docking was used to obtain the binding mode and the various amino acid residues of trypsin and pepsin with I2. These investigations may constitute a solid work to further explain the process of migration and transformation of I2 in digestive system.
Collapse
Affiliation(s)
- Yanqing Wang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| | - Qianqian Han
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China; Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing City, Jiangsu Province 210009, People's Republic of China
| | - Gencheng Zhang
- School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China
| | - Hongmei Zhang
- Institute of Environmental Toxicology and Environmental Ecology, Yancheng Teachers University, Yancheng City, Jiangsu Province 224051, People's Republic of China; School of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng City, Jiangsu Province 224002, People's Republic of China.
| |
Collapse
|
19
|
Althubeiti K. In binary solvent: Synthesis and physicochemical studies on the nano-metric palladium(II) oxide associated from complexity of palladium(II) ions with gatifloxacin drug as a bio-precursors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Dohare N, Siddiquee MA, Parray MD, Kumar A, Patel R. Esterase activity and interaction of human hemoglobin with diclofenac sodium: A spectroscopic and molecular docking study. J Mol Recognit 2020; 33:e2841. [PMID: 32150309 DOI: 10.1002/jmr.2841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/17/2020] [Indexed: 12/23/2022]
Abstract
To get an idea about the pharmacokinetics and pharmacodynamics, it is important to study the drug-protein interaction. Therefore, herein, we studied the interaction of diclofenac sodium (DIC) with human hemoglobin. The binding study of nonsteroidal antiinflammatory drug, DIC with human hemoglobin (HHB) was done by utilizing fluorescence, UV-visible, time-resolved fluorescence and far-UV circular dichroism spectroscopy (CD). Various thermodynamic parameters such as enthalpy change (ΔH), entropy change (ΔS), and Gibbs free energy change (ΔG) were also calculated. CD results showed that DIC induces secondary structure change in HHB. Fluorescence resonance energy transfer was also performed. Additionally, it was also observed that DIC inhibits the esterase-like enzymatic activity of HHB via competitive inhibition.
Collapse
Affiliation(s)
- Neeraj Dohare
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Abrar Siddiquee
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Mehrajud Din Parray
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Amit Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
21
|
Bhatt AN, Rai Y, Verma A, Pandey S, Kaushik K, Parmar VS, Arya A, Prasad AK, Dwarakanath BS. Non-Enzymatic Protein Acetylation by 7-Acetoxy-4-Methylcoumarin: Implications in Protein Biochemistry. Protein Pept Lett 2020; 27:736-743. [PMID: 32133945 DOI: 10.2174/0929866527666200305143016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 02/02/2023]
Abstract
BACKGROUND The semi-synthetic acetoxycoumarins are known to acetylate proteins using novel enzymatic Calreticulin Transacetylase (CRTAase) system in cells. However, the nonenzymatic protein acetylation by polyphenolic acetates is not known. OBJECTIVE To investigate the ability of 7-acetoxy-4-methyl coumarin (7-AMC) to acetylate proteins non-enzymatically in the test tube. METHODS We incubated 7-AMC with BSA and analyzed the protein acetylation using Western blot technique. Further, BSA induced biophysical changes in the spectroscopic properties of 7-AMC was analyzed using Fluorescence spectroscopy. RESULTS Using pan anti-acetyl lysine antibody, herein we demonstrate that 7-AMC acetylates Bovine Serum Albumin (BSA) in time and concentration dependent manner in the absence of any enzyme. 7-AMC is a relatively less fluorescent molecule compared to the parental compound, 7- hydroxy-4-methylcoumarin (7-HMC), however the fluorescence of 7-AMC increased by two fold on incubation with BSA, depending on the time of incubation and concentration of BSA. Analysis of the reaction mixture of 7-AMC and BSA after filtration revealed that the increased fluorescence is associated with the compound of lower molecular weight in the filtrate and not residual BSA, suggesting that the less fluorescent 7-AMC undergoes self-hydrolysis in the presence of protein to give highly fluorescent parental molecule 7-HMC and acetate ion in polar solvent (phosphate buffered saline, PBS). The protein augmented conversion of 7-AMC to 7-HMC was found to be linearly related to the protein concentration. CONCLUSION Thus protein acetylation induced by 7-AMC could also be non-enzymatic in nature and this molecule can be exploited for quantification of proteins.
Collapse
Affiliation(s)
- Anant Narayan Bhatt
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Yogesh Rai
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Amit Verma
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Sanjay Pandey
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| | - Kumar Kaushik
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York City, NY, United States
| | - Virinder S Parmar
- Department of Chemistry and Environmental Science, Medgar Evers College, The City University of New York, New York City, NY, United States
| | - Anu Arya
- V.P. Chest Institute, Delhi, India
| | - Ashok K Prasad
- Deparment of Chemistry, University of Delhi, Delhi, India
| | - Bilikere S Dwarakanath
- Institute of Nuclear Medicine and Allied Sciences, Brig. S.K. Majumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
22
|
El-Shamy H, Shaban SY, El-Mehasseb I, El-Kemary M, van Eldik R. Probing the interaction of iron complex containing N 3S 2 macrocyclic ligand with bovine serum albumin using spectroscopic techniques. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117811. [PMID: 31813731 DOI: 10.1016/j.saa.2019.117811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/16/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
The interaction of bovine serum albumin (BSA) with seven-coordination iron (II) complex containing sulfur-based macrocyclic ligand was investigated by means of UV/vis absorption spectroscopy and fluorescence quenching technique. The accurate fluorescence spectra are obtained by using Inner filter effect (IFE) correction. The apparent association constant, kapp, the number of binding sites, n, and the apparent binding constant KSV were found to be 0.95 × 103 M-1, 0.96, and 6.13 × 104 M-1, respectively. It found that BSA molecules are adsorbed on the surface of iron (II) complex by electrostatic interaction. The quenching mechanism is discussed involving energy transfer from BSA to iron (II) complex.
Collapse
Affiliation(s)
- Hany El-Shamy
- Chemistry Department, El Shaheed Ezzat El Shafei Secondary School for Girls, Kafrelsheikh, Egypt.
| | - Shaban Y Shaban
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Ibrahim El-Mehasseb
- Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Maged El-Kemary
- Chemistry Department, Nano Science and Technology Institute, Kafrelsheikh University, 33516 Kafrelsheikh, Egypt
| | - Rudi van Eldik
- Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstr. 1, 91058 Erlangen, Germany
| |
Collapse
|
23
|
Han B, Chen H, Hu T, Ye H, Xu L. High electrical conductivity in polydimethylsiloxane composite with tailored graphene foam architecture. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Pathak S, Tripathi S, Deori N, Ahmad B, Verma H, Lokhande R, Nagotu S, Kale A. Effect of tetracycline family of antibiotics on actin aggregation, resulting in the formation of Hirano bodies responsible for neuropathological disorders. J Biomol Struct Dyn 2020; 39:236-253. [PMID: 31948361 DOI: 10.1080/07391102.2020.1717629] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Actin, an ATPase superfamily protein, regulates some vital biological functions like cell locomotion, cytokinesis, synaptic plasticity and cell signaling in higher eukaryotes, and is dependent on the dynamics of actin polymerization process. Impaired regulation of actin polymerization has been implicated in the formation and deposition of rod-like paracrystalline structures called as Hirano bodies in neuronal cells of patients suffering from Alzheimer's disease, Pick's disease, Guam amyotrophic lateral sclerosis and parkinsonism-dementia complex. Aggregation of actin forming amorphous deposition in the brain cells is also associated with chronic alcoholism and aging of the neurons. In the current article, we propose the breaking of the highly amorphous and dysregulated actin aggregates using generic compounds like tetracycline, oxytetracycline, doxycycline and minocycline which are used as antibiotics against tuberculosis and infection caused due to various Gram-negative bacteria. We have investigated the effect and affinity of binding of these four compounds to that of actin aggregates using 90° light scattering, size exclusion chromatography, dynamic light scattering, circular dichroism, scanning electron microscopy, transmission electron microscopy imaging and kinetic analysis. The isothermal calorimetric measurements showed that the binding constant for the cycline family molecules used in this study range from 9.8 E4 M-1 to 1.3 E4 M-1. To understand the in vivo effect, we also studied the effect of these drugs on Saccharomyces cerevisiae Δend3 mutant cells. Our data suggest that these generic compounds can plausibly be used for the treatment of various neurodegenerative diseases occurring due to Hirano body formation in brain cells.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Samridhi Pathak
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Sarita Tripathi
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| | - Nayan Deori
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Basir Ahmad
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India.,Protein Assembly Laboratory, JH-Institute of Molecular Medicine, New Delhi, India
| | - Hriday Verma
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Rama Lokhande
- School of Life Sciences, Jaipur National University, Jaipur, Rajasthan, India
| | - Shirisha Nagotu
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Avinash Kale
- School of Chemical Sciences, UM-DAE Center for Excellence in Basic Sciences, University of Mumbai, Mumbai, Maharashtra, India
| |
Collapse
|
25
|
Savcı A, Koçpınar EF, Budak H, Çiftci M, Şişecioğlu M. The Effects of Amoxicillin, Cefazolin, and Gentamicin Antibiotics on the Antioxidant System in Mouse Heart Tissues. Protein Pept Lett 2020; 27:614-622. [PMID: 31721686 DOI: 10.2174/0929866526666191112125949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/27/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Free radicals lead to destruction in various organs of the organism. The improper use of antibiotics increases the formation of free radicals and causes oxidative stress. OBJECTIVE In this study, it was aimed to determine the effects of gentamicin, amoxicillin, and cefazolin antibiotics on the mouse heart. METHODS 20 male mice were divided into 4 groups (1st control, 2nd amoxicillin, 3rd cefazolin, and 4th gentamicin groups). The mice in the experimental groups were administered antibiotics intraperitoneally at a dose of 100 mg / kg for 6 days. The control group received normal saline in the same way. The gene expression levels and enzyme activities of SOD, CAT, GPx, GR, GST, and G6PD antioxidant enzymes were investigated. RESULTS GSH levels decreased in both the amoxicillin and cefazolin groups, while GR, CAT, and SOD enzyme activities increased. In the amoxicillin group, Gr, Gst, Cat, and Sod gene expression levels increased. CONCLUSION As a result, it was concluded that amoxicillin and cefazolin caused oxidative stress in the heart, however, gentamicin did not cause any effects.
Collapse
Affiliation(s)
- Ahmet Savcı
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Enver Fehim Koçpınar
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Mus Alparslan University, Mus, Turkey
| | - Harun Budak
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - Mehmet Çiftci
- Department of Chemistry, Faculty of Art and Science, Bingol University, Bingol, Turkey
| | - Melda Şişecioğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
26
|
Buttà C, Roberto M, Tuttolomondo A, Petrantoni R, Miceli G, Zappia L, Pinto A. Old and New Drugs for Treatment of Advanced Heart Failure. Curr Pharm Des 2019; 26:1571-1583. [PMID: 31878852 DOI: 10.2174/1381612826666191226165402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 12/23/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND Advanced heart failure (HF) is a progressive disease with high mortality and limited medical therapeutic options. Long-term mechanical circulatory support and heart transplantation remain goldstandard treatments for these patients; however, access to these therapies is limited by the advanced age and multiple comorbidities of affected patients, as well as by the limited number of organs available. METHODS Traditional and new drugs available for the treatment of advanced HF have been researched. RESULTS To date, the cornerstone for the treatment of patients with advanced HF remains water restriction, intravenous loop diuretic therapy and inotropic support. However, many patients with advanced HF experience loop diuretics resistance and alternative therapeutic strategies to overcome this problem have been developed, including sequential nephron blockade or use of the hypertonic saline solution in combination with high-doses of furosemide. As classic inotropes augment myocardial oxygen consumption, new promising drugs have been introduced, including levosimendan, istaroxime and omecamtiv mecarbil. However, pharmacological agents still remain mainly short-term or palliative options in patients with acute decompensation or excluded from mechanical therapy. CONCLUSION Traditional drugs, especially when administered in combination, and new medicaments represent important therapeutic options in advanced HF. However, their impact on prognosis remains unclear. Large trials are necessary to clarify their therapeutic potential and prognostic role in these fragile patients.
Collapse
Affiliation(s)
- Carmelo Buttà
- Unità Operativa Complessa, Cardiologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Messina, Messina, Italy
| | - Marco Roberto
- Servizio di Cardiologia, Cardiocentro Ticino Lugano, Lugano, Switzerland
| | - Antonino Tuttolomondo
- Unità Operativa Complessa, Medicina Interna e con Stroke Care, Dipartimento di Promozione della Salute, Materno-infantile, Medicina Interna e Specialistica di Eccellenza, Università degli Studi di Palermo, Palermo, Italy
| | - Rossella Petrantoni
- Pronto Soccorso, Fondazione Istituto G. Giglio di Cefalù, 90015 Cefalù PA, Italy
| | - Giuseppe Miceli
- Unità Operativa Complessa, Medicina Interna e con Stroke Care, Dipartimento di Promozione della Salute, Materno-infantile, Medicina Interna e Specialistica di Eccellenza, Università degli Studi di Palermo, Palermo, Italy
| | - Luca Zappia
- Unità Operativa Complessa, Cardiologia, Dipartimento di Medicina Clinica e Sperimentale, Università degli Studi di Messina, Messina, Italy
| | - Antonio Pinto
- Unità Operativa Complessa, Medicina Interna e con Stroke Care, Dipartimento di Promozione della Salute, Materno-infantile, Medicina Interna e Specialistica di Eccellenza, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|
27
|
Umme Hani, Kandagalla S, Sharath BS, Jyothsna K, Manjunatha H. Network Pharmacology Approach Uncovering Pathways Involved in Targeting Hsp90 Through Curcumin and Epigallocatechin to Control Inflammation. Curr Drug Discov Technol 2019; 18:127-138. [PMID: 31820701 DOI: 10.2174/1570163816666191210145652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 11/22/2022]
Abstract
AIMS To fetch pathways involved in targetting Hsp90 through Curcumin and Epigallocatechin through Network pharmacological approach. BACKGROUND Hsp90 is a molecular chaperone involved in stabilizing inflammatory protein which may lead to chronic diseases. The herbal compounds Curcumin and Epigallocatechin processing antiinflammatory properties are known to follow a common pathway and control the expression of Hsp90. OBJECTIVE To collect the gene targets of Hsp90, Curcumin and Epigallocatechin in order to understand protein-protein interactions of gene targets by constructing the interactome to identify the hub proteins. Hub proteins docking was performed with curcumin and epigallocatechin. Finally, hub proteins involvement with various human diseases were identified. METHODS The gene targets of Hsp90, Curcumin and Epigallocatechin were obtained from there respective databases. Protein-protein interactions of Pkcδ-Nrf2 and Tlr4 pathway gene targets were collected from String database. Protein interaction network was constructed and merged to get intercession network in cytoscape and Cluego was used to predict the disease related target genes. Docking of ligands to target proteins was carried out using Autodock vina tool. RESULT The main key regulators of Curcumin and Epigallocatechin were identified particularly from Pkcδ-Nrf2 and Tlr4 pathway. CONCLUSION The combined action of Curcumin and Epigallocatechin can reduce the expression of Hsp90 eventually controlling the inflammation.
Collapse
Affiliation(s)
- Umme Hani
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Shivananda Kandagalla
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - B S Sharath
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - K Jyothsna
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| | - Hanumanthappa Manjunatha
- Department of Biotechnology, Janana Sahyadri, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka 577451, India
| |
Collapse
|
28
|
Dubey S, Kallubai M, Subramanyam R. Comparative binding of Swertiamarin with human serum albumin and α-1 glycoprotein and its cytotoxicity against neuroblastoma cells. J Biomol Struct Dyn 2019; 38:5266-5276. [PMID: 31755370 DOI: 10.1080/07391102.2019.1695672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shreya Dubey
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India
| | - Monika Kallubai
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Science, School of Life Sciences, University of Hyderabad, Gachibowli, Telangana, India
| |
Collapse
|
29
|
Hamaloğlu KÖ, Çelikbıçak Ö, Salih B, Pişkin E. Performances of protein array platforms prepared by soft lithography and self-assemblying monolayers-approach by using SPR, ellipsometry and MALDI-MS. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.07.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Naha S, Arshad MK, Velmathi S. A Simple Red Emitting “Turn-On” Optical Relay Detector for Al3+ and CN−. Application in the Real Sample and RAW264.7 Cell Imaging. J Fluoresc 2019; 29:1401-1410. [DOI: 10.1007/s10895-019-02460-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
|
31
|
Insights into the binding mechanism of a model protein with fomesafen: Spectroscopic studies, thermodynamics and molecular modeling exploration. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Naik R, Jaldappagari S. Spectral and computational attributes: Binding of a potent anticancer agent, dasatinib to a transport protein. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111492] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
33
|
Kolli V, Paul S, Guttula PK, Sarkar N. Elucidating the Role of Val-Asn 95 and Arg-Gly 52 Mutations on Structure and Stability of Fibroblast Growth Factor Homologous Factor 2. Protein Pept Lett 2019; 26:848-859. [PMID: 37020363 DOI: 10.2174/0929866526666190503092718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/11/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
Background:
Fibroblast growth Factor Homologous Factors (FHFs) belong to a subclass
of Fibroblast Growth Factor (FGF) family owing to their high sequence and structural similarities
with FGFs. However, despite these similarities, there are properties which set them apart from
FGFs. FHFs lack the secretion signal sequence unlike other FGF members, except FGF1 and 2.
Unlike FGFs, FHFs are not able to bind to FGF Receptors (FGFRs) and instead have been
implicated in binding to Voltage-Gated Sodium Channels (VGSCs), neuronal MAP kinase scaffold
protein and islet-brain-2 (IB2). The two amino acids Arg-52 and Val95 are conserved in all FHFs
and mutation of these residues lead to its inability to bind with VGSC/IB2. However, it is not clear
whether the loss of binding is due to destabilization of the protein on mutation or due to
involvement of Arg52 and Val95 in conferring functionality to FHFs.
Objective:
In the present study, we have mutated these two conserved residues of FHF2 with its
corresponding FGF counterpart amino acids and studied the effects of the mutations on the
structure and stability of the protein.
Methods:
Several biophysical methods like isothermal equilibrium denaturation study, ANS
fluorescence, intrinsic fluorescence, acrylamide quenching, circular dichroism studies as well as
using computational approaches were employed.
Results:
The single mutations were found to affect the overall stability, conformation and
functionality of the protein.
Conclusion:
Thus, the studies throw light on the role of specific amino acids in deciding the
stability, structure and functionality of proteins and will be useful for development of
therapeutically engineered proteins.
Collapse
Affiliation(s)
- Vidyalatha Kolli
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Subhankar Paul
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Praveen Kumar Guttula
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| | - Nandini Sarkar
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela- 769008, Odisha, India
| |
Collapse
|
34
|
Garcia YS, Barros MR, Ventura GT, de Queiroz RM, Todeschini AR, Neves JL. Probing the interaction of carbonaceous dots with transferrin and albumin: Impact on the protein structure and non-synergetic metal release. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
35
|
Ni M, Pan J, Hu X, Gong D, Zhang G. Inhibitory effect of corosolic acid on α-glucosidase: kinetics, interaction mechanism, and molecular simulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5881-5889. [PMID: 31206698 DOI: 10.1002/jsfa.9862] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The suppression of α-glucosidase activity to retard glucose absorption is an important therapy for type-2 diabetes. Corosolic acid (CRA) is a potential antidiabetic component in many plant-based foods and herbs. In this study, the interplay mechanism between α-glucosidase and corosolic acid was investigated by several methods, including three-dimensional fluorescence spectra, circular dichroism spectra, and molecular simulation. RESULTS Corosolic acid significantly inhibited α-glucosidase reversibly in an uncompetitive manner and its IC50 value was 1.35 × 10-5 mol L-1 . A combination of CRA with myricetin exerted a weak synergy against α-glucosidase. The intrinsic fluorescence of α-glucosidase was quenched via a static quenching course and the binding constant was 3.47 × 103 L mol-1 at 298 K. The binding of CRA to α-glucosidase was mainly driven by hydrophobic forces and resulted in a partial extension of the protein polypeptide chain with a loss of α-helix content. The molecular simulation illustrated that CRA bound to the entrance part of the active center of α-glucosidase and interacted with the amino acid residues Ser157, Arg442, Phe303, Arg315, Tyr158, and Gln353, which could hinder the release of substrate and catalytic reaction product, eventually suppressing the catalytic activity of α-glucosidase. CONCLUSIONS These results may suggest new insights into corosolic acid from food sources as a potential α-glucosidase inhibitor that could better control diabetes. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengting Ni
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Junhui Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xing Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Deming Gong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
- Department of Biomedicine, New Zealand Institute of Natural Medicine Research, Auckland, New Zealand
| | - Guowen Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
36
|
Binding interaction between β-conglycinin/glycinin and cyanidin-3-O-glucoside in acidic media assessed by multi-spectroscopic and thermodynamic techniques. Int J Biol Macromol 2019; 137:366-373. [DOI: 10.1016/j.ijbiomac.2019.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/13/2022]
|
37
|
Synthesis of PEGylated methotrexate conjugated with a novel CPP6, in sillico structural insights and activity in MCF-7 cells. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
38
|
Syed MM, Doshi PJ, Dhavale DD, Doshi JB, Kate SL, Kulkarni G, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Kulkarni MV. Potential of isoquercitrin as antisickling agent: a multi-spectroscopic, thermophoresis and molecular modeling approach. J Biomol Struct Dyn 2019; 38:2717-2736. [PMID: 31315526 DOI: 10.1080/07391102.2019.1645735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Sickle cell disease is an inherited disease caused by point mutation in hemoglobin (β-globin gene). Under oxygen saturation, sickle hemoglobin form polymers, leading to rigid erythrocytes. The transition of the blood vessels is altered and initiated by the adhesion of erythrocytes, neutrophils and endothelial cells. Sickle Hemoglobin (HbS) polymerization is a major cause in red blood cells (RBC), promoting sickling and destruction of RBCs. Isoquercitrin, a medicinal bioactive compound found in various medicinal plants, has multiple health benefits. The present study examines the potential of isoquercitrin as an anti-sickle agent, showing a significant decrease in the rate of polymerization as well as sickling of RBCs. Isoquercitrin-induced graded alteration in absorbance and fluorescence of HbS, confirmed their interaction. A negative value of ΔG° strongly suggests that it is a spontaneous exothermic reaction induced by entropy. Negative ΔH° and positive ΔS° predicted that hydrogen and hydrophobic binding forces interfered with a hydrophobic microenvironment of β6Val leading to polymerization inhibition of HbS. HbS-Isoquercitrin complex exhibits helical structural changes leading to destabilization of the HbS polymer as confirmed by CD spectroscopy. MST and DSC results indicate greater changes in thermophoretic mobility and thermal stability of sickle hemoglobin in the presence of isoquercitrin, respectively. These findings were also supported by molecular simulation studies using DOCK6 and GROMACS. Hence, we can conclude that isoquercitrin interacts with HbS through hydrogen bonding, which leads to polymerization inhibition. Consequently, isoquercitrin could potentially be used as a medication for the treatment of sickle cell disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Muntjeeb M Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja J Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | | | - Sudam L Kate
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Girish Kulkarni
- College of Ayurveda and Research Centre Hadapsar, Maharashtra Arogya Mandal's Sumatibhai Shah Ayurved Mahavidyalaya, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mohan V Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| |
Collapse
|
39
|
Manko N, Starykovych M, Bobak Y, Stoika R, Richter V, Koval O, Lavrik I, Horák D, Souchelnytskyi S, Kit Y. The purification and identification of human blood serum proteins with affinity to the antitumor active RL2 lactaptin using magnetic microparticles. Biomed Chromatogr 2019; 33:e4647. [PMID: 31299101 DOI: 10.1002/bmc.4647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/08/2019] [Indexed: 11/11/2022]
Abstract
The cytopoxic effect of RL2 lactaptin (the recombinant analog of proteolytic fragment of human kappa-casein) toward tumor cells in vitro and in vivo presents it as a novel promising antitumor drug. The binding of any drug with serum proteins can affect their activity, distribution, rate of excretion and toxicity in the human body. Here, we studied the ability of RL2 to bind to various blood serum proteins. Using magnetic microparticles bearing by RL2 as an affinity matrix, in combination with mass spectrometry and western blot analysis, we found a number of blood serum proteins possessing affinity for RL2. Among them IgA, IgM and IgG subclasses of immunoglobulins, apolipoprotein A1 and various cortactin isoforms were identified. This data suggests that in the bloodstream RL2 lactaptin takes part in complicate protein-protein interactions, which can affect its activity.
Collapse
Affiliation(s)
- Nazar Manko
- Institute of Cell Biology NAS Ukraine, Lviv, Ukraine
| | | | | | | | - Vladimir Richter
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Olga Koval
- Department of Biotechnology, Institute of Chemical Biology and Fundamental Medicine, SB RAS, Novosibirsk, Russia
| | - Inna Lavrik
- Department of Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry, AS CR, Prague, Czech Republic
| | | | - Yuriy Kit
- Institute of Cell Biology NAS Ukraine, Lviv, Ukraine
| |
Collapse
|
40
|
Saiganesh S, Saathvika R, Arumugam B, Vishal M, Udhaya V, Ilangovan R, Selvamurugan N. TGF-β1-stimulation of matrix metalloproteinase-13 expression by down-regulation of miR-203a-5p in rat osteoblasts. Int J Biol Macromol 2019; 132:541-549. [PMID: 30951775 DOI: 10.1016/j.ijbiomac.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Transforming growth factor-beta1 (TGF-β1) is a pleiotropic and ubiquitous cytokine involved in bone development and bone remodeling. Matrix metalloproteinase-13 (MMP13) plays a role in the degradation of the extracellular matrix (ECM), and the regulation of this gene is critical in bone remodeling. We previously reported that TGF-β1 stimulates MMP13 expression in rat osteoblasts. Recently, studies have examined the regulation of bone metabolism by microRNAs (miRNAs) to determine their therapeutic potential in osteogenesis. Here, we assessed the effect of TGF-β1 on down-regulation of miRNAs that target MMP13 and stimulation of MMP13 expression in osteoblasts. We used in silico analysis and identified 11 specific miRNAs which directly target rat MMP13. Among these miRNAs, miR-203a-5p expression was significantly decreased by TGF-β1-treatment in rat osteoblasts. Transient transfection of a miR-203a-5p mimic into rat osteoblasts reduced MMP13 expression. A luciferase reporter assay confirmed a direct targeting of miR-miR-203a-5p with the 3' untranslated regions of the MMP13 gene. Hence, we suggest that TGF-β1 stimulated down-regulation of miR-203a-5p, resulting in the stimulation of MMP13 expression in rat osteoblasts. Thus, identification of the role of miR-203a-5p via TGF-β1 and MMP13 in bone remodeling indicated its potential as a biomarker or therapeutic agent for treating bone and bone-related diseases.
Collapse
Affiliation(s)
- S Saiganesh
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Saathvika
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - M Vishal
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - V Udhaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - R Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai 600 113, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
41
|
Ma Z, Prasanna G, Jiang L, Jing P. Molecular interaction of cyanidin-3-O-glucoside with ovalbumin: insights from spectroscopic, molecular docking and in vitro digestive studies. J Biomol Struct Dyn 2019; 38:1858-1867. [DOI: 10.1080/07391102.2019.1618735] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zhen Ma
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Govindarajan Prasanna
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Linlei Jiang
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Pu Jing
- Research Center for Food Safety and Nutrition, Shanghai Engineering Research Center of Food Safety, Key Lab of Urban Agriculture (South), Bor S. Luh Food Safety Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Naz F, Anis H, Hasan Z, Islam A, Khan LA. Exploration of Fungal Lipase as Direct Target of Eugenol through Spectroscopic Techniques. Protein Pept Lett 2019; 26:919-929. [PMID: 31057096 DOI: 10.2174/0929866526666190506113455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/13/2019] [Accepted: 04/19/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fungal lipase dependent processes are important for their pathogenicity. Lipases can therefore be explored as direct target of promising herbal antifungals. OBJECTIVE We explored Aspergillus niger lipase as a direct target of eugenol through spectroscopic techniques and compare results with Bovine Serum Albumin and lysozyme to comment on selectivity of eugenol towards lipase. METHODS In vitro activity assays of lipase are used to determine concentration ranges. UV-Visible, Fluorescence and Circular dichroism spectroscopy were employed to determine binding constant, stoichiometric binding sites and structural changes in Lipase, BSA and lysozyme following incubation with varying concentrations of eugenol. RESULTS In activity assays 50% inhibition of lipase was obtained at 0.913 mmoles/litre eugenol. UV-vis spectroscopy shows formation of lipase-eugenol, Bovine Serum Albumin-eugenol and lysozyme-eugenol complex well below this concentration of eugenol. Eugenol binding caused blue shift with Bovine Serum Albumin and lysozyme suggestive of compaction, and red shift with lipase. Negative ellipticity decreased with lipase but increased with Bovine Serum Albumineugenol and lysozyme-eugenol complexes suggesting loss of helical structure for lipase and compaction for Bovine Serum Albumin and lysozyme. Binding of eugenol to lipase was strong (Ka= 4.7 x 106 M-1) as compared to Bovine Serum Albumin and lysozyme. The number of stoichiometric eugenol binding sites on lipase was found to be 2 as compared to 1.37 (Bovine Serum Albumin) and 0.32 (lysozyme). Docking results also suggest strong binding of eugenol with lipase followed by Bovine Serum Albumin and lysozyme. CONCLUSION Eugenol is found to be effective inhibitor and disruptor of secondary and tertiary structure of lipase, whereas its binding to Bovine Serum Albumin and lysozyme is found to be weak and less disruptive of structures suggesting selectivity of eugenol towards lipase.
Collapse
Affiliation(s)
- Farheen Naz
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Haider Anis
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ziaul Hasan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Luqman A Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
43
|
Francisco CC, Luis CLJ, Marina EBJ, Javier CMF, Alexis LZA, Del Carmen SOH, Alfredo REI. Effect of Temperature and pH on the Secondary Structure and Denaturation Process of Jumbo Squid Hepatopancreas Cathepsin D. Protein Pept Lett 2019; 26:532-541. [PMID: 30950340 DOI: 10.2174/0929866526666190405124353] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. OBJECTIVE In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. METHODS Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. RESULTS It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. CONCLUSION In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.
Collapse
Affiliation(s)
- Cadena-Cadena Francisco
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Cárdenas-López José Luis
- Departamento de Investigacion y Posgrado de Alimentos, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | | | | | | | | | | |
Collapse
|
44
|
Makarska-Bialokoz M, Lipke A. Study of the binding interactions between uric acid and bovine serum albumin using multiple spectroscopic techniques. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.026] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Syed MM, Doshi PJ, Kulkarni MV, Dhavale DD, Kadam NS, Kate SL, Doshi JB, Sharma N, Uppuladinne M, Sonavane U, Joshi R, Doshi SJ, Bhattacharya N. Alizarin interaction with sickle hemoglobin: elucidation of their anti-sickling properties by multi-spectroscopic and molecular modeling techniques. J Biomol Struct Dyn 2019; 37:4614-4631. [DOI: 10.1080/07391102.2018.1557557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Muntjeeb M. Syed
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Pooja. J. Doshi
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Mohan V. Kulkarni
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Dilip D. Dhavale
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Nitin S. Kadam
- Department of Chemistry, Savitribai Phule Pune University (Formerly University of Pune), Pune, India
| | - Sudam L. Kate
- Maharashtra Arogya Mandal’s Sumatibhai Shah Ayurved Mahavidyalaya, College of Ayurveda and Research Centre Hadapsar, Pune, India
| | - Jignesh B. Doshi
- Toxoid Purification Department, Serum Institute of India Ltd., Hadapsar, Pune, India
| | - Neeru Sharma
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Mallikarjunachari Uppuladinne
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Uddhavesh Sonavane
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Rajendra Joshi
- HPC Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Savitribai Phule Pune University Campus, Pune, India
| | - Saurav J. Doshi
- Institute of Bioinformatics & Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| | - Nandika Bhattacharya
- Institute of Bioinformatics & Biotechnology (IBB), Savitribai Phule Pune University, Pune, India
| |
Collapse
|
46
|
Maurya N, Maurya JK, Singh UK, Dohare R, Zafaryab M, Moshahid Alam Rizvi M, Kumari M, Patel R. In Vitro Cytotoxicity and Interaction of Noscapine with Human Serum Albumin: Effect on Structure and Esterase Activity of HSA. Mol Pharm 2019; 16:952-966. [DOI: 10.1021/acs.molpharmaceut.8b00864] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Neha Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Jitendra Kumar Maurya
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Upendra Kumar Singh
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Ravins Dohare
- Nonlinear Dynamic Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Md Zafaryab
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - M. Moshahid Alam Rizvi
- Department of Biosciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| | - Meena Kumari
- Biophysical Chemistry Laboratory, Department of Chemistry, IIT Delhi, Hauzkhas, New Delhi 110016, India
| | - Rajan Patel
- Biophysical Chemistry Laboratory, Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia (A Central University), New Delhi 110025, India
| |
Collapse
|
47
|
Tang W, Jia B, Zhou J, Liu J, Wang J, Ma D, Li P, Chen J. A method using angiotensin converting enzyme immobilized on magnetic beads for inhibitor screening. J Pharm Biomed Anal 2018; 164:223-230. [PMID: 30391811 DOI: 10.1016/j.jpba.2018.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/28/2018] [Accepted: 09/27/2018] [Indexed: 11/29/2022]
Abstract
Angiotensin converting enzyme (ACE), fusing with FLAG tag, was overexpressed in human embryonic kidney 293T cells. This recombinant FLAG-tagged ACE was immobilized on anti-FLAG antibody coated magnetic beads by affinity method in crude cell lysate for the first time. The enzyme-immobilized magnetic beads (ACE-MB), without further cleavage procedure, were used directly to establish a cost-effective and reliable method for screening ACE inhibitors by coupling with fluorescence detection. The enzymatic activity of the ACE-MB was validated based on its Michaelian kinetic behavior towards hippuryl-histidyl-leucine by UHPLC-MS/MS method firstly. Then, several conditions were optimized including amount of magnetic beads, incubation temperature and time in the procedure of ACE immobilization and amount of ACE-MB in the microplate operation. Moreover, this screening assay was validated with Z' factors between 0.71 and 0.81 using four known ACE inhibitors (captopril, lisinopril, fosinopril and fosinoprilat). The developed method was applied for the screening of ACE inhibitors from a small compound library of 45 natural products. As a result, epiberberine and fangchinoline with certain ACE inhibitory activities were screened out in the assay and validated. The results demonstrate the usefulness of this screening method using ACE immobilized on magnetic beads and the advantage of great efficiency with respect to both time and reagents for screening ACE inhibitors.
Collapse
Affiliation(s)
- Weiwei Tang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Bingjie Jia
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jie Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jing Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jiancheng Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Dingyuan Ma
- Department of Prenatal Diagnosis, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu Province, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China
| | - Jun Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu Province, China; Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
48
|
Fu X, Fang Y, Zhao H, Liu S. Size-dependent binding of pristine fullerene (nC 60 ) nanoparticles to bovine/human serum albumin. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2018.04.067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
49
|
Makarska-Bialokoz M. Interactions of hemin with bovine serum albumin and human hemoglobin: A fluorescence quenching study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 193:23-32. [PMID: 29212045 DOI: 10.1016/j.saa.2017.11.063] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 11/26/2017] [Accepted: 11/29/2017] [Indexed: 05/28/2023]
Abstract
The binding interactions between hemin (Hmi) and bovine serum albumin (BSA) or human hemoglobin (HHb), respectively, have been examined in aqueous solution at pH=7.4, applying UV-vis absorption, as well as steady-state, synchronous and three-dimensional fluorescence spectra techniques. Representative results received for both BSA and HHb intrinsic fluorescence proceeding from the interactions with hemin suggest the formation of stacking non-covalent and non-fluorescent complexes in both the Hmi-BSA and Hmi-HHb systems, with highly possible concurrent formation of a coordinate bond between a group on the protein surface and the metal in Hmi molecule. All the values of calculated parameters, the binding, fluorescence quenching and bimolecular quenching rate constants point to the involvement of static quenching in both the systems studied. The blue shift in the synchronous fluorescence spectra imply the participation of both tryptophan and tyrosine residues in quenching of BSA and HHb intrinsic fluorescence. Depicted outcomes suggest that hemin is supposedly able to influence the physiological functions of BSA and HHb, the most important blood proteins, particularly in case of its overuse.
Collapse
Affiliation(s)
- Magdalena Makarska-Bialokoz
- Department of Inorganic Chemistry, Maria Curie-Sklodowska University, M. C. Sklodowska Sq. 2, 20-031 Lublin, Poland.
| |
Collapse
|
50
|
de Oliveira SC, Monteiro JS, Pires-Santos GM, Sampaio FJP, Soares AP, Soares LGP, Pinheiro AL. LED antimicrobial photodynamic therapy with phenothiazinium dye against Staphylococcus aureus : An in vitro study. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 175:46-50. [DOI: 10.1016/j.jphotobiol.2017.08.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/16/2017] [Accepted: 08/21/2017] [Indexed: 11/28/2022]
|